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Abstract

Some new refinements of the Schwarz inequality in inner product spaces are
given. Applications for discrete and integral inequalities including the Heisen-
berg inequality for vector-valued functions in Hilbert spaces are provided.
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1. Introduction
Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K. One of the most important inequalities in inner product spaces with numer-
ous applications, is the Schwarz inequality

(1.1) |〈x, y〉|2 ≤ ‖x‖2 ‖y‖2 , x, y ∈ H

with equality iff x andy are linearly dependent.
In 1966, S. Kurepa [1] established the following refinement of the Schwarz

inequality in inner product spaces that generalises de Bruijn’s result for se-
quences of real and complex numbers [2].

Theorem 1.1.LetH be a real Hilbert space andHC the complexification ofH.
Then for any pair of vectorsa ∈ H, z ∈ HC

(1.2) |〈z, a〉|2 ≤ 1

2
‖a‖2 (‖z‖2 + |〈z, z̄〉|

)
≤ ‖a‖2 ‖z‖2 .

In 1985, S.S. Dragomir [3, Theorem 2] obtained a different refinement of
(1.1), namely:

Theorem 1.2. Let (H; 〈·, ·〉) be a real or complex inner product space and
x, y, e ∈ H with ‖e‖ = 1. Then we have the inequality

(1.3) ‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| .

In the same paper [3, Theorem 3], a further generalisation for orthonormal
families has been given (see also [4, Theorem 3]).
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Theorem 1.3. Let {ei}i∈H be an orthonormal family in the Hilbert spaceH.
Then for anyx, y ∈ H

‖x‖ ‖y‖ ≥

∣∣∣∣∣〈x, y〉 −
∑
i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+∑
i∈I

|〈x, ei〉 〈ei, y〉|(1.4)

≥

∣∣∣∣∣〈x, y〉 −
∑
i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+
∣∣∣∣∣∑

i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
≥ |〈x, y〉| .

The inequality (1.3) has also been obtained in [4] as a particular case of the
following result.

Theorem 1.4.Letx, y, a, b ∈ H be such that

‖a‖2 ≤ 2 Re 〈x, a〉 , ‖b‖2 ≤ 2 Re 〈y, b〉 .

Then we have:

(1.5) ‖x‖ ‖y‖ ≥
(
2 Re 〈x, a〉 − ‖a‖2) 1

2
(
2 Re 〈y, b〉 − ‖b‖2) 1

2

+ |〈x, y〉 − 〈x, b〉 − 〈a, y〉+ 〈a, b〉| .

Another refinement of the Schwarz inequality for orthornormal vectors in
inner product spaces has been obtained by S.S. Dragomir and J. Sándor in [5,
Theorem 5].
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Theorem 1.5. Let {ei}i∈{1,...,n} be orthornormal vectors in the inner product
space(H; 〈·, ·〉). Then

(1.6) ‖x‖ ‖y‖ − |〈x, y〉|

≥

(
n∑

i=1

|〈x, ei〉|2
n∑

i=1

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣ ≥ 0

and

(1.7) ‖x‖ ‖y‖ − Re 〈x, y〉

≥

(
n∑

i=1

|〈x, ei〉|2
n∑

i=1

|〈y, ei〉|2
) 1

2

−
n∑

i=1

Re [〈x, ei〉 〈ei, y〉] ≥ 0.

For some properties of superadditivity, monotonicity, strong superadditivity
and strong monotonicity of Schwarz’s inequality, see [6]. Here we note only
the following refinements of the Schwarz inequality in its different variants for
linear operators [6]:

a) Let H be a Hilbert space andA, B : H → H two selfadjoint linear
operators withA ≥ B ≥ 0, then we have the inequalities

(1.8) 〈Ax, x〉
1
2 〈Ay, y〉

1
2 − |〈Ax, y〉|

≥ 〈Bx, x〉
1
2 〈By, y〉

1
2 − |〈Bx, y〉| ≥ 0
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and

(1.9) 〈Ax, x〉 〈Ay, y〉 − |〈Ax, y〉|2 ≥ 〈Bx, x〉 〈By, y〉 − |〈Bx, y〉|2 ≥ 0

for anyx, y ∈ H.

b) Let A : H → H be a bounded linear operator onH and let ‖A‖ =
sup {‖Ax‖ , ‖x‖ = 1} the norm ofA. Then one has the inequalities

(1.10) ‖A‖2 (‖x‖ ‖y‖ − |〈x, y〉|) ≥ ‖Ax‖ ‖Ay‖ − |〈Ax, Ay〉| ≥ 0

and

(1.11) ‖A‖4 (‖x‖2 ‖y‖2 − |〈x, y〉|2
)
≥ ‖Ax‖2 ‖Ay‖2−|〈Ax, Ay〉|2 ≥ 0.

c) Let B : H → H be a linear operator with the property that there exists a
constantm > 0 such that‖Bx‖ ≥ m ‖x‖ for anyx ∈ H. Then we have
the inequalities

(1.12) ‖Bx‖ ‖By‖ − |〈Bx,By〉| ≥ m2 (‖x‖ ‖y‖ − |〈x, y〉|) ≥ 0

and

(1.13) ‖Bx‖2 ‖By‖2 − |〈Bx,By〉|2 ≥ m4
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

)
≥ 0.

For other results related to Schwarz’s inequality in inner product spaces, see
Chapter XX of [8] and the references therein.

Motivated by the results outlined above, it is the aim of this paper to explore
other avenues in obtaining new refinements of the celebrated Schwarz inequal-
ity. Applications for vector-valued sequences and integrals in Hilbert spaces are
mentioned. Refinements of the Heisenberg inequality for vector-valued func-
tions in Hilbert spaces are also given.
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2. Some New Refinements
The following result holds.

Theorem 2.1.Let(H; 〈·, ·〉) be an inner product space over the real or complex
number fieldK andr1, r2 > 0. If x, y ∈ H satisfy the property

(2.1) ‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,

then we have the following refinement of Schwarz’s inequality

(2.2) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant1
2

is best possible in the sense that it cannot be replaced by any
larger quantity.

Proof. From the first inequality in (2.1) we have

(2.3) ‖x‖2 + ‖y‖2 ≥ r2
2 + 2 Re 〈x, y〉 .

Subtracting in (2.3) the quantity2 ‖x‖ ‖y‖ , we get

(2.4) (‖x‖ − ‖y‖)2 ≥ r2
2 − 2 (‖x‖ ‖y‖ − Re 〈x, y〉) .

Since, by the second inequality in (2.1) we have

(2.5) r2
1 ≥ (‖x‖ − ‖y‖)2 ,

hence from (2.4) and (2.5) we deduce the desired inequality (2.2).

http://jipam.vu.edu.au/
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To prove the sharpness of the constant1
2

in (2.2), let us assume that there is
a constantC > 0 such that

(2.6) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
r2
2 − r2

1

)
,

provided thatx andy satisfy (2.1).
Let e ∈ H with ‖e‖ = 1 and forr2 > r1 > 0, define

(2.7) x =
r2 + r1

2
· e and y =

r1 − r2

2
· e.

Then
‖x− y‖ = r2 and |‖x‖ − ‖y‖| = r1,

showing that the condition (2.1) is fulfilled with equality.
If we replacex andy as defined in (2.7) into the inequality (2.6), then we get

r2
2 − r2

1

2
≥ C

(
r2
2 − r2

1

)
,

which implies thatC ≤ 1
2
, and the theorem is completely proved.

The following corollary holds.

Corollary 2.2. With the assumptions of Theorem2.1, we have the inequality:

(2.8) ‖x‖+ ‖y‖ −
√

2

2
‖x + y‖ ≥

√
2

2

√
r2
2 − r2

1.

http://jipam.vu.edu.au/
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Proof. We have, by (2.2), that

(‖x‖+ ‖y‖)2 − ‖x + y‖2 = 2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥ r2
2 − r2

1 ≥ 0

which gives

(2.9) (‖x‖+ ‖y‖)2 ≥ ‖x + y‖2 +

(√
r2
2 − r2

1

)2

.

By making use of the elementary inequality

2
(
α2 + β2

)
≥ (α + β)2 , α, β ≥ 0;

we get

(2.10) ‖x + y‖2 +

(√
r2
2 − r2

1

)2

≥ 1

2

(
‖x + y‖+

√
r2
2 − r2

1

)2

.

Utilising (2.9) and (2.10), we deduce the desired inequality (2.8).

If (H; 〈·, ·〉) is a Hilbert space and{ei}i∈I is an orthornormal family inH,
i.e., we recall that〈ei, ej〉 = δij for anyi, j ∈ I, whereδij is Kronecker’s delta,
then we have the following inequality which is well known in the literature as
Bessel’s inequality

(2.11)
∑
i∈I

|〈x, ei〉|2 ≤ ‖x‖2 for each x ∈ H.

http://jipam.vu.edu.au/
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Here, the meaning of the sum is

∑
i∈I

|〈x, ei〉|2 = sup
F⊂I

{∑
i∈F

|〈x, ei〉|2 , F is a finite part ofI

}
.

The following result providing a refinement of the Bessel inequality (2.11)
holds.

Theorem 2.3. Let (H; 〈·, ·〉) be a Hilbert space and{ei}i∈I an orthornormal
family inH. If x ∈ H, x 6= 0, andr2, r1 > 0 are such that:

(2.12)

∥∥∥∥∥x−∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥ ≥ r2 ≥ r1 ≥ ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

(≥ 0) ,

then we have the inequality

(2.13) ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

≥ 1

2
· r2

2 − r2
1(∑

i∈I |〈x, ei〉|2
) 1

2

(≥ 0) .

The constant1
2

is best possible.

Proof. Considery :=
∑

i∈I 〈x, ei〉 ei. Obviously, sinceH is a Hilbert space,
y ∈ H. We also note that

‖y‖ =

∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥ =

√√√√∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥
2

=

√∑
i∈I

|〈x, ei〉|2,

http://jipam.vu.edu.au/
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and thus (2.12) is in fact (2.1) of Theorem2.1.
Since

‖x‖ ‖y‖ − Re 〈x, y〉 = ‖x‖

(∑
i∈I

|〈x, ei〉|2
) 1

2

− Re

〈
x,
∑
i∈I

〈x, ei〉 ei

〉

=

(∑
i∈I

|〈x, ei〉|2
) 1

2

‖x‖ −(∑
i∈I

|〈x, ei〉|2
) 1

2

 ,

hence, by (2.2), we deduce the desired result (2.13).
We will prove the sharpness of the constant for the case of one element, i.e.,

I = {1} , e1 = e ∈ H, ‖e‖ = 1. For this, assume that there exists a constant
D > 0 such that

(2.14) ‖x‖ − |〈x, e〉| ≥ D · r2
2 − r2

1

|〈x, e〉|

providedx ∈ H\ {0} satisfies the condition

(2.15) ‖x− 〈x, e〉 e‖ ≥ r2 ≥ r1 ≥ ‖x‖ − |〈x, e〉| .

Assume thatx = λe + µf with e, f ∈ H, ‖e‖ = ‖f‖ = 1 ande ⊥ f. We wish
to see if there exists positive numbersλ, µ such that

(2.16) ‖x− 〈x, e〉 e‖ = r2 > r1 = ‖x‖ − |〈x, e〉| .

Since (forλ, µ > 0)
‖x− 〈x, e〉 e‖ = µ

http://jipam.vu.edu.au/
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and
‖x‖ − |〈x, e〉| =

√
λ2 + µ2 − λ

hence, by (2.16), we getµ = r2 and√
λ2 + r2

2 − λ = r1

giving
λ2 + r2

2 = λ2 + 2λr1 + r2
1

from where we get

λ =
r2
2 − r2

1

2r1

> 0.

With these values forλ andµ, we have

‖x‖ − |〈x, e〉| = r1, |〈x, e〉| = r2
2 − r2

1

2r1

and thus, from (2.14), we deduce

r1 ≥ D · r2
2 − r2

1

r2
2−r2

1

2r1

,

giving D ≤ 1
2
. This proves the theorem.

The following corollary is obvious.
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Corollary 2.4. Letx, y ∈ H with 〈x, y〉 6= 0 andr2 ≥ r1 > 0 such that∥∥∥∥‖y‖x− 〈x, y〉
‖y‖

· y
∥∥∥∥ ≥ r2 ‖y‖ ≥ r1 ‖y‖(2.17)

≥ ‖x‖ ‖y‖ − |〈x, y〉| (≥ 0) .

Then we have the following refinement of the Schwarz’s inequality:

(2.18) ‖x‖ ‖y‖ − |〈x, y〉| ≥ 1

2

(
r2
2 − r2

1

) ‖y‖2

|〈x, y〉|
(≥ 0) .

The constant1
2

is best possible.

The following lemma holds.

Lemma 2.5. Let(H; 〈·, ·〉) be an inner product space andR ≥ 1. For x, y ∈ H,
the subsequent statements are equivalent:

(i) The following refinement of the triangle inequality holds:

(2.19) ‖x‖+ ‖y‖ ≥ R ‖x + y‖ ;

(ii) The following refinement of the Schwarz inequality holds:

(2.20) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
‖x + y‖2 .

Proof. Taking the square in (2.19), we have

(2.21) 2 ‖x‖ ‖y‖ ≥
(
R2 − 1

)
‖x‖2 + 2R2 Re 〈x, y〉+

(
R2 − 1

)
‖y‖2 .
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Subtracting from both sides of (2.21) the quantity2 Re 〈x, y〉 , we obtain

2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥
(
R2 − 1

) [
‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2]

=
(
R2 − 1

)
‖x + y‖2 ,

which is clearly equivalent to (2.20).

By the use of the above lemma, we may now state the following theorem
concerning another refinement of the Schwarz inequality.

Theorem 2.6.Let(H; 〈·, ·〉) be an inner product space over the real or complex
number field andR ≥ 1, r ≥ 0. If x, y ∈ H are such that

(2.22)
1

R
(‖x‖+ ‖y‖) ≥ ‖x + y‖ ≥ r,

then we have the following refinement of the Schwarz inequality

(2.23) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in the sense that it cannot be replaced by a larger
quantity.

Proof. The inequality (2.23) follows easily from Lemma2.5. We need only
prove that1

2
is the best possible constant in (2.23).

Assume that there exists aC > 0 such that

(2.24) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
R2 − 1

)
r2
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providedx, y, R andr satisfy (2.22).
Considerr = 1, R > 1 and choosex = 1−R

2
e, y = 1+R

2
e with e ∈ H,

‖e‖ = 1. Then

x + y = e,
‖x‖+ ‖y‖

R
= 1

and thus (2.22) holds with equality on both sides.
From (2.24), for the above choices, we have1

2
(R2 − 1) ≥ C (R2 − 1) ,

which shows thatC ≤ 1
2
.

Finally, the following result also holds.

Theorem 2.7.Let(H; 〈·, ·〉) be an inner product space over the real or complex
number fieldK and r ∈ (0, 1]. For x, y ∈ H, the following statements are
equivalent:

(i) We have the inequality

(2.25) |‖x‖ − ‖y‖| ≤ r ‖x− y‖ ;

(ii) We have the following refinement of the Schwarz inequality

(2.26) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
1− r2

)
‖x− y‖2 .

The constant1
2

in (2.26) is best possible.

Proof. Taking the square in (2.25), we have

‖x‖2 − 2 ‖x‖ ‖y‖+ ‖y‖2 ≤ r2
(
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2)
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which is clearly equivalent to(
1− r2

) [
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2] ≤ 2 (‖x‖ ‖y‖ − Re 〈x, y〉)

or with (2.26).
Now, assume that (2.26) holds with a constantE > 0, i.e.,

(2.27) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ E
(
1− r2

)
‖x− y‖2 ,

provided (2.25) holds.
Definex = r+1

2
e, y = r−1

2
e with e ∈ H, ‖e‖ = 1. Then

|‖x‖ − ‖y‖| = r, ‖x− y‖ = 1

showing that (2.25) holds with equality.
If we replacex andy in (2.27), then we getE (1− r2) ≤ 1

2
(1− r2) , imply-

ing thatE ≤ 1
2
.
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3. Discrete Inequalities
Assume that(K; (·, ·)) is a Hilbert space over the real or complex number field.
Assume also thatpi ≥ 0, i ∈ H with

∑∞
i=1 pi = 1 and define

`2
p (K) :=

{
x := (xi)i∈N

∣∣ xi ∈ K, i ∈ N and
∞∑
i=1

pi ‖xi‖2 < ∞

}
.

It is well known that̀ 2
p (K) endowed with the inner product〈·, ·〉p defined by

〈x,y〉p :=
∞∑
i=1

pi (xi, yi)

and generating the norm

‖x‖p :=

(
∞∑
i=1

pi ‖xi‖2

) 1
2

is a Hilbert space overK.
We may state the following discrete inequality improving the Cauchy-

Bunyakovsky-Schwarz classical result.

Proposition 3.1. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with∑∞
i=1 pi = 1. Assume thatx,y ∈ `2

p (K) andr1, r2 > 0 satisfy the condition

(3.1) ‖xi − yi‖ ≥ r2 ≥ r1 ≥ |‖xi‖ − ‖yi‖|
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for eachi ∈ N. Then we have the following refinement of the Cauchy-Bunyakovsky-
Schwarz inequality

(3.2)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi) ≥
1

2

(
r2
2 − r2

1

)
≥ 0.

The constant1
2

is best possible.

Proof. From the condition (3.1) we simply deduce

∞∑
i=1

pi ‖xi − yi‖2 ≥ r2
2 ≥ r2

1 ≥
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2(3.3)

≥

( ∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

2

.

In terms of the norm‖·‖p , the inequality (3.3) may be written as

(3.4) ‖x− y‖p ≥ r2 ≥ r1 ≥
∣∣∣‖x‖p − ‖y‖p

∣∣∣ .
Utilising Theorem2.1 for the Hilbert space

(
`2
p (K) , 〈·, ·〉p

)
, we deduce the

desired inequality (3.2).
Forn = 1 (p1 = 1) , the inequality (3.2) reduces to (2.2) for which we have

shown that1
2

is the best possible constant.

By the use of Corollary2.2, we may state the following result as well.
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Corollary 3.2. With the assumptions of Proposition3.1, we have the inequality

(3.5)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

−
√

2

2

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following proposition also holds.

Proposition 3.3. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with∑∞
i=1 pi = 1. Assume thatx,y ∈ `2

p (K) andR ≥ 1, r ≥ 0 satisfy the condition

(3.6)
1

R
(‖xi‖+ ‖yi‖) ≥ ‖xi + yi‖ ≥ r

for eachi ∈ N. Then we have the following refinement of the Schwarz inequality

(3.7)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi) ≥
1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in the sense that it cannot be replaced by a larger
quantity.

Proof. By (3.6) we deduce

(3.8)
1

R

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

≥

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥ r.
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By the classical Minkowsky inequality for nonnegative numbers, we have

(3.9)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

≥

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

,

and thus, by utilising (3.8) and (3.9), we may state in terms of‖·‖p the following
inequality

(3.10)
1

R

(
‖x‖p + ‖y‖p

)
≥ ‖x + y‖p ≥ r.

Employing Theorem2.6for the Hilbert spacè2
p (K) and the inequality (3.10),

we deduce the desired result (3.7).
Since, forp = 1, n = 1, (3.7) is reduced to (2.23) for which we have shown

that 1
2

is the best constant, we conclude that1
2

is the best constant in (3.7) as
well.

Finally, we may state and prove the following result incorporated in

Proposition 3.4. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with∑∞
i=1 pi = 1. Assume thatx,y ∈ `2

p (K) andr ∈ (0, 1] such that

(3.11) |‖xi‖ − ‖yi‖| ≤ r ‖xi − yi‖ for eachi ∈ N,
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holds true. Then we have the following refinement of the Schwarz inequality

(3.12)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi)

≥ 1

2

(
1− r2

) ∞∑
i=1

pi ‖xi − yi‖2 .

The constant1
2

is best possible in (3.12).

Proof. From (3.11) we have[
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

] 1
2

≤ r

[
∞∑
i=1

pi ‖xi − yi‖2

] 1
2

.

Utilising the following elementary result∣∣∣∣∣∣
(

∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

∣∣∣∣∣∣ ≤
(

∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

) 1
2

,

we may state that ∣∣∣‖x‖p − ‖y‖p

∣∣∣ ≤ r ‖x− y‖p .

Now, by making use of Theorem2.7, we deduce the desired inequality (3.12)
and the fact that1

2
is the best possible constant. We omit the details.
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4. Integral Inequalities
Assume that(K; (·, ·)) is a Hilbert space over the real or complex number
field K. If ρ : [a, b] ⊂ R → [0,∞) is a Lebesgue integrable function with∫ b

a
ρ (t) dt = 1, then we may consider the spaceL2

ρ ([a, b] ; K) of all functions

f : [a, b] → K, that are Bochner measurable and
∫ b

a
ρ (t) ‖f (t)‖2 dt < ∞. It is

known thatL2
ρ ([a, b] ; K) endowed with the inner product〈·, ·〉ρ defined by

〈f, g〉ρ :=

∫ b

a

ρ (t) (f (t) , g (t)) dt

and generating the norm

‖f‖ρ :=

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

is a Hilbert space overK.
Now we may state and prove the first refinement of the Cauchy-Bunyakovsky-

Schwarz integral inequality.

Proposition 4.1. Assume thatf, g ∈ L2
ρ ([a, b] ; K) and r2, r1 > 0 satisfy the

condition

(4.1) ‖f (t)− g (t)‖ ≥ r2 ≥ r1 ≥ |‖f (t)‖ − ‖g (t)‖|
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for a.e.t ∈ [a, b] . Then we have the inequality

(4.2)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant1
2

is best possible in (4.2).

Proof. Integrating (4.1), we get

(4.3)

(∫ b

a

ρ (t) (‖f (t)− g (t)‖)2 dt

) 1
2

≥ r2 ≥ r1 ≥
(∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

) 1
2

.

Utilising the obvious fact

(4.4)

[∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

] 1
2

≥

∣∣∣∣∣
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

−
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

∣∣∣∣∣ ,
we can state the following inequality in terms of the‖·‖ρ norm:

(4.5) ‖f − g‖ρ ≥ r2 ≥ r1 ≥
∣∣∣‖f‖ρ − ‖g‖ρ

∣∣∣ .
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Employing Theorem2.1 for the Hilbert spaceL2
ρ ([a, b] ; K) , we deduce the

desired inequality (4.2).
To prove the sharpness of1

2
in (4.2), we choosea = 0, b = 1, f (t) = 1,

t ∈ [0, 1] andf (t) = x, g (t) = y, t ∈ [a, b] , x, y ∈ K. Then (4.2) becomes

‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
provided

‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,
which, by Theorem2.1has the quantity1

2
as the best possible constant.

The following corollary holds.

Corollary 4.2. With the assumptions of Proposition4.1, we have the inequality

(4.6)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

+

(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
√

2

2

(∫ b

a

ρ (t) ‖f (t) + g (t)‖2 dt

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following two refinements of the Cauchy-Bunyakovsky-Schwarz (CBS)
integral inequality also hold.

Proposition 4.3. If f, g ∈ L2
ρ ([a, b] ; K) andR ≥ 1, r ≥ 0 satisfy the condition

(4.7)
1

R
(‖f (t)‖+ ‖g (t)‖) ≥ ‖f (t) + g (t)‖ ≥ r
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for a.e.t ∈ [a, b] , then we have the inequality

(4.8)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in (4.8).

The proof follows by Theorem2.6and we omit the details.

Proposition 4.4. If f, g ∈ L2
ρ ([a, b] ; K) andζ ∈ (0, 1] satisfy the condition

(4.9) |‖f (t)‖ − ‖g (t)‖| ≤ ζ ‖f (t)− g (t)‖

for a.e.t ∈ [a, b] , then we have the inequality

(4.10)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt

≥ 1

2

(
1− ζ2

) ∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt.

The constant1
2

is best possible in (4.10).

The proof follows by Theorem2.7and we omit the details.
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5. Refinements of Heisenberg Inequality
It is well known that if (H; 〈·, ·〉) is a real or complex Hilbert space andf :
[a, b] ⊂ R →H is anabsolutely continuous vector-valuedfunction, thenf is
differentiable almost everywhere on[a, b] , the derivativef ′ : [a, b] → H is
Bochner integrable on[a, b] and

(5.1) f (t) =

∫ t

a

f ′ (s) ds for any t ∈ [a, b] .

The following theorem provides a version of the Heisenberg inequalities in
the general setting of Hilbert spaces.

Theorem 5.1.Letϕ : [a, b] → H be an absolutely continuous function with the
property thatb ‖ϕ (b)‖2 = a ‖ϕ (a)‖2 . Then we have the inequality:

(5.2)

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 4

∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt.

The constant4 is best possible in the sense that it cannot be replaced by any
smaller constant.

Proof. Integrating by parts, we have successively∫ b

a

‖ϕ (t)‖2 dt = t ‖ϕ (t)‖2

∣∣∣∣b
a

−
∫ b

a

t
d

dt

(
‖ϕ (t)‖2) dt(5.3)

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a

t
d

dt
〈ϕ (t) , ϕ (t)〉 dt
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= −
∫ b

a

t [〈ϕ′ (t) , ϕ (t)〉+ 〈ϕ (t) , ϕ′ (t)〉] dt

= −2

∫ b

a

t Re 〈ϕ′ (t) , ϕ (t)〉 dt

= 2

∫ b

a

Re 〈ϕ′ (t) , (−t) ϕ (t)〉 dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality∫ b

a

Re 〈g (t) , h (t)〉 dt ≤
(∫ b

a

‖g (t)‖2 dt

∫ b

a

‖h (t)‖2 dt

) 1
2

for g (t) = ϕ′ (t) , h (t) = −tϕ (t) , t ∈ [a, b] , then we deduce the desired
inequality (4.5).

The fact that4 is the best constant in (4.5) follows from the fact that in the
(CBS) inequality, the case of equality holds iffg (t) = λh (t) for a.e.t ∈ [a, b]
andλ a given scalar inK. We omit the details.

For details on the classical Heisenberg inequality, see, for instance, [7].
Utilising Proposition4.1, we can state the following refinement of the Heisen-

berg inequality obtained above in (5.2):

Proposition 5.2. Assume thatϕ : [a, b] → H is as in the hypothesis of Theorem
5.1. In addition, if there existr2, r1 > 0 so that

‖ϕ′ (t) + tϕ (t)‖ ≥ r2 ≥ r1 ≥ |‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖|
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for a.e.t ∈ [a, b] , then we have the inequality

(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2
(b− a)

(
r2
2 − r2

1

)
(≥ 0) .

The proof follows by Proposition4.1 on choosingf (t) = ϕ′ (t) , g (t) =
−tϕ (t) andρ (t) = 1

b−a
, t ∈ [a, b] .

On utilising Proposition4.3for the same choices off, g andρ, we may state
the following results as well:

Proposition 5.3. Assume thatϕ : [a, b] → H is as in the hypothesis of Theorem
5.1. In addition, if there existR ≥ 1 andr > 0 so that

1

R
(‖ϕ′ (t)‖+ |t| ‖ϕ (t)‖) ≥ ‖ϕ′ (t)− tϕ (t)‖ ≥ r

for a.e.t ∈ [a, b] , then we have the inequality

(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2
(b− a)

(
R2 − 1

)
r2 (≥ 0) .

Finally, we can state
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Proposition 5.4. Letϕ : [a, b] → H be as in the hypothesis of Theorem5.1. In
addition, if there existsζ ∈ (0, 1] so that

|‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖| ≤ ζ ‖ϕ′ (t) + tϕ (t)‖

for a.e.t ∈ [a, b] , then we have the inequality

(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2

(
1− ζ2

) ∫ b

a

‖ϕ′ (t) + tϕ (t)‖2
dt (≥ 0) .

This follows by Proposition4.4and we omit the details.

http://jipam.vu.edu.au/
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au/


Refinements of the Schwarz
and Heisenberg Inequalities in

Hilbert Spaces

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 30 of 30

J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004

http://jipam.vu.edu.au

References
[1] S. KUREPA, On the Buniakowsky-Cauchy-Schwarz inequality,Glasnik

Mat. Ser III,1(21) (1966), 147–158.

[2] N.G. DE BRUIJN, Problem 12,Wisk. Opgaven, 21 (1960), 12–13.

[3] S.S. DRAGOMIR, Some refinements of Schwarz inequality,Suppozionul
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spaces,Studia Univ., Babeş-Bolyai, Mathematica,32(1) (1987), 71–78 MR
89h: 46034.

[5] S.S. DRAGOMIRAND J. SÁNDOR, On Bessels’ and Gram’s inequalities
in prehilbertian spaces,Periodica Math. Hungarica,29(3) (1994), 197–
205.

[6] S.S. DRAGOMIRAND B. MOND, On the superadditivity and monotonicity
of Schwarz’s inequality in inner product spaces,Contributions, Macedonian
Acad. of Sci. and Arts, 15(2) (1994), 5–22.

[7] G.H. HARDY, J.E. LITTLEWOODAND G. POLYA, Inequalities, Cam-
bridge University Press, Cambridge, United Kingdom, 1952.
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