journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756

Volume 9 (2008), Issue 3, Article 64, 10 pp.

BOUNDS FOR SOME PERTURBED ČEBYŠEV FUNCTIONALS

S.S. DRAGOMIR

RESEARCH GROUP IN MATHEMATICAL INEQUALITIES AND APPLICATIONS
SCHOOL OF ENGINEERING AND SCIENCE
VICTORIA UNIVERSITY
PO Box 14428, MCMC 8001
VICTORIA AUSTRALIA.

sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/

Received 20 May, 2008; accepted 17 August, 2008 Communicated by R.N. Mohapatra

ABSTRACT. Bounds for the perturbed Čebyšev functionals $C\left(f,g\right)-\mu C\left(e,g\right)$ and $C\left(f,g\right)-\mu C\left(e,g\right)-\nu C\left(f,e\right)$ when $\mu,\nu\in\mathbb{R}$ and e is the identity function on the interval [a,b], are given. Applications for some Grüss' type inequalities are also provided.

 $\textit{Key words and phrases: } \check{\mathsf{Ceby\check{s}ev}}$ functional, Grüss type inequality, Integral inequalities, Lebesgue $p-\mathsf{norms.}$

2000 Mathematics Subject Classification. 26D15, 26D10.

1. Introduction

For two Lebesgue integrable functions $f, g : [a, b] \to \mathbb{R}$, consider the Čebyšev functional:

(1.1)
$$C(f,g) := \frac{1}{b-a} \int_{a}^{b} f(t)g(t)dt - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(t)dt \int_{a}^{b} g(t)dt.$$

In 1934, Grüss [5] showed that

(1.2)
$$|C(f,g)| \le \frac{1}{4} (M-m) (N-n),$$

provided that there exists the real numbers m, M, n, N such that

$$(1.3) m \le f(t) \le M \text{ and } n \le g(t) \le N \text{ for a.e. } t \in [a, b].$$

The constant $\frac{1}{4}$ is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [3], states that

$$|C(f,g)| \le \frac{1}{12} \|f'\|_{\infty} \|g'\|_{\infty} (b-a)^2,$$

154-08

provided that f', g' exist and are continuous on [a, b] and $||f'||_{\infty} = \sup_{t \in [a, b]} |f'(t)|$. The constant $\frac{1}{12}$ can be improved in the general case.

The Čebyšev inequality (1.4) also holds if $f,g:[a,b]\to\mathbb{R}$ are assumed to be absolutely continuous and $f',g'\in L_{\infty}\left[a,b\right]$ while $\|f'\|_{\infty}=ess\sup_{t\in[a,b]}|f'\left(t\right)|$.

A mixture between Grüss' result (1.2) and Čebyšev's one (1.4) is the following inequality obtained by Ostrowski in 1970, [9]:

(1.5)
$$|C(f,g)| \le \frac{1}{8} (b-a) (M-m) ||g'||_{\infty},$$

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely continuous and $g' \in L_{\infty}[a,b]$. The constant $\frac{1}{8}$ is best possible in (1.5).

The case of euclidean norms of the derivative was considered by A. Lupaş in [7] in which he proved that

$$|C(f,g)| \le \frac{1}{\pi^2} \|f'\|_2 \|g'\|_2 (b-a),$$

provided that f,g are absolutely continuous and $f',g'\in L_2[a,b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

Recently, P. Cerone and S.S. Dragomir [1] have proved the following results:

$$(1.7) |C(f,g)| \leq \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_q \cdot \frac{1}{b-a} \left(\int_a^b \left| f(t) - \frac{1}{b-a} \int_a^b f(s) \, ds \right|^p dt \right)^{\frac{1}{p}},$$

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ or p = 1 and $q = \infty$, and

$$(1.8) |C(f,g)| \le \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_1 \cdot \frac{1}{b-a} \operatorname{ess sup}_{t \in [a,b]} \left| f(t) - \frac{1}{b-a} \int_a^b f(s) \, ds \right|,$$

provided that $f \in L_p[a,b]$ and $g \in L_q[a,b]$ $(p>1,\frac{1}{p}+\frac{1}{q}=1;p=1,q=\infty \text{ or } p=\infty,q=1).$ Notice that for $q=\infty,p=1$ in (1.7) we obtain

(1.9)
$$|C(f,g)| \le \inf_{\gamma \in \mathbb{R}} ||g - \gamma||_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| dt$$

$$\le ||g||_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| dt$$

and if q satisfies (1.3), then

$$(1.10) |C(f,g)| \le \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| dt$$

$$\le \left\| g - \frac{n+N}{2} \right\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| dt$$

$$\le \frac{1}{2} (N-n) \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| dt.$$

The inequality between the first and the last term in (1.10) has been obtained by Cheng and Sun in [4]. However, the sharpness of the constant $\frac{1}{2}$, a generalisation for the abstract Lebesgue integral and the discrete version of it have been obtained in [2].

For other recent results on the Grüss inequality, see [6], [8] and [10] and the references therein.

The aim of the present paper is to establish Grüss type inequalities for some perturbed Čebyšev functionals. For this purpose, two integral representations of the functionals $C(f,g) - \mu C(e,g)$ and $C(f,g) - \mu C(e,g) - \nu C(f,e)$ when $\mu, \nu \in \mathbb{R}$ and $e(t) = t, t \in [a,b]$ are given.

2. REPRESENTATION RESULTS

The following representation result can be stated.

Lemma 2.1. If $f : [a,b] \to \mathbb{R}$ is absolutely continuous on [a,b] and g is Lebesgue integrable on [a,b], then

(2.1)
$$C(f,g) = \frac{1}{(b-a)^2} \int_a^b \int_a^b Q(t,s) [g(s) - \lambda] f'(t) ds dt$$

for any $\lambda \in \mathbb{R}$, where the kernel $Q: [a,b]^2 \to \mathbb{R}$ is given by

(2.2)
$$Q(t,s) := \begin{cases} t-b & \text{if } a \leq s \leq t \leq b, \\ t-a & \text{if } a \leq t < s \leq b. \end{cases}$$

Proof. We observe that for $\lambda \in \mathbb{R}$ we have $C(f, \lambda) = 0$ and thus it suffices to prove (2.1) for $\lambda = 0$.

By Fubini's theorem, we have

(2.3)
$$\int_{a}^{b} \int_{a}^{b} Q(t,s) g(s) f'(t) ds dt = \int_{a}^{b} \left(\int_{a}^{b} Q(t,s) f'(t) dt \right) g(s) ds.$$

By the definition of Q(t, s) and integrating by parts, we have successively,

(2.4)
$$\int_{a}^{b} Q(t,s) f'(t) dt = \int_{a}^{s} Q(t,s) f'(t) dt + \int_{s}^{b} Q(t,s) f'(t) dt$$
$$= \int_{a}^{s} (t-a) f'(t) dt + \int_{s}^{b} (t-b) f'(t) dt$$
$$= (s-a) f(s) - \int_{a}^{s} f(t) dt + (b-s) f(s) - \int_{s}^{b} f(t) dt$$
$$= (b-a) f(s) - \int_{a}^{b} f(t) dt,$$

for any $s \in [a, b]$.

Now, integrating (2.4) multiplied with g(s) over $s \in [a, b]$, we deduce

$$\int_{a}^{b} \left(\int_{a}^{b} Q(t,s) f'(t) dt \right) g(s) ds = \int_{a}^{b} \left[(b-a) f(s) - \int_{a}^{b} f(t) dt \right] g(s) ds$$

$$= (b-a) \int_{a}^{b} f(s) g(s) ds - \int_{a}^{b} f(s) ds \cdot \int_{a}^{b} g(s) ds$$

$$= (b-a)^{2} C(f,g)$$

and the identity is proved.

Utilising the linearity property of $C\left(\cdot,\cdot\right)$ in each argument, we can state the following equality:

Theorem 2.2. If $e:[a,b] \to \mathbb{R}$, e(t)=t, then under the assumptions of Lemma 2.1 we have:

(2.5)
$$C(f,g) = \mu C(e,g) + \frac{1}{(b-a)^2} \int_a^b \int_a^b Q(t,s) [g(s) - \lambda] [f'(t) - \mu] dt ds$$

for any $\lambda, \mu \in \mathbb{R}$, where

(2.6)
$$C(e,g) = \frac{1}{b-a} \int_{a}^{b} tg(t) dt - \frac{a+b}{2} \int_{a}^{b} g(t) dt.$$

The second representation result is incorporated in

Lemma 2.3. If $f, g : [a, b] \to \mathbb{R}$ are absolutely continuous on [a, b], then

(2.7)
$$C(f,g) = \frac{1}{(b-a)^2} \int_a^b \int_a^b K(t,s) f'(t) g'(s) dt ds,$$

where the kernel $K : [a, b] \to \mathbb{R}$ is defined by

(2.8)
$$K(t,s) := \begin{cases} (b-t)(s-a) & \text{if } a \le s \le t \le b, \\ (t-a)(b-s) & \text{if } a \le t < s \le b. \end{cases}$$

Proof. By Fubini's theorem we have

(2.9)
$$\int_{a}^{b} \int_{a}^{b} K(t,s) f'(t) g'(s) dt ds = \int_{a}^{b} \left(\int_{a}^{b} K(t,s) g'(s) ds \right) f'(t) dt.$$

By the definition of K and integrating by parts, we have successively:

(2.10)
$$\int_{a}^{b} K(t,s)g'(s) ds$$

$$= \int_{a}^{t} K(t,s)g'(s) ds + \int_{t}^{b} K(t,s)g'(s) ds$$

$$= (b-t)\int_{a}^{t} (s-a)g'(s) ds + (t-a)\int_{t}^{b} (b-s)g'(s) ds$$

$$= (b-t)\left[(t-a)g(t) - \int_{a}^{t} g(s) ds \right]$$

$$+ (t-a)\left[-(b-t)g(t) + \int_{t}^{b} g(s) ds \right]$$

$$= (t-a)\int_{t}^{b} g(s) ds - (b-t)\int_{a}^{t} g(s) ds,$$

for any $t \in [a, b]$.

Multiplying (2.10) by f'(t) and integrating over $t \in [a, b]$, we have:

(2.11)
$$\int_{a}^{b} \left(\int_{a}^{b} K(t,s) g'(s) ds \right) f'(t) dt$$

$$= \int_{a}^{b} \left[(t-a) \int_{t}^{b} g(s) ds - (b-t) \int_{a}^{t} g(s) ds \right] f'(t) dt$$

$$= f(t) \left[(t-a) \int_{t}^{b} g(s) ds - (b-t) \int_{a}^{t} g(s) ds \right]_{a}^{b}$$

$$- \int_{a}^{b} f(t) \left[(t-a) \int_{t}^{b} g(s) ds - (b-t) \int_{a}^{t} g(s) ds \right]' dt$$

$$\begin{split} &= \int_{a}^{b} f\left(t\right) \left[\int_{t}^{b} g\left(s\right) ds - (t-a) g\left(t\right) + \int_{a}^{t} g\left(s\right) ds - (b-t) g\left(t\right) \right] \\ &= -\int_{a}^{b} f\left(t\right) \left[\int_{a}^{b} g\left(s\right) ds - (b-a) g\left(t\right) \right] dt \\ &= (b-a) \int_{a}^{b} g(t) f(t) dt - \int_{a}^{b} f\left(t\right) dt \cdot \int_{a}^{b} g(t) dt \\ &= (b-a)^{2} C\left(f,g\right). \end{split}$$

By (2.11) and (2.9) we deduce the desired result.

Theorem 2.4. With the assumptions of Lemma 2.3, we have for any $\nu, \mu \in \mathbb{R}$ that:

(2.12)
$$C(f,g) = \mu C(e,g) + \nu C(f,e) + \frac{1}{(b-a)^2} \int_a^b \int_a^b K(t,s) [f'(t) - \mu] [g'(s) - \nu] dt ds.$$

Proof. Follows by Lemma 2.3 on observing that C(e, e) = 0 and

$$C(f - \mu e, g - \nu e) = C(f, g) - \mu C(e, g) - \nu C(f, e)$$

for any $\mu, \nu \in \mathbb{R}$.

3. Bounds in Terms of Lebesgue Norms of g and f'

Utilising the representation (2.5) we can state the following result:

Theorem 3.1. Assume that $g:[a,b] \to \mathbb{R}$ is Lebesgue integrable on [a,b] and $f:[a,b] \to \mathbb{R}$ is absolutely continuous on [a,b], then

$$(3.1) |C(f,g) - \mu C(e,g)|$$

$$\leq \begin{cases} \frac{1}{3} (b-a) \|f' - \mu\|_{\infty} \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{\infty} & \text{if } f', g \in L_{\infty}[a,b]; \\ \frac{2^{1/q} (b-a)^{\frac{p-q}{pq}}}{[(q+1)(q+2)]^{1/q}} \|f' - \mu\|_{p} \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{p} & \text{if } f', g \in L_{p}[a,b], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \end{cases}$$

$$(b-a)^{-1} \|f' - \mu\|_{1} \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{1}$$

for any $\mu \in \mathbb{R}$.

Proof. From (2.5), we have

$$(3.2) |C(f,g) - \mu C(e,g)| \le \frac{1}{(b-a)^2} \int_a^b \int_a^b |Q(t,s)| |g(s) - \lambda| |f'(t) - \mu| dt ds$$

$$\le ||g - \lambda||_{\infty} ||f' - \mu||_{\infty} \frac{1}{(b-a)^2} \int_a^b \int_a^b |Q(t,s)| dt ds.$$

However, by the definition of Q we have for $\alpha \geq 1$ that

$$I(\alpha) := \int_{a}^{b} \int_{a}^{b} |Q(t,s)|^{\alpha} dt ds$$

$$= \int_{a}^{b} \left(\int_{a}^{t} |t-b|^{\alpha} ds + \int_{t}^{b} |t-a|^{\alpha} ds \right) dt$$

$$= \int_{a}^{b} \left[(t-a) (b-t)^{\alpha} + (b-t) (t-a)^{\alpha} \right] dt.$$

Since

$$\int_{a}^{b} (t - a) (b - t)^{\alpha} dt = \frac{(b - a)^{\alpha + 2}}{(\alpha + 1) (\alpha + 2)}$$

and

$$\int_{a}^{b} (b-t) (t-a)^{\alpha} dt = \frac{(b-a)^{\alpha+2}}{(\alpha+1) (\alpha+2)},$$

hence

$$I(\alpha) = \frac{2(b-a)^{\alpha+2}}{(\alpha+1)(\alpha+2)}, \qquad \alpha \ge 1.$$

Then we have

$$\frac{1}{(b-a)^2} \int_a^b \int_a^b |Q(t,s)| \, dt ds = \frac{b-a}{3},$$

and taking the infimum over $\lambda \in \mathbb{R}$ in (3.2), we deduce the first part of (3.1).

Utilising the Hölder inequality for double integrals we also have

$$\begin{split} & \int_{a}^{b} \int_{a}^{b} |Q(t,s)| |g(s) - \lambda| |f'(t) - \mu| dt ds \\ & \leq \left(\int_{a}^{b} \int_{a}^{b} |Q(t,s)|^{q} dt ds \right)^{\frac{1}{q}} \left(\int_{a}^{b} \int_{a}^{b} |g(s) - \lambda|^{p} |f'(t) - \mu|^{p} dt ds \right)^{\frac{1}{p}} \\ & = \frac{2^{1/q} (b-a)^{1+\frac{2}{q}}}{\left[(q+1) (q+2) \right]^{1/q}} \|g - \lambda\|_{p} \|f' - \mu\|_{p} \,, \end{split}$$

which provides, by the first inequality in (3.2), the second part of (3.1).

For the last part, we observe that $\sup_{(t,s)\in[a,b]^2}|Q(t,s)|=b-a$ and then

$$\int_{a}^{b} \int_{a}^{b} |Q(t,s)| |g(s) - \lambda| |f'(t) - \mu| dt ds \le (b-a) ||g - \lambda||_{1} ||f' - \mu||_{1}$$

This completes the proof.

Remark 1. The above inequality (3.1) is a source of various inequalities as will be shown in the following.

(1) For instance, if $-\infty < m \le g\left(t\right) \le M < \infty$ for a.e. $t \in [a,b]$, then $\left\|g - \frac{m+M}{2}\right\|_{\infty} \le \frac{1}{2}\left(M-m\right)$ and $\left\|g - \frac{m+M}{2}\right\|_{p} \le \frac{1}{2}\left(M-m\right)\left(b-a\right)^{1/p}$, $p \ge 1$. Then for any $\mu \in \mathbb{R}$ we have

(3.3)
$$|C(f,g) - \mu C(e,g)| \leq \begin{cases} \frac{1}{6} (b-a) (M-m) \|f' - \mu\|_{\infty} & \text{if } f' \in L_{\infty} [a,b]; \\ \frac{2^{-1/p} (b-a)^{1/q}}{[(q+1)(q+2)]^{1/q}} (M-m) \|f' - \mu\|_{p} & \text{if } f' \in L_{p} [a,b], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{2} (M-m) \|f' - \mu\|_{1}, \end{cases}$$

which gives for $\mu = 0$ that

$$|C(f,g)| \leq \begin{cases} \frac{1}{6} (b-a) (M-m) \|f'\|_{\infty} & \text{if } f' \in L_{\infty} [a,b]; \\ \frac{2^{-1/p} (b-a)^{1/q}}{[(q+1)(q+2)]^{1/q}} (M-m) \|f'\|_{p} & \text{if } f' \in L_{p} [a,b], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{2} (M-m) \|f'\|_{1}. \end{cases}$$

(2) If $-\infty < \gamma \le f'(t) \le \Gamma < \infty$ for a.e. $t \in [a,b]$, then $\left\|f' - \frac{\gamma + \Gamma}{2}\right\|_{\infty} \le \frac{1}{2}\left|\Gamma - \gamma\right|$ and $\left\|f' - \frac{\gamma + \Gamma}{2}\right\|_{p} \le \frac{1}{2}\left|\Gamma - \gamma\right|(b-a)^{1/p}$, $p \ge 1$. Then we have from (3.1) that

$$(3.5) \left| C(f,g) - \frac{\gamma + \Gamma}{2} C(e,g) \right|$$

$$\leq \begin{cases} \frac{1}{6} (b-a) (\Gamma - \gamma) \inf_{\xi \in \mathbb{R}} \|g - \xi\|_{\infty} & \text{if } g \in L_{\infty} [a,b]; \\ \frac{2^{-1/p} (b-a)^{1/q}}{[(q+1)(q+2)]^{1/q}} (\Gamma - \gamma) \inf_{\xi \in \mathbb{R}} \|g - \xi\|_{p} & \text{if } g \in L_{p} [a,b], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{2} (\Gamma - \gamma) \inf_{\xi \in \mathbb{R}} \|g - \xi\|_{1}. \end{cases}$$

Moreover, if we also assume that $-\infty < m \le g(t) \le M < \infty$ for a.e. $t \in [a, b]$, then by (3.5) we also deduce:

(3.6)
$$\left| C(f,g) - \frac{\gamma + \Gamma}{2} C(e,g) \right|$$

$$\leq \begin{cases} \frac{1}{12} (b-a) (\Gamma - \gamma) (M-m) \\ \frac{2^{1-1/p} (b-a)}{[(q+1)(q+2)]^{1/q}} (\Gamma - \gamma) (M-m) & p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{4} (\Gamma - \gamma) (M-m) (b-a) . \end{cases}$$

Observe that the first inequality in (3.6) is better than the others.

4. Bounds in Terms of Lebesgue Norms of f' and g'

We have the following result:

Theorem 4.1. Assume that $f, g : [a, b] \to \mathbb{R}$ are absolutely continuous on [a, b], then

$$(4.1) \quad |C\left(f,g\right) - \mu C\left(e,g\right) - \nu C\left(f,e\right)| \\ \leq \begin{cases} \frac{1}{12} \left(b-a\right)^{2} \|f'-\mu\|_{\infty} \|g'-\nu\|_{\infty} & \text{if } f',g' \in L_{\infty}\left[a,b\right]; \\ \left[\frac{B(q+1,q+1)}{q+1}\right]^{\frac{1}{q}} \left(b-a\right)^{2/q} \|f'-\mu\|_{p} \|g'-\nu\|_{p} & \text{if } f',g' \in L_{p}\left[a,b\right], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \end{cases}$$

for any $\mu, \nu \in \mathbb{R}$.

Proof. From (2.12), we have

$$(4.2) |C(f,g) - \mu C(e,g) - \nu C(f,e)|$$

$$\leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} |K(t,s)| |f'(t) - \mu| |g'(s) - \nu| dt ds.$$

Define

$$(4.3) J(\alpha) := \int_{a}^{b} \int_{a}^{b} |K(t,s)|^{\alpha} dt ds$$

$$= \int_{a}^{b} \left[\int_{a}^{t} (b-t)^{\alpha} (s-a)^{\alpha} ds + \int_{t}^{b} (t-a)^{\alpha} (b-s)^{\alpha} ds \right] dt$$

$$= \frac{1}{\alpha+1} \left[\int_{a}^{b} (b-t)^{\alpha} (t-a)^{\alpha+1} dt + \int_{a}^{b} (t-a)^{\alpha} (b-t)^{\alpha+1} dt \right].$$

Since

$$\int_{a}^{b} (t-a)^{p} (b-t)^{q} dt = (b-a)^{p+q+1} \int_{0}^{1} s^{p} (1-s)^{q} ds$$
$$= (b-a)^{p+q+1} B (p+1, q+1),$$

hence, by (4.3),

$$J(\alpha) = \frac{2(b-a)^{2\alpha+2}}{\alpha+1}B(\alpha+1,\alpha+2), \qquad \alpha \ge 1.$$

As it is well known that

$$B(p, q + 1) = \frac{q}{p+q}B(p, q),$$

then for $p=\alpha+1, q=\alpha+1$ we have $B\left(\alpha+1,\alpha+2\right)=\frac{1}{2}B\left(\alpha+1,\alpha+1\right)$.

Then we have

$$J(\alpha) = \frac{(b-a)^{2\alpha+2}}{\alpha+1} B(\alpha+1, \alpha+1), \qquad \alpha \ge 1.$$

Taking into account that

$$\begin{split} \frac{1}{(b-a)^2} \int_a^b \int_a^b |K\left(t,s\right)| \left| f'\left(t\right) - \mu \right| \left| g'\left(s\right) - \nu \right| dt ds \\ & \leq \|f' - \mu\|_{\infty} \|g' - \nu\|_{\infty} \frac{1}{(b-a)^2} \int_a^b \int_a^b |K\left(t,s\right)| dt ds \\ & = \|f' - \mu\|_{\infty} \|g' - \nu\|_{\infty} \left(b-a\right)^2 B\left(2,3\right) \\ & = \frac{1}{12} \left(b-a\right)^2 \|f' - \mu\|_{\infty} \|g' - \nu\|_{\infty} \,, \end{split}$$

we deduce from (4.2) the first part of (4.1).

By the Hölder integral inequality for double integrals, we have

$$(4.4) \qquad \int_{a}^{b} \int_{a}^{b} |K(t,s)| |f'(t) - \mu| |g'(s) - \nu| dt ds$$

$$\leq \left(\int_{a}^{b} \int_{a}^{b} |K(t,s)|^{q} dt ds \right)^{\frac{1}{q}} ||f' - \mu||_{p} ||g' - \nu||_{p}$$

$$= \left[\frac{(b-a)^{2q+2}}{q+1} B(q+1,q+2) \right]^{\frac{1}{q}} ||f' - \mu||_{p} ||g' - \nu||_{p}$$

$$= (b-a)^{2+2/q} \left[\frac{B(q+1,q+1)}{q+1} \right]^{\frac{1}{q}} ||f' - \mu||_{p} ||g' - \nu||_{p}.$$

Utilising (4.2) and (4.4) we deduce the second part of (4.1).

By the definition of K(t, s) we have, for $a \le s \le t \le b$, that

$$K(t,s) = (b-t)(s-a) \le (b-t)(t-a) \le \frac{1}{4}(b-a)^2$$

and for $a \le t < s \le b$, that

$$K(t,s) = (t-a)(b-s) \le (t-a)(b-t) \le \frac{1}{4}(b-a)^2$$

therefore

$$\sup_{(t,s)\in[a,b]} |K(t,s)| = \frac{1}{4} (b-a)^{2}.$$

Due to the fact that

$$\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} |K(t,s)| |f'(t) - \mu| |g'(s) - \nu| dt ds$$

$$\leq \sup_{(t,s)\in[a,b]} |K(t,s)| \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} |f'(t) - \mu| |g'(s) - \nu| dt ds$$

$$= \frac{1}{4} ||f' - \mu||_{1} ||g' - \nu||_{1},$$

then from (4.2) we obtain the last part of (4.1).

Remark 2. When $\mu = \nu = 0$, we obtain from (4.1) the following Grüss type inequalities:

$$(4.5) |C(f,g)| \leq \begin{cases} \frac{1}{12} (b-a)^2 \|f'\|_{\infty} \|g'\|_{\infty} & \text{if } f',g' \in L_{\infty} [a,b]; \\ \left[\frac{B(q+1,q+1)}{q+1}\right]^{\frac{1}{q}} (b-a)^{2/q} \|f'\|_{p} \|g'\|_{p} & \text{if } f',g' \in L_{p} [a,b], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1; \end{cases}$$

Notice that the first inequality in (4.5) is exactly the Čebyšev inequality for which $\frac{1}{12}$ is the best possible constant.

If we assume that there exists $\gamma, \Gamma, \phi, \Phi$ such that $-\infty < \gamma \le f'(t) \le \Gamma < \infty$ and $-\infty < \phi \le g'(t) \le \Phi < \infty$ for a.e. $t \in [a,b]$, then we deduce from (4.1) the following inequality

$$(4.6) \left| C(f,g) - \frac{\gamma + \Gamma}{2} \cdot C(e,g) - \frac{\phi + \Phi}{2} \cdot C(f,e) \right| \le \frac{1}{48} (b-a)^2 (\Gamma - \gamma) (\Phi - \phi).$$

We also observe that the constant $\frac{1}{48}$ is best possible in the sense that it cannot be replaced by a smaller quantity.

The sharpness of the constant follows by the fact that for $\Gamma=-\gamma$, $\Phi=-\phi$ we deduce from (4.6) the Čebyšev inequality which is sharp.

REFERENCES

- [1] P. CERONE AND S.S. DRAGOMIR, New bounds for the Čebyšev functional, *App. Math. Lett.*, **18** (2005), 603–611.
- [2] P. CERONE AND S.S. DRAGOMIR, A refinement of the Grüss inequality and applications, *Tamkang J. Math.*, **38**(1) (2007), 37–49. Preprint *RGMIA Res. Rep. Coll.*, **5**(2) (2002), Art. 14. [ONLINE http://rgmia.vu.edu.au/v8n2.html].
- [3] P.L. CHEBYSHEV, Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites, *Proc. Math. Soc. Charkov*, **2** (1882), 93–98.
- [4] X.-L. CHENG AND J. SUN, Note on the perturbed trapezoid inequality, *J. Ineq. Pure & Appl. Math.*, **3**(2) (2002), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.php?sid=181].
- [5] G. GRÜSS, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., **39** (1935), 215–226.
- [6] X. LI, R.N. MOHAPATRA AND R.S. RODRIGUEZ, Grüss-type inequalities. *J. Math. Anal. Appl.*, **267**(2) (2002), 434–443.
- [7] A. LUPAŞ, The best constant in an integral inequality, *Mathematica* (Cluj, Romania), **15**(**38**)(2) (1973), 219–222.
- [8] A. McD. MERCER, An improvement of the Grüss inequality, *J. Inequal. Pure Appl. Math.*, **6**(4) (2005), Art. 93. [ONLINE: http://jipam.vu.edu.au/article.php?sid=566].
- [9] A.M. OSTROWSKI, On an integral inequality, Aequat. Math., 4 (1970), 358–373.
- [10] B.G. PACHPATTE, On Grüss like integral inequalities via Pompeiu's mean value theorem, *J. Inequal. Pure Appl. Math.*, **6**(3) (2005), Art. 82. [ONLINE: http://jipam.vu.edu.au/article.php?sid=555].