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Abstract

Some new refinements of the Schwarz inequality in inner product spaces are
given. Applications for discrete and integral inequalities including the Heisen-
berg inequality for vector-valued functions in Hilbert spaces are provided.
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Let (H;(-,-)) be an inner product space over the real or complex number field
K. One of the most important inequalities in inner product spaces with numer-
ous applications, is the Schwarz inequality

(1.1) () < llzl” lyll®, zyeH
with equality iff x andy are linearly dependent.
In 1966, S. Kurepal] established the following refinement of the Schwarz WS DS e
. . . . .. and Heisenberg Inequalities in
inequality in inner product spaces that generalises de Bruijn’s result for se- Hilbert Spaces
guences of real and complex numbeik [ S —
Theorem 1.1.Let H be a real Hilbert space andl the complexification off.
Then for any pair of vectors € H, z € Hc Title Page
1 _ Content
(1.2) [z, a)* < 5 lall* (1217 + [z, 2)]) < llall* 11 —_—
<44 >
In 1985, S.S. Dragomir3, Theorem 2] obtained a different refinement of p >
(1.2), namely:
) Go Back
Theorem 1.2. Let (H;(-,-)) be a real or complex inner product space and
x,y,e € H with ||e|| = 1. Then we have the inequality Close
Quit
(1.3) [zl lyll = Kz, y) = (@, e) (e, y)| + [z, e) {e, )| = [{z,9)].
Page 3 of 30

In the same paper:[ Theorem 3], a further generalisation for orthonormal

families has been given (see alsp Theorem 3]). 3. neg. Pure and Appl. Math. 5(3) Art. 60, 2004
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Theorem 1.3. Let {¢;},.,, be an orthonormal family in the Hilbert spadé.
Then for anyr,y € H

(1.4) 2l Iyl > [, y) = (e e vd| + Y [, e) (e )]

> [{z,y) — Z (z,e:) (e, y)| + Z (z,e;) (es,y)

> [(z,y)] -

The inequality {.3) has also been obtained if] [as a particular case of the

Refinements of the Schwarz
and Heisenberg Inequalities in
Hilbert Spaces

following result. 55 Dragomi
Theorem 1.4.Letx,y,a,b € H be such that Title Page
la* < 2Re(w,a),  [|b]* < 2Re(y,b). Contents
Then we have: 14 dd
) ) < >
(1.5) ]l lyll = (2Re (&, a) — al*)* (2Re (y,0) — [|B]*) Go Back
—I—|<:E,y>—<m,b>—<a,y>+(a,b>| Close
Another refinement of the Schwarz inequality for orthornormal vectors in Quit
inner product spaces has been obtained by S.S. Dragomir and J. Sandor in [ Page 4 of 30

Theorem 5].
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Theorem 1.5.Let {e;},.(, ,, be orthornormal vectors in the inner product
space(H; (-,-)). Then

(1.6) [l {lyll = [z, )]

> (Z|<x,ei>|22|<y,ei>|2) -

and

A7) Jlal Iyl - Re {z.)
> (Z eI, ei>rz) ~ " Rel(@.e) (en9)] 2 0

For some properties of superadditivity, monotonicity, strong superadditivity
and strong monotonicity of Schwarz’s inequality, sée [Here we note only
the following refinements of the Schwarz inequality in its different variants for
linear operatorsd]:

a) Let H be a Hilbert space andd, B : H — H two selfadjoint linear
operators withA > B > 0, then we have the inequalities

M=
N|=

(1.8) (Az,z)2 (Ay,y)? — [(Az,y)|

> (Bzx, )

[NIE
[NIE

(By,y)? — [(Bz,y)| > 0
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and
(1.9) (Az,z) (Ay,y) — [(Az,y)|° > (Bz,z) (By,y) — [(Bz,y)|* > 0
foranyz,y € H.

b) Let A : H — H be a bounded linear operator oA and let| Al =
sup {||Az|| , ||| = 1} the norm of A. Then one has the inequalities

(1.20)  [IAI* (llzll Iyl — o, 1) = [[Azll [|Ay]l — [(Az, Ay)| > 0

and Refinements of the Schwarz
4 9 9 9 9 9 9 and Heise_nberg Inequalities in
@.13) AN (Il [lylI° = Kz 9)7) = [ Az|” | Ayl]" = [(Az, Ay)|" > 0. Hilbert Spaces
c) Let B : H — H be a linear operator with the property that there exists a =Rk
constantn > 0 such that|| Bz|| > m||z|| for anyz € H. Then we have
the inequalities Title Page
(1.12)  |[Bx[|[|Byll - (Bx, By)| = m® (||| [lyll — (=, y)]) = 0 Contents
and <4 >
(1.13) [|Bz|* | Byl* — |(Bz, By)|* > m* (|l|* [ly|* = |(x, 9)[*) > 0. < >
For other results related to Schwarz’s inequality in inner product spaces, see Go Back
Chapter XX of ] and the references therein. Close
Motivated by the results outlined above, it is the aim of this paper to explore _
other avenues in obtaining new refinements of the celebrated Schwarz inequal- e
ity. Applications for vector-valued sequences and integrals in Hilbert spaces are Page 6 of 30
mentioned. Refinements of the Heisenberg inequality for vector-valued func-
tions in Hilbert spaces are also given. J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
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The following result holds.

Theorem 2.1.Let(H; (-, -)) be an inner product space over the real or complex
number fieldK andry,r, > 0. If z,y € H satisfy the property

(2.1) [ =yl = r2 = = 2l =yl

then we have the following refinement of Schwarz’s inequality

Refinements of the Schwarz
and Heisenberg Inequalities in

(7’5 - 7,%) (2 O) . Hilbert Spaces

S.S. Dragomir

(2.2) 2]l lyll = Re (z,y) >

DO | —

The constan% is best possible in the sense that it cannot be replaced by any
larger quantity.

Title Page
Proof. From the first inequality in.1) we have Contents
(2.3) l” + [lyll* = 3 + 2Re (2, y). 4 dd
< >
Subtracting in 2.3) the quantity2 ||z|| ||y|| , we get
) Go Back
(2.4) (el = lyl)* > 73 = 2 (=]l Iyl - Re {z,9)) Close
Since, by the second inequality ia.{) we have Quit
(2.5) ri > (2l = [yl Page 70f 30
hence from 2.4) and @.5) we deduce the desired inequalii.?). 3. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
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To prove the sharpness of the const§\m (2.2), let us assume that there is
a constant” > 0 such that

(2.6)

provided thatr andy satisfy @.1).
Lete € H with ||e|]| = 1 and forry, > r; > 0, define

7”2+7“1

2

r—7re

2

(2.7) xr = e andy =

Then

I = yll = r and [|jz]| = [ly[l| = 7,

showing that the conditior(1) is fulfilled with equality.
If we replacer andy as defined inZ.7) into the inequality 2.6), then we get

7”2 _ ?ﬂ2
= O ),
which implies that” < , and the theorem is completely proved. H

The following corollary holds.

Corollary 2.2. With the assumptions of Theore&i, we have the inequality:

V2 v2

(2.8) ]l + llyll = —||$+y|| > 5 —ri.
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Proof. We have, by ?.2), that
(=l +1lyl)* =z +yl* = 2 (e lly]| = Re (z,9)) =5 =17 >0

which gives

2
@29) (el + )" 2 o+ ol + (/73 =12
By making use of the elementary inequality

2(®+ 3% > (a+8)?,  a,B>0;

we get
2 2
1
@1 feralt+ (3 -r) 25 (ke 0)
Utilising (2.9 and .10, we deduce the desired inequali}/&). O

If (H;(-,-)) is a Hilbert space andle;},_, is an orthornormal family inf,
i.e., we recall thate;, e;) = 0,5 for anyi, j € I, whered;; is Kronecker's delta,
then we have the following inequality which is well known in the literature as
Bessel's inequality

(2.11) > [a,e))? < ||z||* foreachz € H.

el
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Here, the meaning of the sum is

Z\ (z, )| —sup{2|x e

1€l i€F

, F'is afinite part of[} :

The following result providing a refinement of the Bessel inequatlity 1)
holds.

Theorem 2.3. Let (H;(-,-)) be a Hilbert space ande;},., an orthornormal
family in H. If x € H, x # 0, andr,, r; > 0 are such that:

=Y (e el = > > o - <Z|<$>€z‘>|2> (=0),

el i€l

(2.12)

then we have the inequality

(213) o] - (Dxez ) >

el

=
N
N

The constang is best possible.

Proof. Considery :=
y € H. We also note that

Z (x,e;) e

el

Z (x,e;) el =

il

lyll =

[l

> icr (w,e;) e;. Obviously, sincef! is a Hilbert space,
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and thus2.12 is in fact 2.1) of Theorem2.1

Since
2| lyll — Re (z,y) = ||z (Z |<$a€i>|2> —Re <wz (2,e:) ei>
= (Zme»\z) |z — <Z|<w7ei>|2> ,

Refinements of the Schwarz

. and Heisenberg Inequalities in
hence, by 2.2), we deduce the desired resuit13). H”bertgspaﬂes

We will prove the sharpness of the constant for the case of one element, i.e.,

I ={1},e; = e € H, |le] = 1. For this, assume that there exists a constant °:5 ragemt
D > 0 such that
222 Title Page
(2.14) 2| = z,e)| = D- |?x e>1| Contents
providedz € H\ {0} satisfies the condition 14 dd
< >
(2.15) [ = (z,e) el = ra = = |lzf| = [z, )] -
Go Back
Assume thatt = Ae + pf withe, f € H, |le]| = || f]| = 1 ande L f. We wish -
to see if there exists positive numbexg: such that ose
Quit

2.16 = =ry > 1 = 2] - :
(2.16) [l = (z,e)ell =12 > = |[zf| = [(z,e)] Page 11 of 30

Since (for\, p > 0)

||33 _ <337 6> 6“ = U J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
http://jipam.vu.edu.au
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and
]| — Kz, e)| = /A2 + p? — A

hence, by ?.16), we getu = r, and
\/)\24—7”%—)\:7”1

N5 =N 42 + 17

giving

from where we get
2 2
T

A= > 0.

27“1
With these values fok andyu, we have

el = [z, e)f =re, [z, e)] =

and thus, fromZ%.14), we deduce

giving D < % This proves the theorem.

The following corollary is obvious.
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Corollary 2.4. Letz,y € H with (z,y) # 0 andry > r; > 0 such that

(z,9)

|| 2 2yl = flyll
1yl H

> [lz| lyll = [z, 9)[ (= 0).

Then we have the following refinement of the Schwarz’s inequality:

(2.17) Huyux -

(2.18) 2l gl = I3 > 2 (53 = r2) 2]

(=0).

DN | —

The constang is best possible.
The following lemma holds.

Lemma 2.5.Let(H; (-,-)) be aninner product space arRi> 1. Forz,y € H,
the subsequent statements are equivalent:

() The following refinement of the triangle inequality holds:

(2.19) [zl + lyll = Rz +yll;
(i) The following refinement of the Schwarz inequality holds:
1
(2.20) Izl lyll = Re (z,y) > 5 (R* = 1) lz +y]*

Proof. Taking the square ir2(19, we have
2.21) 2|z lyll = (B — 1) [|2]|* + 2R* Re (z,y) + (B> — 1) [|y||*.
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Subtracting from both sides of (21) the quantity2 Re (x, y) , we obtain

2|zl llyll = Re (2, y)) = (B = 1) [lll|* +2Re {z, y) + [ly||"]
= (R? = 1) = +yl”,

which is clearly equivalent ta2(20). O

By the use of the above lemma, we may now state the following theorem
concerning another refinement of the Schwarz inequality.

Refinements of the Schwarz
and Heisenberg Inequalities in

Theorem 2.6.Let(H; (-, -)) be an inner product space over the real or complex

] Hilbert Spaces
number fieldand? > 1, > 0. If z,y € H are such that
S.S. Dragomir
1
(2.22) % Uzl +llyl) = lle +yll =,
Title Page
then we have the following refinement of the Schwarz inequality Contents
1
(2.23) | llyll = Re () > 5 (B = 1) r*. Wb
2
< >
The cgnstan% is best possible in the sense that it cannot be replaced by a larger Go Back
quantity.
Close
Proof. The inequality 2.23 follows easily from Lemma&.5. We need only Quit
prove that% is the best possible constant ihZ3).
Assume that there exists(a> 0 such that Page 14 of 30
(224) “I‘H Hy” — Re <,§L"’ y> 2 C (R2 — 1) 7’2 J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
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providedz, y, R andr satisfy .22).
Considerr = 1, R > 1 and chooser = %e, y = #e with e € H,
lel]| = 1. Then
[l + [lyll
R
and thus 2.22 holds with equality on both sides.
From @.24), for the above choices, we havg R? —1) > C'(R*—1),
which shows tha€' < 1. O

r+y=e, 1

Finally, the following result also holds.

Theorem 2.7.Let(H; (-, -)) be an inner product space over the real or complex
number fieldK andr € (0,1]. For z,y € H, the following statements are
equivalent:

(i) We have the inequality

(2.25) Nzl =Nyl < 7 llz = yll;
(i) We have the following refinement of the Schwarz inequality
1
(2.26) Iz lyll = Re (z,4) > 5 (1 —17) lz = ylI*.

The constant in (2.26) is best possible.

Proof. Taking the square ir?(25, we have

lzll* = 2 llll lyll + llyll* < r* (ll* — 2Re (z,9) + lyII)
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which is clearly equivalent to

(1= 7%) [lel* = 2Re (z,9) + lylI°] < 2 (]l lyll - Re (z,y))

or with (2.26).
Now, assume tha®(26) holds with a constant > 0, i.e.,

(2.27) Izl Iyl = Re (z,y) > E (1 =) ||z — y|*

provided @.25 holds.
Definex = “tte, y = Ste withe € H, e = 1. Then

Nzl =Myl =7, [lz =yl =1

showing that2.25 holds with equality.

If we replacer andy in (2.27), then we gef> (1 — %) < 1 (1 —r?), imply-

ing thatE < 1.

O
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Assume thatK’; (-, -)) is a Hilbert space over the real or complex number field.
Assume also that; > 0, € H with >~.° p; = 1 and define

2 (K) = {x = (2;);en| 2 €K, i € N and Zpi ]| < oo} .

i=1

Itis well known that/;, (K) endowed with the inner produ¢t -) | defined by Refinements of the Schwarz

and Heisenberg Inequalities in
Hilbert Spaces

= Zpi (xiv y1) S.S. Dragomir
and generating the norm Title Page
Contents
_ _ < | 2
is a Hilbert space ovekK.

We may state the following discrete inequality improving the Cauchy- Co ZEics
Bunyakovsky-Schwarz classical result. Close
Proposition 3.1. Let (K (+,-)) be a Hilbert space ang; > 0 (i € N) with Quit
> i1 pi = 1. Assume thak, y € (2 (K) andry, r, > 0 satisfy the condition Page 17 of 30
(3.1) i = yill = 2 =11 = |[Ja]] — (lwilll

J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
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for eachi € N. Then we have the following refinement of the Cauchy-Bunyakovsky-

Schwarz inequality

oo [o.¢] 1
(3-2) (Z%II%IIQZIH ||yi||2> ZPzRe (i y) 2 5 (3 —11) 2 0.
i=1 =1

The constang is best possible.

Proof. From the condition¥.1) we simply deduce

2 2
(3.3) Zpi 2 — yill” >3 > 1] > Zpi (all = [lwll)
i—1 i—1

1 1

o0 2 (o ¢] 2

(E Pi\|$i|’2> - (E Di H%H2>
i=1 =1

»» the inequality 8.3) may be written as

2

In terms of the nornjl-||

(3.4) Ix = yll, =72 > 71 > [lixl, -

Utilising Theorem?2.1 for the Hilbert space(ﬁf, (K
desired inequalityd.2).

Forn =1 (p; = 1), the inequality 8.2) reduces toZ.2) for which we have
shown that is the best possible constant. O

)5 ->p> , we deduce the

By the use of Corollarg.2, we may state the following result as well.
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Corollary 3.2. With the assumptions of Propositi@rl, we have the inequality
o0 3 o0 3 Vo (& 3
(3.5) (sz- Hffz'||2> + (Zpi ||yi|!2> 5 (Zpi 2 +?Jz'\|2>
=1 =1 =1
V2 T,
= 7 T% — T%.

The following proposition also holds.

Proposition 3.3. Let (K (-, -)) be a Hilbert space ang; > 0 (i € N) with g e e en
> pi = 1. Assumethat,y € 2 (K)andR > 1, r > 0 satisfy the condition Hilbert Spaces
S.S. Dragomir
1
(3.6) g Ul + llyll) = lli + will =2 7
. . . ) Title Page
for eachi € N. Then we have the following refinement of the Schwarz inequality
Contents
oo ) 1 44 44
(3.7) <Zpi AT ||yi||2> sz Re (zi, 1) 2 5 (R* = 1) r*. < >
=1 =1
. . . . Go Back
The constan% is best possible in the sense that it cannot be replaced by a larger
guantity. Close
Proof. By (3.6) we deduce e

Page 19 of 30

sz ]| + [1y:ll) ] (sz | + wil ) >r.
J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004
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By the classical Minkowsky inequality for nonnegative numbers, we have

1
2

(3.9) (Zmll%lﬁ) +<Zpillyill2) > [Zpi(llxilHllyill)z] ,

and thus, by utilising3.8) and 8.9), we may state in terms ¢f|| , the following
inequality

1 Refi ts of the Sch
(3.10) = (el + lyll,) > I+, =7 S
Hilbert Spaces
Employing Theoren2.6 for the Hilbert spacé?, (K) and the inequalityd.10), S.S. Dragomir

we deduce the desired resust ).
Since, forp = 1, n = 1, (3.7) is reduced toZ.23 for which we have shown

) . ) Title P
that% is the best constant, we conclude tléats the best constant ir8(7) as Lok
well. n Contents

Finally, we may state and prove the following result incorporated in 4« 4
Proposition 3.4. Let (K (+,-)) be a Hilbert space ang; > 0 (i € N) with S %
> pi = 1. Assume thak, y € (2 (K) andr € (0,1] such that Go Back
(3.11) @il = lyalll < rle; — wil| foreachi € N, Close

Quit

Page 20 of 30
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holds true. Then we have the following refinement of the Schwarz inequality

1
0 0 2 0
(3.12) (ZPiHJJz‘H?ZPiHZ/iHQ) —ZPiRe(%yz’)
=1 =1 =
5 1_7' sz ’xl yzH

—_

The constang is best possible in3(12).

Proof. From (3.11) we have

1

[sz sl = wall) ] <T[sz\|xz yzH]

Utilising the following elementary result

1 1 1
[e.e] 2 o0 2 o 2
2 2 2
<§ pi ||l > - (E pi [|yill ) < (E pi ([l = [lwll) ) :
i=1 i=1 i=1

we may state that
[l -

Now, by making use of Theorei 7, we deduce the desired inequalit/ 12
and the fact tha% is the best possible constant. We omit the details. O

yll,
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Assume that(K; (-,-)) is a Hilbert space over the real or complex number
field K. If p : [a,b] C R — [0,00) is a Lebesgue integrable function with
fabp (t)dt = 1, then we may consider the spatg([a,b] ; K) of all functions

f :a,b] — K, that are Bochner measurable aﬁ’do ) |If ()| dt < oo. Itis
known thatZ? ([a, b] ; K') endowed with the inner produ¢t -) | defined by

b
Refi ts of the Sch
<f7 g)p = / p (t> (f (t) g (t)) dt an(;a Sgrsneilzrg In:quzlitivéasrizn
a Hilbert Spaces
and generating the norm S.S. Dragomir
b N\ |
I11,:= ([ pls ol ar) Tite Page
“ Contents

is a Hilbert space ovekK.

. . 44 44
Now we may state and prove the first refinement of the Cauchy-Bunyakovsky-
Schwarz integral inequality. 4 >
Proposition 4.1. Assume thaf,g € L2 ([a,0]; K) andry, 7, > 0 satisfy the Go Back
condition Close
(4.1) 1f () =g @l =r2=r > [ILF O = llg )] el
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fora.e.t € [a,b]. Then we have the inequality

1
2

@.2) ( JNCIRCIR e |rg<t>|r2dt)
—/ p()Re(f (). g (1) dt >

The constang is best possible ird(2).

(r3 —17) (2 0).

DO | —

Refinements of the Schwarz
and Heisenberg Inequalities in
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Proof. Integrating ¢.1), we get

b B 2 % S.S. Dragomir
@3 ([ rar0-s0hta)

b 2 itle Page

S (/ p(t>(||f(t)||—||g(t)||)2dt> e

a Contents
Utilising the obvious fact <4« >
b ) 3 < >

(4.4) { / @) (1f DI - llg 1) dt} o Back

b 2 % b 2 : Close
> (/ @)1 O dt) - (/ o) lg (0] dt) ,
a a Quit
we can state the following inequality in terms of th¢ , norm: Page 23 of 30
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Employing Theoren®.1 for the Hilbert spacel? ([a,b]; K), we deduce the
desired inequality4.2).

To prove the sharpness ¢fin (4.2), we chooser = 0, b = 1, f(t) = 1,
tel0,1]andf (t) =x,g(t) =y, t € [a,b], z,y € K. Then @.2) becomes

1
eyl = Re (2,5 2 5 (3 = 12)

provided
||SL’ - yH 2Ty 2T 2 |HCL‘|| - HZJH’ ’ Refinements of the Schwarz
. . . d Heisenb lities i
which, by Theoren®.1has the quantity: as the best possible constant. [ - “e's.i{.‘b;igggzﬂﬁ et
The following corollary holds. S.S. Dragomir
Corollary 4.2. With the assumptions of Propositidrl, we have the inequality
Title Page
b 3 b 3
Content
o) ([oonrora) « ([ o lawl ) I
¢ “ . << >
S ([ eonr@ro@ra) 2 -t <l
] i ‘ Go Back
The following two refinements of the Cauchy-Bunyakovsky-Schwarz (CBS) o
ose

integral inequality also hold.

Proposition 4.3.1f f, g € Li ([a,b]; K)andR > 1,r > 0 satisfy the condition Quit
Page 24 of 30
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fora.e.t € [a, 0], then we have the inequality

o ([ vwlsora [ oo Hg(t)Hth)%

(R2 — 1) r2.

DN | —

—/ p()Re (f ()9 () dt >

The constang is best possible ird(9).
The proof follows by Theoreri.6 and we omit the details.
Proposition 4.4.1f f,g € L2 ([a,b]; K) and( € (0, 1] satisfy the condition

(4.9) HF @I = llg O < ClLf &) — g (@)l

fora.e.t € [a,b], then we have the inequality

(4.10) ( / o (8) 1 (8)]2dt / o () |rg<t>||2dt)2
—/ p()Re(f (t).g (1)) di

>

(1-¢) [ ol 0 - g de

N | —

The constant is best possible in4(10).

The proof follows by Theorerd.7 and we omit the detalils.

Refinements of the Schwarz
and Heisenberg Inequalities in
Hilbert Spaces

S.S. Dragomir

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 25 of 30

J. Ineq. Pure and Appl. Math. 5(3) Art. 60, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au/

It is well known that if (H;(-,-)) is a real or complex Hilbert space arfd:
la,b] € R —H is anabsolutely continuous vector-valuéahction, thenf is
differentiable almost everywhere da, ], the derivativef’ : [a,b] — H is
Bochner integrable ofu, b and

(5.1) f)= /t f'(s)ds forany ¢ € [a,b].

Refinements of the Schwarz
and Heisenberg Inequalities in

The following theorem provides a version of the Heisenberg inequalities in S
the general setting of Hilbert spaces.

S.S. Dragomir
Theorem 5.1.Lety : [a,b] — H be an absolutely continuous function with the
property thath || (b)||* = a||¢ (a)||* . Then we have the inequality: Tile Page
b ) 2 b ) ) b 5 Contents
62 ([ lewPa) <o [ elewra [ s 0P
a a a ‘4 "
The constant is best possible in the sense that it cannot be replaced by any < >
smaller constant.
Go Back
Proof. Integrating by parts, we have successively Close
b b b i
d Quit
5.3/ H|I°dt =t t2—/t— t)|I°) dt
63 [ le@iFa=tle @] = |t (e @) age 26 o1 30
b
d
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:—2/ tRe (¢ (t), ¢ (t))dt
:2/ Re (¢’ (t), (—t) ¢ (1)) dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality

[revermoas ([ wors [ ||h<t>||2dt>é

for g(t) = ¢'(t), h(t) = —te(t), t € [a,b], then we deduce the desired
inequality @.5).

The fact that is the best constant irt(5) follows from the fact that in the
(CBS) inequality, the case of equality holdsgftt) = Ah (¢) for a.e.t € [a, D]
and\ a given scalar ifk. We omit the details. O

For details on the classical Heisenberg inequality, see, for instaijce, [
Utilising Propositior4.1, we can state the following refinement of the Heisen-
berg inequality obtained above i8.9):

Proposition 5.2. Assume thap : [a,b] — H is as in the hypothesis of Theorem
5.1 In addition, if there exist,, r; > 0 so that

l" (8) + t ()] = 72 = r1 = [l" O = [ [l (D)]]]
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fora.e.t € [a, 0], then we have the inequality

([ erewna [0 |dQ ——/u P di

Z§(b—a)(r§—r%)(20).

The proof follows by Propositiod.1 on choosingf ()
—tp (t) andp () = 32, € [a,b].

On utilising Propositiort.3for the same choices ¢t g andp, we may state
the following results as well:

=¢'(t),9(t) =

Proposition 5.3. Assume thap : [a,b] — H is as in the hypothesis of Theorem
5.1 In addition, if there exisk > 1 andr > 0 so that

%(H@' O+ 1t e O = 1" @) —te @Ol = 7

fora.e.t € [a

(/tﬂw Hdt/Hw ndﬂl—— I (1)t

(b—a) (R2 — 1) r?

,b], then we have the inequality

(=0).

l\DIr—tm

Finally, we can state
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Proposition 5.4. Lety : [a,b] — H be as in the hypothesis of Theorém. In
addition, if there existg € (0, 1] so that

" @I =Tt e D] < Clle" (£) + te (@]

fora.e.t € [a,b], then we have the inequality

(1-¢ /Hw )+t (0] dt (= 0).

1
2

This follows by Propositior.4and we omit the detalils.
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