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ABSTRACT. Bounds for the perturbe@eby3ev functional€’ (f, g) — uC (e, g) andC (f, g) —
uC (e,g) — vC (f,e) whenp,v € R ande is the identity function on the intervad, b] , are
given. Applications for some Griiss’ type inequalities are also provided.
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1. INTRODUCTION

For two Lebesgue integrable functiofisy : [a, b] — R, consider theebysev functional

1 b 1 b b
@y U= [ f0s0a - ——— [ g [ g
b —aJ, (b — a) a a
In 1934, Gruss [5] showed that
1
(1.2) C(f.9)l < 5 (M =m)(N=n),
provided that there exists the real numbers\/, n, N such that

(1.3) m< ft)<M and n<g(t) <N fora.e.tcla,bl.

The constant}I is best possible i.1) in the sense that it cannot be replaced by a smaller
guantity. 5

Another, however less known result, even though it was obtainedetysev in 1882] [3],
states that

(1.4) C(0)] < 5 1P Ll (0= )7,
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provided thatf’, ¢’ exist and are continuous da, b] and || f'||, = sup,e(,y [f (¢)[ . The con-
stantZ; can be improved in the general case.

The Cebysev |nequallty.4) also holdsffg : [a,b] — R are assumed to be absolutely
continuous ang”, g’ € L [a, b] while || f'|| , = esssupefa [ (1]

A mixture between Gruss’ resu.Z) a@Ebysev's on4) is the following inequality
obtained by Ostrowski in 1970,/[9]:

(1.5) C ()l < 5 (b= a) (M —m) ...

provided thatf is Lebesgue integrable and satisfies|(1.3) while absolutely continuous and
g € Lo a,b]. The constan§ is best possible ir@.S).

The case of euclidean norms of the derivative was considered by A. Lupas in [7] in which he
proved that

1
(1.6) €9l < 1N gl (0~ a),

provided thatf, g are absolutely continuous arfd ¢’ € L [a,b]. The constant% is the best
possible.
Recently, P. Cerone and S.S. Dragomir [1] have proved the following results:

b P\ #
t)—ﬁ/f(s)ds dt) |

wherep > 1 andll? + . =1lorp=1andg = oo, and
1 b
0= 5= [ 1)

provided thaif € L, [a,b] andg € L, [a,0] (p > 1, S +; =1L;p=1,g =00 0rp =o00,q = 1).
Notice that forg = oo, p = 1 in (1.7) we obtain
/ f(s)ds|d

/f )ds|d
%a/abﬂs)ds it

1 b
@7 1O (fg)l < intllg =, 5= (/

1
(1.8) |C (f, g)!<mf lg — 7||1 €58 sup

tela,b]

(1.9) IC(f,9)] < mf lg — vlloo

1
< gl - b—a .

and if g satisfies[(1]3), then

. 1 b
(1.10)  [C(f,9)] S;glf&Hg—vHoo'—_a/a

n+ N 1 b 1 b
<, _ . = ds| dt
_Hg 5 Hoo b—a/a —a/a f(s)ds

b
b b
s%w—n)-—bia/a —ia/Gf@)ds dt

The inequality between the first and the last term(in (1.10) has been obtained by Cheng and
Sunin [4]. However, the sharpness of the cons%aﬁgeneralisation for the abstract Lebesgue
integral and the discrete version of it have been obtain€d in [2].

For other recent results on the Griss inequality, see [6], [8] and [10] and the references
therein.
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The aim of the present paper is to establish Griiss type inequalities for some pefierbed
bySev functionals. For this purpose, two integral representations of the funct@nglg) —
uC (e, g)andC (f,g) — pC (e, g) —vC (f,e) whenu, v € R ande (t) = t, t € [a,b] are given.

2. REPRESENTATION RESULTS

The following representation result can be stated.

Lemma 2.1.If f : [a,b] — R is absolutely continuous oa, b] and g is Lebesgue integrable
on|a,b], then

(2.1) Clf9)= G //@ts ] (t) dsdt

forany\ € R, where the kernel) : [a, b] — R is given by

t—b if a<s<t<hb,
(2.2) Q(t,s) = .
t—a fa<t<s<hb.

Proof. We observe that fok € R we haveC' (f, \) = 0 and thus it suffices to provg (2.1) for
A=0.
By Fubini’'s theorem, we have

(2.3) /ab/:w,s)g(s £) dsdt — /(/@ts )g(s)ds-

By the definition ofQ) (¢, s) and integrating by parts, we have successively,

(2.4) /abQ(t,s b di = /Q (t, 5) )dt+/SbQ(t,s)f P dt
-/ (t—a)f()dt+/b(t—b)f’()dt
~(s—a) /f dt + (b— s) (s)—/sbf(t)dt
(b—a)f /f
foranys € [a,1].

Now, integrating[(2.4) multiplied witly (s) overs € [a, b], we deduce

/ab(/ab@u,s)f'(t)dt)g(s)ds—/b{b—a - [ s jat] 5
b a) / £(s ds‘/a f(s)ds-/ag@)ds

(b - CL 7 )
and the identity is proved. O

Utilising the linearity property o’ (-, -) in each argument, we can state the following equal-
ity:
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Theorem 2.2.1f ¢ : [a,b] — R, e (t) = t, then under the assumptions of Lenjma 2.1 we have:

(25)  C(f,9)=uC(eg)+

forany\, i € R, where

(2.6) C (e, g) —/tg 1) dt — +b o) de.

The second representation result is mcorporated in

— A[f (&) — p] dids

Lemma2.3.1f f,g:[a,b] — R are absolutely continuous dn, b , then

2.7) Cl0)= G //Kts g (s) dids,

where the kernek’ : [a,b] — R is deflned by

b—t)(s—a) If a<s<t<hb,
T L LN

(t—a)(b—ys) ifa<t<s<b.
Proof. By Fubini’s theorem we have

(2.9) //Kts dtds_/ (/Kts )f(t)dt.

By the definition of K and integrating by parts, we have successively:

(2.10) / K (t,s)d" (s)ds

/Kts ds+/Kts

b
(b—t)/(s—a) ()ds+(t—a)/t (b—s)g (s)ds

(2.8)

~ -0 ]t-as0- [ 94
+(t—a) [—(b—t)g(t)—i—/tbg(s)ds}
== [9@as =00 [o6as

for anyt € [a, b].
Multiplying (2.10) by f’ (¢) and integrating ovet € [a, b] , we have:

(2.11) /ab (/abK (t,8) g (s) ds) I (t)dt
= [0 [s0ras-0-0 [se1a] r o1

:f@{@—@[ﬂu@w—ww%y[g@mﬂz
—é?ﬁﬂ@ﬂq[g@m—w—w[g@@Yﬁ
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:/f(t) [/tg(s)ds—(t—a)g(t)ﬂL g(s)ds—(b—1)g(t)

:_/abf(t)[/b (s)ds — (b—a) g } dt
:(b—a)/ t)dt — /f t)dt - /bg
=(b—a)*C(f,9).
By (2.11) and[(2.9) we deduce the desired result. O

Theorem 2.4. With the assumptions of Leminal2.3, we have for.apyc R that:

(2.12) C(f,g)=nC (e g)+ VC(

—u] [¢' (s) — v] dtds.

Proof. Follows by Lemma 2]3 on observing that(e, ¢) = 0 and

C(f_ll'Le7g_V6) :C(fag)_u’c(eag)_yc(fae)

foranypu,v € R. O

3. BOUNDS IN TERMS OF LEBESGUE NORMS OF g AND f’

Utilising the representatiofn (2.5) we can state the following result:

Theorem 3.1. Assume thay : [a,b] — R is Lebesgue integrable dn,b] and f : [a,b] — R is
absolutely continuous ofa, b] , then

(3.1) 1C(f.9) — 1C (e, 9)]
( 1<b—a> 17~ plaing g Al i € Lo
21/q b—a) / . . p
<9 la+D)(a+2)] 1_/q Hf M||py€1ﬂf§||g —ll, if f.9€ Lya,b],

1 1 _ 1.
p>1,5+a—1,

b—a) " |f = pl, inf |lg —
\( a) I = plly inf llg =1

foranyu € R.

Proof. From (2.%), we have

B2)  [C(f9) —nuC(e9)] < (b_la)z /ab/ale(t, s) g (s) = ALLS" () — pl dtds

= //|Qts|dtds
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However, by the definition of) we have foro > 1 that

I(a):= /j/j\@(t,s)f‘dtds
:/ab</at|t—b|“ds+/tb]t—a]ads)dt
b

— [t=a) -0+ -t -l

Since ( )
b N B b —a a+2
/a (=) =1t =
and , . )a+2
L(b_”“_ayﬁ:Xa+1ﬂa+m’
hence

2(b—a)*"
o+t =t

1 bob b—a
oo [ et =25,

and taking the infimum ovex € R in (3.2), we deduce the first part ¢f (B.1).
Utilising the Holder inequality for double integrals we also have

b pb
| [ 1091196 = N1r ) — ul dnas

SZ(laéﬂQ(t$quB)é(Aalﬂg@)_AVLf@)—quuk>;

214 (b — q)'*i ,
e — )\ — ,
[@+1MQ+2W“H9 I, 1= wll,,

which provides, by the first inequality in (3.2), the second pauit of (3.1).
For the last part, we observe thab, ., ;2 |@ (¢, s)| = b — a and then

I(a) =

Then we have

b b
| [ Qs s) = A1l 0~ uldids < 6= a) g = Xl 1 = sl
This completes the proof. O
Remark 1. The above inequality (3.1) is a source of various inequalities as will be shown in
the following.
(1) For instance, if-co < m < g(t) < M < oo fora.e.t € [a,0], then|g — =5 || <
3 (M —m)and||g — ™4 || "< 5 (M —m) (b~ a)"/?  p > 1. Then for anyu € R we
have

1
2

sO—a)(M=m)|[f' =yl i f € Lxlabl;

=1/p(ph—q 1/q .
(33) [C(f,9) — nC (e, )l <4 i M =m)If" = pull, ¥ f"€ Lyfa,b],
p>1, %—i—%: 1;

5 (M —m)[lf" = plly,
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which gives foru = 0 that
s(0—a)(M—m)|fle i f€Lglab];

gfl/p(b_a)l/q , .
(3.4) C (.9 <% Tageeye M =m) N, i f e Lyla, 0],
p>1, ]l?—i- (11 =1
s (M —m)|fl,.
(2) If —o0 <y < f’( ) <T < oo fora.e.t € [a,b], then| f — 25| < 1 |I'—+|and

|7 - V+FHP <L —4|(b—a)"”,p > 1. Then we have fro 1) that

(3.5) C(f,9)— TC (e, 9)
(§0—a)C=)infllg—¢l, i g€ Lclad];

1/p(b_a)1/q _ . B .
@@ & =) infllg =&l if g€ Lyab],

IN

1 1 _ 1.
p>1a5+5_17

L0 —7) inf[lg — ¢, -
| 2 (T =) infllg —¢ll

Moreover, if we also assume thabo < m < g (t) < M < oo for a.e.t € [a, b] , then
by (3.5) we also deduce:

(3.6) (ﬁ)————C@@
15 (b—a)(T' =) (M —m)

<q e g (M —m) p>1, ]
0= (M—-—m)(b—a).

+l=1;

Y p q ?
Observe that the first inequality in (3.6) is better than the others.

4. BOUNDS IN TERMS OF LEBESGUE NORMS OF f” AND ¢’

We have the following result:

Theorem 4.1. Assume thaf, g : [a,b] — R are absolutely continuous dn, b], then

(4.1) |C(f,g) —uC(e,g) —vC(f, e)l
(L o—a)?|lf —pllld — v if f',¢' € Lo [a,0];

1
B(g+1,q+1) | @ 2 .
[Bas] T — @/t =l g~ vl 0 g€ Ly fa.t],
p>1, ;4o =1

IN

L3 I = ulli g = vl

foranyu,v € R.

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 64, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 S.S. RAGOMIR

Proof. From [2.12), we have

(4.2) 1C(f,9) —nC (e, g9) — VC’(f e

(t) — ullg' (s) — v|dtds.

Define

43) J(a)= /:/ab\K(t,s)Pdtds
:/ab [/at(b—t)a(s—a)"‘dw/tb(t—a)"‘(b—s)ads] dt

_ {/ab(b—t)o‘(t—a)o‘+1dt+/ab(t—a)a(b—t)o‘“dt}.

a+1

Since

/ab (t—a)’ (b—t)dt = (b— a)PTeH! /01 P (1— 8)ds

:(b—a)p+q+1B(p+1,q—|—1),

hence, by[(4]3),

. 200+2
J(a):%B(a—i—l,oﬁ—%, a>1.

As it is well known that

q
B(p,q+1)=——B(p,q),
( ) o (p,q)

thenforp=a+1,g=a+1wehaveB(a+1,a+2)=3B(a+1,a+1).
Then we have

(b . a)QOHrQ

(@) = a+1

Bla+1l,a+1), a>1.

Taking into account that

ﬁ | [l @ = allg () - videds

1 b b
<1 = ullo g = vl ——s / / K (1, 5)| dtds
(b_a) a Ja
1 =l llg = vl (b—a)* B(2.3)
1
= o=@~ e~ vl

we deduce front (4]2) the first part ¢f (4.1).
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By the Holder integral inequality for double integrals, we have

b b
4.4) / / K (6, )| 1 () — ul g/ () — ] dids
b b o
g( [ |K<t,s>wtds) 1 =l g’ — v,
1
b_a2q+2 q
- p a2 I -l -
B(g+1,q+1) ‘
_ 242/ )
= - | PN g -,

Utilising (4.7) and[(4.4) we deduce the second parf of| (4.1).
By the definition of K (¢, s) we have, forn < s <t < b, that

K (t,5)=(b—1) (s —a) < (b~ ) (t—a) < (b~ a)
and fora <t < s < b, that
K (t,5) = (t—a)(b—5) < (t —a) (b—1) < { (b~ a)?,
therefore
sup |K (t,5)] = = (b—a)”.
(t,s)€[a,b] 4
Due to the fact that

b b
ﬁ//|K<t’s)||f/(t)—M||gl(3)—l/|dtds

1 b b
< swp K (ts)| ——, / / () = ul g (s) — v deds
(t,5)€[a,b] (b—a)" Ja Ja

1
= 217 =l g =,

then from [(4.2) we obtain the last part pf (4.1). O
Remark 2. Wheny = v = 0, we obtain from[(4.]1) the following Griss type inequalities:
(5 0=a) 19l if f'.9" € Lo a, b];
@5 (C(fo)l < [P 6= S, g, S € Lylab],
1.1 9.
o / p>1, >ty 1;
C 2 LNl

Notice that the first inequality i.5) is exactly tBebysev inequality for whic% is the best
possible constant.

If we assume that there existsl’, ¢, ® such that-oco < v < f'(t) < I' < 0o and—oo <
¢ < g (t) <P < ocforae.t e a,b], then we deduce fron (4.1) the following inequality

_ ¢+ L

0 e ) : (f.0)] € 5 b= (T =) (@~ 0).

(4.6) |C(f9)
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We also observe that the const@gﬁs best possible in the sense that it cannot be replaced by a

S.S. RAGOMIR

smaller quantity.
The sharpness of the constant follows by the fact thal'fer —y, & = —¢ we deduce from
(4.6) theCebysev inequality which is sharp.
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