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ABSTRACT. Elsewhere we developed rules for the monotonicity pattern of therratiof /g of

two differentiable functions on an intervéd, b) based on the monotonicity pattern of the ratio

p := f'/g’ of the derivatives. Those rules are applicable even more broadly than I'Hospital’s
rules for limits, since in general we do not require that bfthAnd g, or either of them, tend

to 0 or co at an endpoint or any other point ¢f,b). Here new insight into the nature of the
rules for monotonicity is provided by a key lemma, which implies thap,i§ monotonic, then
p:=1"-g?/|g'| is so; hencey’ changes sign at most once. Based on the key lemma, a number
of new rules are given. One of them is as follows: Supposefthat) = g(a+) = 0; suppose

also thatp ™\, on (a, b) — that is, for some € (a,b), p / (p is increasing) orfa, ¢) andp
on(c,b). Thenr /or 7\, on(a,b). Various applications and illustrations are given.

Key words and phrased:’Hospital-type rules, Monotonicity, Borwein-Borwein-Rooin ratio, Becker-Stark inequalities,
Anderson-Vamanamurthy-Vuorinen inequalities, log-concavity, Maclaurin series, Hyperbolic geom-
etry, Right-angled triangles.

2000Mathematics Subject Classificat o86A48, 26A51, 26A82, 26D10, 50C10, 53A35.

1. INTRODUCTION

Let —oo < a < b < 0. Let f andg be differentiable functions defined on the intertalb),
and let

It is assumed throughout (unless specified otherwise)thatlg’ do not take on the zero value
and do not change their respective signs(erb). In [16], general “rules" for monotonicity
patterns, resembling the usual I'Hospital rules for limits, were given. In particular, according
to [16, Proposition 1.9], one has the dependence of the monotonicity pattefomfa, b)) on
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2 lOSIF PINELIS

that of
_I
g/
(and also on the sign gfy’) as given by Table 1}1. The vertical double line in the table separates
the conditions (on the left) from the corresponding conclusions (on the right).

p:

plog | v

S >0 SorN or\
N, | >0 SorN, or M\,
<0 S orN, or N\,
N | <0 SorN orN,

Table 1.1: Basic general rules for monotonicity.

Here, for instancer \, " means that there is somec (a,b) such that- \ (that is,r is
decreasing) o, c) andr " on(c, b). Now suppose that one also knows whether" or r ™\
in a right neighborhood of and in a left neighborhood &f then Tabl¢ 1]1 uniquely determines
the monotonicity pattern of.

Clearly, the stated I'Hospital-type rules for monotonicity patterns are helpful wherever the
I’'Hospital rules for limits are so, and even beyond that, because these monotonicity rules do not
require that botty andg (or either of them) tend to 0 ax at any point.

The proof of these rules is very easy if one additionally assumes that the derivétwved
¢’ are continuous and has only finitely many roots ifia, b) (which will be the case if, for
instancey is not a constant whilg andg are real-analytic functions d, b]). Such an easy
proof [21, Section 1] is based on the identity

(1.1) Fr'=(p-r)gd,

which is easy to check. A proof without using the additional conditions (that the derivétives
andg’ are continuous and has only finitely many roots) was given in [16].

Based on Tablg 1.1, one can generally infer the monotonicity patterrgiven that ofp,
however complicated the latter is. In particular, one has the rules given by[Taple 1.2.

p | g | r

SN >0 oror N or N or N N
N | >0 Soror N orN, or N,
SN <0 or or N orN or N
N <0/ orx or N\ orN, 7 orN, N\

Table 1.2: Derived general rules for monotonicity.

Each monotonicity pattern of in Tableq 1.]l anfl 1|2 does actually occur; see Remark 5.12
for details.

In the special case when boffandg vanish at an endpoint of the interv@l, b), 'Hospital-
type rules for monotonicity and their applications can be found, in different forms and with
different proofs, in[[11, 12, 13, 10| 2,13,/1,4,5] 15/ 16,/17, 18].
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Thespecial-caseule can be stated as follows: Suppose if{at+) = g(a+) = 0or f(b—) =
g(b—) = 0; suppose also thatis increasing or decreasing on the entire intefvab); then,
respectivelyy is increasing or decreasing dm, b). When the conditiorf (a+) = g(a+) = 0
or f(b—) = g(b—) = 0 does hold, the special-case rule may be more convenient, because then
one does not have to investigate the monotonicity pattern of ratiear the endpoints of the
interval (a, b).

A unified treatment of the monotonicity rules, applicable whether orfrastdg vanish at an
endpoint of(a, b), can be found in [16].

L'Hospital’s rule for limits when the denominator tendsxodoes not have a “special-case"
analogue for monotonicity; see e.g. [21, Section 1] for details.

In view of what has been said here, it should not be surprising that a very wide variety
of applications of these I'Hospital-type rules for monotonicity patterns were given: in areas
of analytic inequalities' |5, 15, 16, 19], approximation theadryl [17], differential geometiy [10,
11,112/ 21], information theory [15, 16], (quasi)conformal mappingsI[L] 2, 3, 4], statistics and
probability [13, 16/ 1/7, 18], etc.

Clearly, the stated rules for monotonicity could be helpful wiieor ¢’ can be expressed sim-
pler thanf or g, respectively. Such functionsandg are essentially the same as the functions
that could be taken to play the rolewin the integration-by-parts formulpu dv = wv— [ v du;
this class of functions includes polynomial, logarithmic, inverse trigonometric and inverse
hyperbolic functions, and as well as non-elementary “anti-derivative” functions of the form
z—c+ [T h(u)duorz— c+ffh(u) du.

“Discrete” analogues, fof andg defined ori, of the I'Hospital-type rules for monotonicity
are available as well [20].

Let us conclude this Introduction by a brief description of the contents of the paper.

Section 2 contains what is referred to in this paper as the key lemma (Lemma 2.1). This
lemma provides new insight into the nature of the I'Hospital-type rules for monotonicity, as
well as a basis for further developments. The key lemma states that the monotonicity pattern
of function g := ' - ¢*/|4'| is the same as that @fif g¢’ > 0, and opposite to the pattern of
p if gg < 0. Clearly, from this lemma, such rules as the ones given by Table 1.1 are easily
deduced, sinceign(r’) = sign 5. We present two proofs of the key lemma: one proof is short
and self-contained, even if somewhat cryptic; the other proof is longer but apparently more
intuitive.

In Sectior] B, certain shortcuts are given for the monotonicity rules based on the key lemma.
As stated above, Taldle 1.1 uniquely determines the monotonicity patteon,) of r on(a, b)
provided that one knows (i) the monotonicity pattermpan (a, b), (i) the sign ofgg’ on (a, b),
and also (iii) whether 7~ or r N\ in a right neighborhood of and in a left neighborhood of
b. In Sectiorj B, it is noted (Corollafy 3.2) that, instead of these assumptions (i)—(iii), it suffices
to know simply the signs of the limits(a+) and p(b—) in order to determine uniquely the
monotonicity pattern of on (a,b) — provided thafp is monotonic on(a,b). However, if the
sign of g¢’ on (a, b) is taken into account as well as whetheis increasing or decreasing on
(a,b), then (Corollary 3.3) one needs to determine the sign of only one of the iaits) and
A(b-).

In Sectior] 4, the stated special-case rule for monotonicity (fvéndg both vanishing at an
endpoint of the intervala, b)) is extended (Propositiofis 4.3 gnd]4.4) to include the cases when
p is not monotonic orta, b) but rather has one of the patterns\, or \ . Moreover, it can be
allowed that bothf andg vanish at an interior point, rather than at an endpoint, of the interval
(Propositiorf 4.p). These developments are based on the key lemma, as well.
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4 lOSIF PINELIS

In Sectior{ b, a general discussion concerning the interplay between the functigrsidp
is presented as viewed from different angles.

Finally, in Sectiorj B, a number of applications and illustrations of the rules for monotonicity
are given.

2. KEY LEMMA

Lemma 2.1(Key lemma) The monotonicity pattern " or \) of the function
/
_2r

(2.1) P=9 5
19|

on (a,b) is determined by the monotonicity patterngond the sign ofj¢’, according to Ta-
blel2.1.

p |ad || p
>0
N >0\
<0\
N <0]

Table 2.1: The monotonicity pattern pfs the same as that
of p if g¢’ > 0, and opposite to the pattern pfif g¢’ < 0.

Proof of Lemm@ 2]1Let us verify the first line of Tablg 2.1. So, it is assumed that" and
gg’ > 0. This verification follows very closely the lines of the proofof[16, Proposition 1.2].
Fix anyx andy such that
a<xr<y<b

and consider the functiol defined by the formula

h(u) == hy(u) == f'(y) g(u) — ¢'(y) f(u).

For allu € (a,y), one has

W(u) = f(y) g (w) — g'(y) f'(w) = g'(y) g'(u) (p(y) — p(u)) >0,
becausey’ is nonzero and does not change sign(erb) andp " on (a,b). Hence,h / on
(a,y); moreover, being continuous,is increasing orta, y|.
Next, one has a key identity

(6(y) = p(@)) 9" (W)| = (hly) = h(x)) + (p(y) — p(x)) 9(x) ¢'(y);
here it is taken into account that is nonzero and does not change sign(amnb), so that
ld'(y)|/1d' ()] = ¢'(y)/d (x). The first summandi(y) — h(x), on the right-hand side of this
identity is positive — becausle " on (a, y]; the second summangh(y) — p(z)] g(x) ¢'(y) is
also positive — because " on (a, b) while g¢’ > 0 on (a,b) andg’ does not change sign on
(a,b). Thus,p(y) > p(z).

This verifies the first line of Table 3.1. Its second line can be deduced from the first one by
the “vertical reflection”; that is, by replacinby — f (and hence by —r, while keepingy the
same). The third line can be deduced from the second one by the “horizontal reflection”; that
is, by “changing the variable” from to —z. Finally, the fourth line can be deduced from the
third one by the “vertical reflection”. OJ
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While the above proof is short and self-contained, it may seem somewhat cryptic. Let us
give another version of the proof, which is longer but perhaps more illuminating (especially its
Step 1). The latter proof makes use of the following technical lemma.

Lemma 2.2. Leth be any real functiork on (a, b) such that for allx € (a, )

(2.2) h(z) > h(z—) and (Dih)(x) >0,
(2.3) where (D, h)(z) := hIAI;H)lf i—z

is the lower right Dini derivative (possibly infinite) of the functibmt pointz, and
Ah = (Ah)(z; Az) := h(z + Az) — h(x).
Thenh is nondecreasing ofu, b).

Proof. This statement is essentially well known, at least when the funétisrcontinuous; cf.,
e.g., [22, Example 11.3 (IV)]. The following proof is provided for the readers’ convenience.
For anyz € (a,b) and anye > 0, consider the set

E:=E,.:={y€x,b): h(u) > h(z) —e- (u—2x)Vu € [x,y)}.

ThenE # (), sincer € E. Therefore, there exists:= ¢, . := sup E, andc € [z,b] C [z, 00]. It
suffices to show that = b for everys > 0; indeed, then one will havie(u) > h(x) —¢- (u—x)
forall u € [z,b) and alle > 0, whenceh(u) > h(z) for all x € (a,b) andu € [z,b).
To obtain a contradiction, assume that: b for somes > 0. Then it is easy to see that

c € E,and so,h(u) > h(x) —e- (u— x) for all w € [x,c) and hence fo = ¢ (since
h(c) > h(c—)). Thus,h(c) > h(z) —e- (c — x). On the other hand, the conditien# b implies
that (D, h)(c) > 0, and so, there exists somec (c¢,b) such thath(u) > h(c) — ¢ (u — ¢)
forall u € [c,d). It follows thath(u) > h(z) — e - (u— z) for all u € [¢,d) and hence for all
u € [x,d). Thatis,d € FE while d > ¢, which contradicts the condition= sup E. O

The other proof of Lemnja 2. Again, it suffices to verify the first line of Tabje 2.1, so that it is
assumed that  andgg’ > 0 on (a, b). Note first that

(2.4) p=(pg— f)sign(q).

Recall thatign(g’) is constant orta, b). The proof will be done in two steps.
Step 1 Here the first line of Table 2.1 will be verified under the additional condition shst
differentiable on(a, b). Then [2.4) implies

(2.5) g =p -g-sign(q), whence
(2.6) sign(p) = sign(p’).

Sincep 7, one hag’ > 0 and hence, by (2.6} > 0, so thatp is nondecreasing (ofw, b)).

To obtain a contradiction, suppose now that the condifion” fails (that is,s is not strictly
increasing or(a, b)). Thenp must be constant and henge= 0 on some non-empty interval
(¢,d) C (a,b). It follows by (2.6) thaty’ = 0 on (¢, d), which contradicts the conditign .

Step 2 Here the first line of Tablg 2.1 will be verified without the additional condition. In
view of (2.4), one has the obvious identity

(2.7) Ap=((Ap)-(g+Ag)+p-Ag— Af) -sign(g).
Dividing both sides of this identity byAz and lettingAz | 0, one has (cf.[(2]5))

Dip=(Dyp)-g-sign(g) >0,

J. Inequal. Pure and Appl. Math?(2) Art. 40, 2006 http://jipam.vu.edu.au/
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because (i) the function is differentiable and hence continuous; gty > 0; (iii) pg = f;
and (iv)p " and henceéDp > 0. It also follows from[[2.F) that for alt € (a,b)

ple=) = pla) = lim Ap(a; Aa)

= lim Ap(z; Az) - g(2) - sign(g'(z)) < 0,
sincep / andgg’ > 0. Hence,p(z) > p(z—) for all z € (a,b). Thus, by Lemma 2]2; is
nondecreasing ofu, b).
Therefore, if the conditiop  fails, thenp is constant on some non-empty intervald) C
(a,b). Itfollows by (2.4) thap g— f = K on(c, d) for some constank’, whencep = (f+K)/g
is differentiable oric, d). Thus, according to Step 4, on(c, d), which is a contradiction. [J

3. REFINED GENERAL RULES FOR M ONOTONICITY

As before, the term “general rules for monotonicity” refers to the rules valid without the
special condition that botli andg vanish at an endpoint of the interv@l, b).

From the key lemma (Lemma 2.1), the general I'Hospital-type rules for monotonicity given
by Tablg 1.1 easily follow.

Corollary 3.1. The rules given by TabJe 1.1 are true.

Proof. Indeed, consider the first line of Tale[1.1. Thus, it is assumedthaandgg’ > 0 on
(a,b). Then, by the first line of Table 3.1, on (a, b). Thereforep(z) may change sign only
from — to + asxz increases froma to b. In view of (2.1), the same holds witti instead ofp.

More formally, there exists somec |[a, b] such that’ < 0 on(a, c) andr’ > 0 on(c,b). Thus,
eitherr " on (a,b) (Whenc = a) orr \, on (a,b) (whenc = b) orr " on (a,b) (When

¢ € (a,b)). This verifies the first line of Table 1.1. The other three lines of 1.1 can be
verified similarly; alternatively, they can be deduced from the first line (cf. the end of the first
proof of Lemma 2.]). O

As was stated in the Introduction, if one also knows whethgt or ™\ in a right neighbor-
hood ofa and in a left neighborhood &f then Tabl¢ 1]1 uniquely determines the monotonicity
pattern ofr. Sometimes it is very easy to determine the monotonicity pattermsnefar an
endpoint,a or b. For example, ifr(b—) = oo, then it follows immediately that " in a left
neighborhood ob (given the knowledge that ~ or X\, or \ " or /™, on (a,b)). Or, ifitis
known thatr(a+) = 0 while » > 0 on (a, b), then it follows immediately that " in a right
neighborhood of.

However, in some other cases it may be not so easy to determine the monotonicity patterns
of r neara or b, especially when the functionsandg depend on a number of parameters. In
such situations, any additional shortcuts may prove useful. With this in mind, let us present the
following corollaries to the key lemma.

Corollary 3.2. If p " or \,on(a,b), then the limit$(a+) and p(b—) always exist iffi—oo, oo,
andp(a+) # p(b—). At that, the rules given by Taljle B.1 are true.

Corollary 3.3. The rules given by TabJe 3.2 are true.

The message conveyed by Corollary|3.2 is the followingp If* or \ on (a, b), then the
monotonicity patterns of near the endpoints andb (and hence on the entire interval, b))
are completely determined by the signs of the limits+) andp(b—). (In particular, at that the
sign of g¢’ is no longer relevant. Note also that the four cases in Table 3.1 concerning the signs
of p(a+) andp(b—) are exhaustive. Moreover, the four cases are pairwise mutually exclusive
— becausé(a+) # p(b—) and hence(a+) andp(b—) cannot be simultaneously zero.)
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plat) [po—) | r
>0 >0 /
>0 <0 || "\

<0 | >0 [\
<0 | <0 | \

Table 3.1: Ifp " or X\, then the signs of(a+) and 5(b—) determine the pattern afon (a, b).

p | gg | plat) | po=) | v | 7
S 1>0] >0 >0/
>0 <0 || <0]\
N | >0 >0 |>0]
N[>0 <0 < 0]\,
N [<0] >0 >0/
N | <0 <0 [[<0]\,
/1 <0 >0 (|>0] 7
/<0 <0 < 0]\,

Table 3.2: The content of the blank cells is not needed, and easy to restore.

On the other hand, by Corollafy 3.3, if the signgf is taken into account, then — it of
the2! = 16 possible cases concerning the signgfy, g¢’, p(a+), andp(b—) — one needs to
determine only one of the two signsgn p(a+) or sign p(b—), depending on the case.

Note that lines 1, 4, 6, and 7 of Taljle 3.2 correspond to parts (1), (2), (3), and (4) of [16,
Corollary 1.3], where limits superior or inferior {§{x) asxz | a orz 1 b are used in place of
the limits p(a+) andp(b—) (which latter we now know always exist, by Corollary|3.2, provided

thatp  or \, on(a,b)).

Proof of Corollary{3:2.1f p  or *\ then, by Tabl¢ 2]1/ is (strictly) monotonic (on(a, b)).
Hence, the limit$i(a+) andp(b—) exist and differ from each other. Now the rules of T' ible 3.1
immediately follow by Lemma 2|1 (cf. the proof of Corolldry 3.1).

Proof of Corollary[ 3.3.1t suffices to consider only the first line of Taple]3.2, so that it is assumed
thatp 7, g¢’ > 0, andp(a+) > 0. By the first line of Tabl¢ 2|15 . Hence,p(b—) >
pla+) > 0. It remains to refer to the first line of Takle B.1. O

4. DERIVED SPECIAL -CASE RULES FOR M ONOTONICITY

A slightly stronger version of the basic special-case rule for monotonicity mentioned in Sec-
tion[1 is
Proposition 4.1([15, Proposition 1.1]/[16, Proposition 1.1]puppose thaf(a+) = g(a+) =
0or f(b—) = g(b—) =0.
(1) If p / on(a,b), thenr’ > 0 and hence: " on(a,b).
(2) If p\,on(a,b), thenr’ < 0and hence \, on(a,b).
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Developments presented in Sect|dn 2 provide further insight into this special-case rule as
well. Indeed, in view of[(2]1), Propositi¢n 4.1 can be restated as follows.

Proposition 4.2. Suppose thaf(a+) = g(a+) = 0 or f(b—) = g(b—) = 0.

(1) If p / on(a,b), theng > 0on(a,b).
(2) If p\,on(a,b), theng < 0on(a,b).

To prove Propositioh 4}2, one may observe that foyadl (a, b)

p(y) = hy(y)/19' (W)l

whereh, (u) = f'(y) g(u) —g¢'(y) f(u), as defined in the first proof of LemrpaP.1. In that proof,
it was shown that the functiol, is increasing ora, /.

On the other hand, the conditigifa+) = g(a+) = 0 implies thath,(a+) = 0. It follows
thath,(y) > h,(a+) = 0. Hence,p(y) > O forall y € (a,b). Now (2.1) shows that indeed
r’ > 0 and hence " on(a,b). The casef(b—) = g(b—) = 0 is similar. The above reasoning
is very close to the lines of the proof of [15, Proposition 1.1].

Whenever it is indeed the case ttfat+) = g(a+) = 0 or f(b—) = g(b—) = 0, the special-
case rules are more convenient, because then one need not further investigate the behavior of
ratior near the endpoints, andb.

The main question in this section is the following: under the same special condition —
f(a+) = g(a+) = 0 or f(b—) = g(b—) = 0, can the derived general rules given by Table¢ 1.2
be similarly simplified?

Propositiorj 4.8 below shows that the answer to this question is yes. Moreover, we shall also
consider the case whefiand g both vanish at an interior point of the interval, rather than at
one of its endpoints. To obtain these “derived” special-case rules, we shall again rely mainly on
the key lemma, Lemmja 3.1. We shall also rely here on the “basic” special-case rules given by
Propositiorj 4.11 or, rather, on their re-formulation given by Proposiition 4.2.

Proposition 4.3. The special-case rules given by Table 4.1 are true.

endpoint condition | p || r

flat) =glat) =0 | /N || /or 7\
flat) = gla+) =0 [\, 7]\ or\,~
Jb=)=g(b=) =0 | /|| \or 7\
fb=)=g(b=) =0 |\ | /or\,/

Table 4.1: Derived special rules for monotonicity, whgand g both vanish at an endpoint.

Proof of Proposition 431t suffices to consider the first line of Taljle 4.1, so that it is assumed
that f(a+) = g(a+) = 0 andp ™\, on (a,b); that is, there exists somec (a,b) such that

p / on(a,c)andp \, on(c,b). The conditiory(a+) = 0 implies thatgg’ > 0 on (a,b). Then,

by the second line of TabJe 2., on (¢, b). Also, by part (1) of Proposition 4.2, > 0 on
(a,c). Hence, there exists sordec [c, b] such thap > 0 on(a,c) U (¢,d) andp < 0 on(d,b).
(Atthat,d = bif p(b—) > 0 (and hence(c+) > 0), andd € [c,b) if p(b—) < 0.) Therefore
and in view of [2.1);” > 0 on(a,c) U (¢,d) andr’ < 0 on(d, b). Sincer is differentiable and
hence continuous ofu, b), it follows thatr ,” on (a,d) andr \, on(d, b). Thus, ifd = b then

r /' on(a,b);andifd € [c,b) thenr /\, on(a,b). O
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In the course of the proof of Propositipn 4.3, a little more was established than stated in
Propositior] 43. Namely, based on the signs@f—), one can discriminate between the two
alternative monotonicity patterns ofgiven in the first line of Table 4]1; similarly, for the other
three lines of Tablg 4}1. Thus, one has the following.

Proposition 4.4. The special-case rules given by Tapblg 4.2 are true.

endpoint condition | p | p(a+) | p(b—) | r
flat) = gla+) =0 | N\ >0 || /
flat+) = glat) =0 | 7\ <0 || N\
flat+) = glat) =0 |\ <0 || N\
flat) =glat) =0 |\ >0 ||\
Jb=)=gb=)=0 | /\| <0 N
=) =g(b=)=0 | "\ | >0 /N
J=)=g(b=)=0 [\,| =20 /
=) =g(b—) =0 |\"| <0 N/

Table 4.2: Specific derived special-case rules for monotonicity, vwhard g both vanish at an endpoint.

Let us also consider the case when bftiindg vanish at an interior point of the interval.

Proposition 4.5. Suppose that the following conditions hold:

e — v <a<b<c<oo

e f andg are differentiable functions defined on the getc) \ {b};

e on each of the interval&, b) and (b, ¢), the functions; and ¢’ do not take on the zero
value and do not change their respective signs;

o 361517 f(z) = ilirll]g(x) =0,

e there exists a finite limip(b) := }clirll; p(z) and hence, by I'Hospital’s rule, the limit
r(b) = limr(x) = p(b), wherer(z) := f(z)/g(z) and p(z) := f'(x)/g'(x) for
x € (a,c) \ {b}, so that the functions and p are extended frorfu, ¢) \ {b} to (a, ¢).

Then the special-case rules given by Tablé 4.3 concerning the monotonicity patteruscf
r on(a,c) are true.

p | r
% %
N N

N o or N
/N o or N

Table 4.3: Derived special-case rules for monotonicity, wliemd g both vanish at an interior point.

Proof of Proposition 45Lines 1 and 2 of Table 4.3 follow immediately from Proposifion 4.1.
Line 4 can be deduced from line 3 by the “vertical reflection”, that is, by replatiog—f. It
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remains to consider line 3. Thus, it is assumed that there exists&anie, ¢) such thap
on(a,&) andp " on (¢, c). One of the following three cases must occur.
Case 1¢ =b. Then, by Propositioh 4., \, on (a,b) andr " on (b, ¢), so thatr \,/ on
(a,c).
Case 2 ¢ € (b,c). Thenp \, on(a,b) (sincep \, on (a,&)). Hence, by Proposition 4.1,
one hasr \, on (a,b). On the other handy \, on (b,£) andp " on ({,¢). Hence, by
Propositior] 48 (line 2 of Table 4.1}, \, or \,/ on (b, ¢). It follows thatr “\, or \, /" on
(a,c).
Case 3¢ € (a,b). This case is similar to Case 2, but here one will concluderthdtor \,_~
on(a,c).

This verifies line 3 of Table 413. O

5. DISCUSSION

Remark 5.1. It is easy to see from the proofs of the key lemma and the rules based on it
that, instead of the requirement férandg to be differentiable oria, b) it would be enough to
assume, for instance, only thataindg are continuous and both have finite right derivatiyés
andg’, (or finite left derivativesf’ andg’) on(a,b), and then use these one-side derivatives in
place of /" andg’. (Cf. [15, Remark 1.2].)

One corollary of Remark 5.1 is as follows.

Corollary 5.2. Take anyc € (a,b), and letf be any convex real function da, b). Then the
ratio f(z)/(x — c) switches at most once from decreasing to increasing whirareases frona
to b. Similarly, this ratio switches at most once from increasing to decreasing wiresreases
froma to c.

Remark 5.3. Here Corollary 5.2 appears as a particular application of Cordllafy 3.1 (enhanced
in accordance with Remafk $.1). However, one could, vice versa, deduce Coyollary 3.1 from
Corollary[5.2 by “changing the variable” fromto X := g(z), so thatf(z) = F(X) :=

flg7H (X)), g(x) = X, r(z) = F(X)/X, andp(z) = F'(X).

An obvious special case of Corolldry b.2 is:

Corollary 5.4. Take any € (a,b), and letf be any convex real function dn, b). Letr.(z) :=
(f(x) = f(c))/(x —¢)forx € (a,b) \ {c}, andr.(c) := k, wherek is an arbitrary point in the
interval [f’ (c), f’ (c)]. Then the ratia.(x) increases whem increases fronu to b.

Corollary[5.4 is immediate from Propositipn 4.5 enhanced in accordance with Remjark 5.1.

Remark 5.5. This remark complements Remark]5.1, which allowed using one-side derivatives
of f andg in place off’ andg’. However, ifg is differentiable on(a, b), then the phrase “and do

not change their respective signs” in the assumptiparidg’ do not take on the zero value and

do not change their respective signs(an)” stated in the beginning of Sectiph 1 is superfluous.
Indeed, ifg is differentiable, then it is continuous and therefore does not change sign, since it
does not take on the zero value. As for the implication

¢’ does not change sign provided tlyatloes not take on the zero value

it follows by the intermediate value theorem for the derivative (seele.g. [6, Theorem 5.16]), as
was pointed out in [5].

Remark 5.6. Moreover, if f andg are differentiable ofa, b) andp is monotonic or{a, b), then
p andp are continuous ofu, b). Indeed, take any € (a,b). Sincep is monotonic, there exist
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limits p(c—) andp(c+). On the other hand, the ratio
flx) = fle) _ (fz) = fe)/(x =)

g(z) —gle) — (9(z) = g(c))/(z —c)
tends top(c) asz — c. Next, by the Cauchy mean value theorem, this ratio tengdédoe) as
x 1 cand top(c+) asx | ¢. Thus,p(c—) = p(c) = p(c+), for eache € (a,b), so thatp is
continuous or{a, b). Now it is seen thap is continuous as well, singe= (pg — f) sign(g’).

Remark 5.7. All the stated rules for monotonicity have natural “non-strict” analogues, with
strict inequalities and terms “increasing” and “decreasing” replaced by the corresponding non-
strict inequalities and terms “non-decreasing” and “non-increasing”.

Remark 5.8. Lemma] 2.1 shows that (given the signgf) the monotonicity pattern of is
completely determined by the monotonicity patterrpoft is readily seen — especially from
the second proof of Lemnja 2.1 — that the relation between the pattepranolp is reversible,
so that, given the monotonicity patterngénd the sign of¢’, the monotonicity pattern gf can
be completely restored. That is, each line of Tabl¢ 2.1 can be read right-to-left. For instance, if
p / andgg’ > 0, thenp . Thus, given the sign af¢’, the monotonicity pattern gf carries
the same amount of information as the monotonicity pattegn of

In contrast, it should now be clear that the relation between the monotonicity patteraschf
p is not reversible in any reasonable sense. The pattesrcah be anything even if the pattern
of » and the sign of;¢’ are given. For instance, ifis positive on(a, b) then, by [(2.1l); ,/ on
(a,b); at that,p and hence» can be made as “wavy” as desired. To be even more specific, let
(a,b) := (0,00) Or (—00,0), g(z) := 1/z, andp(x) := 2 + sinx, so thatp > 0 everywhere.
Next, in accordance with (2.1), let

(5.1) r(z) = /090 lg ()l p(u) du

g(u)?
=14 2x —cosz, whence

flz) =g(x)r(x) = (1 +2x —cosz)/x and

p(x) =1—cosx — zsinz,

x € (—00,0) U (0, 00), so thatr, p, andp can be extended fR, by continuity. Then’ > 0 and
hencer ~ onR, while p is “infinitely wavy” on R, just asp is; see Figures 5.1 apd 5.2.

r(x), p(x)

\ N /
N "\

Figure 5.1: Graphs of- andp: r, increasing; p, hon-monotonic, “infinitely wavy".
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P(X), p(X)

Figure 5.2: The monotonicity pattern pfexactly follows that op, and vice versa, in accordance with Taple]2.1.
Recall that hergp(x) = 2 +sinz > 0 forall z € R.

Remark 5.9. As was pointed out in [16] (see Remark 1.21 and Examples 1.2 and 1.3 therein),
“the waves of- may be thought of as obtained from the wavep b¥ a certain kind of delaying

and smoothing down procedure." Here, at least the “smoothing down" part is explicit in view of
(5.1), since the “waves" gf are in perfect unison with those pfand hence vice versa. In this
connection, one can also consider the representation

r(e)g(c) + [ plu)g' (u) du
9(c) + [ g'(u) du

of r on e, d|, which is (in the case whegy’ > 0) a weighted-average of the “initial” valuéc)
and the values gf on [c, d].

r(z) =

forx € [¢,d] C (a,b)

As for the waves of being “delayed” relative to the waves pf it should be assumed that
two particles are moving, one along the graph-rand the other one along the graphof
left-to-right if g¢’ > 0 and right-to-left ifg¢’ < 0; at that, the abscissas of the two particles are
always staying equal to each other.

Remark 5.10. One can see that, under certain general conditiong)stbe non-monotonic on
an interval whiler is monotonic on it. Indeed, suppose tlgat > 0 on (a,b) andr forms an
increasing “half-wave” on an interval, d| C (a, b); thatis,”” > 0 on(c,d) andr’(c) = r'(d) =
0. Assume also thaf andg are twice differentiable ofia,b), v"(c) # 0, andr”(d) # 0. It
follows thatr”(c¢) > 0 andr”(d) < 0. It is easy to check that

p=r+r"v, where v:=g/g;

cf. [16, (1.8), (1.7)]. Then one can see that the conditidg = 7'(d) = 0 imply p(c) = r(c)
andp(d) = r(d). Moreover,p'(c) = r"(c)v(c) > 0 andp'(d) = r"(d)v(d) < 0, so thatp is
necessarily non-monotonic d@n, d).

See Figur¢ 53, where,d] := [—-7/2,7/2], f(z) := ¢® sinz, andg(z) = €7, so that
r(z) = sinx andp(x) = V2 sin(z + 7/4), for all » € R; cf. [16, Example 1.2].

Remark 5.11. The latter example also illustrates a general situation. Indeed, without loss of
generality,g > 0. “Changing the variable to X := In g(z), one hagj(z) = %, so that one
may assume thaf(z) = ¢* and hence(x) = 1 for all x. Next, if r is smooth enough on a
finite interval|c, d] then, for anyl” > d — ¢, one can extendfrom the intervalc, d] to a smooth
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r(x), p(x)

-m/2 /2

Figure 5.3:r, increasing; p, hon-monotonic.

periodic function of period’ onR, so that one has the Fourier series representations

r(z) = Ao+ Z(A" cosnkx + B, sinnkz) and hence

plx) = Ao+ Z V1 +n2k? (A, cos(nk(z + 1)) + B, sin(nk(z + ¢,)))

for some real sequences,, ) and(B,) and allz € R, wherek := 27 andy),, := 220 Thyg,
with the variabler transformed intaX = In g(x), the nth harmonic componend,, cos nkx

+B, sinnkx of r has ayv/1 + n?k? times smaller amplitude and a phase delayed/hyas
compared with the amplitude and phase ofitltle harmonic component ¢f, for every natural

n. It also follows thaty conveys a more powerful signal thamoes, in the sense that

d d
/ p()? |d1n [g(z)]| > / r(@)? |dn |g ()]

Remark 5.12. Note that each monotonicity pattern ofin Tables 1.l an@l 1,2 does actually
occur, for each set of conditions grandgg’. Here let us provide a rather general description
of how this can happen, suggested by the weighted-average representatigiverf in Re-
mark[5.9. For instance, consider the first line of Table 1.1, where it is assumea tHand
gg’ > 0on(a,b). Suppose here also that- 0, f = f, + C for some constant’, fy(a+) € R,
gla+) € (0,00), pla+) € R, andp(b—) = oo (for example, one can take = 0, b = oo,
g(x) = 1+ z,andfy(z) = e forall z > 0). LetCy := p(a+) g(a+) — fola+). If C > Cy,
thenp(a+) < r(a+), so that, in view of identity{ (T]1);" < 0 and hence: \ in a right neigh-
borhood ofa. Now the first line of Tablg 1|1 implies that\, or " on(a, b). Moreover, since

p / andp(b—) = oo, the pattern- \, on (a, b) would imply that in a left neighborhood &f
one hag > r and hence, by (1].1), /, which is a contradiction. This leaves the patterr,~

on (a, b) as the only possibility; that is, \, on (a, ¢) andr " on(c,b), for somec € (a,b), SO
that each of the patterns, 7, \, and / does occur for.
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6. APPLICATIONS AND |LLUSTRATIONS

6.1. Monotonicity properties of a ratio considered by Borwein, Borwein and Rooin. Bor-
wein et al. [9] showed that the ratio

a® — b*
6.1
( ) T — d:r’
x # 0 (extended ta = 0 by continuity), is convex i € R provided that
(6.2) a>b>c>d>0.

They also determined the values@, ¢, andd for which ratio [6.1) is log-convex.

Moreover, it was shown in [9] that ratip (6.1) is increasingecire R under condition[(6]2).
Here the monotonicity pattern of ratio (6.1) will be determined for any positive valuesiof
¢, andd, whether condition (6]2) holds or not. Dividing both the numerator and denominator of
ratio (6.1) byd”, one may assume without loss of generality that 1. Denoting then:* by v,
one rewrites ratid (6]1) as

B«
_ Y Y
(6.3) T@%—ETT-
fory € (0,1)U(1, 00) andr(1) := lim,_; r(y) = —c, Wherea := 22 and := 2¢. Without
loss of generality, it will be assumed that
g > a.

Proposition 6.1. The monotonicity pattern of ratioin (6.3) is given by Tablé 6]1, where the
trivial case witha = 0 and 3 = 1 must be excluded.

Case | r
La<0,6<1 N\
lMa<0,3>1] </
. a>0,8<1]| "\
Va>08>1] /

Table 6.1: The monotonicity pattern of ratian (6.3).

Note that condition[(6]2) corresponds to the case when « > 1, which is a subcase of
Case IV of Tabl€®6]1.

Proof of Propositiof 6J1Let f(y) := y° — y* andg(y) := y — 1, so thatf/g equals the ratio
rin (6.3). Then

p(y) = f'W)/d(y) =By’ " —ay*! and

is the only root ofy’ in (0, co) provided thatv(aw — 1)3(8 — 1) > 0; otherwise,p’ has no root
in (0, 00).

For each of the Cases | and IV in Taple]6.1, two subcases will be considered. At that, remem-
ber the assumptiofi > «.

Hence,

J. Inequal. Pure and Appl. Math?(2) Art. 40, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

L'H OSPITAL RULES FORMONOTONICITY 15

Subcase I.1x < 0andfg < 0, so thate < f < 0. Herea(a—1) > 0andjs(g —1) > 0.
Hence, for ally > 0, one hag/(y) < 0iff y < y. (lettingy, := oo if 8 = 0). Thereforep \
on (0,00) (p \, on (0, c0) if B = 0). It follows by Propositiori 4]5 that ,~ or \, or /" on
(0,00). Also, r(co—) = 0 whiler > 0 on (1,00), so thatr \ in a left neighborhood ofc.
Thus,r \, on (0, c0) in Subcase I.1.

Subcase I.2a < 0and0 < 5 < 1,sothate < 0 < 8 <1 (but(«, 3) # (0,1)). Herep’ <0
and hence \, on (0, co). Thus, by Propositioh 4,5, on (0, co) in Subcase 1.2 as well.
Case ll.a < 0and > 1. Here, for ally > 0, one hay'(y) < 0iff y < y.. Therefore,
p ../ on (0, c0). It follows by Propositior 4)5 that ,” or X\, or \,/ on (0, 00). Also, here
r(04) = r(0co—) = c0. Thus,r \, " on (0, c0) in Case Il.

Caselll.a > 0andpg < 1,sothatd < o < g < 1. Here, for ally > 0, one hag/(y) > 0 iff
y < y.. Thereforep ,/\, on(0,c0). It follows by Propositiof 4]5 that ,” or \, or ,/~ on
(0,00). Also, herer(0+) = r(co—) = 0 andr > 0 on (0, 00). Thus,r /", on (0, c0) in Case
1.

Subcase IV.10 < o < landf > 1,sothatd0 < o < 1 < 3 (but(«, 3) # (0,1)). Here
¢/ > 0and hence ,” on (0, c0). Thus, by Propositioh 4.5, ” on (0, co) in Subcase IV.1.
Subcase IV.2o > 1andg > 1, sothatl < a < 3. Here, for ally > 0, one hag/(y) < 0 iff
y < y.. Thereforep N,/ on (0,00) (p /" on(0,0) if « = 1). It follows by Propositiori 4J5
thatr ~ or\, or\_~on(0,00). Also, herer(0+) = 0 andr > 0 on (0, c0). Thus,r / on
(0, 00) in Subcase V.2 as well. O

The matter of the convexity of ratip (6.1) without condition {6.2) is more complicated and
will not be pursued here.

6.2. Monotonicity and log-concavity properties of the partial sum of the Maclaurin series
for e*. Forz € R andk € {0,1,...}, consider

the kth partial sum for the Maclaurin series fof, where0® := 1 and S, := 0. For allk ¢
{1,2,...}, one hasS; = S;_; andSy(x) > 0if =z > 0.
Consider the ratio

| 8

J
' ?

J!

Skt
S ‘= Sk
on (0, c0). Applying Propositiori 4]1 to this ratib times and observing thaf(z) = 1 + z is
increasing inc, one obtains

Proposition 6.2. For eachk € {1,2,... }, one hass;, > 0 and hences;, " on (0, o).
Sinces) = 1 — Sg+1S5¢_1/5%, one obtains
Corollary 6.3. For eachz > 0, the partial sumSy(x) is strictly log-concave it € {1,2,...}.

Corollary[6.3 also follows from results of [20].

6.3. Monotonicity and log-concavity properties of the remainder in the Maclaurin series
for e*. Forx € Randk € {0,1,...}, consider

?
—
8
<.

Ri(z) :=€" — :

<
Il
o
.
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the kth remainder for the Maclaurin series fgt. For allk € {1,2,...}, one hask|, = R;_;
andR(0) = 0; also,Ry(z) = e* > 0, so thasign Ry, (z) = 1if x > 0 andsign Ry (x) = (—1)*
if x <0.
Consider the ratio
- Ry 1
Ry’

extended fronR \ {0} to R by continuity. Applying Propositioh 4.5 to this ratiotimes and
observing thaty(z) = 1 — e * is increasing inc € R, one obtains

Proposition 6.4. For eachk € {0, 1,... }, the ratiory is increasing orR.
Sincer, = 1 — Ry1Rx_1/ R}, one has
Corollary 6.5. For eachz # 0, the remaindefR(z)| is log-concave itk € {0,1,... }.

Following along the lines of the proof of Propositjon|4.5, one can show it )| is actually
strictly log-concave ik € {0,1,...} for each reak: # 0. Corollary[6.5 also follows from
results of[14} 20].

6.4. Becker-Stark and Anderson-Vamanamurthy-Vuorinen inequalities and related mono-
tonicity properties. Using series expansions based on complex analysis, Becker and $tark [8]
obtained the inequalities

4 T T X
— <t (—) < = for 0,1
T1-az2 M) S o1 z€(0.1)

as a two-sided rational approximation to the tangent function. This approximation is rather
tight, since the ratio of the upper and lower boundg’in| (6.4)/i$ = 1.233.... Moreover, as

noted in [8], the constant factofsand? in (6.4) are the best possible ones.
Anderson, Vamanamurthy and Vuorinén [5] obtained another nice inequality:

(6.4)

. 3
(6.5) (smx) >cosx for z € (0,7/2),
i
whose hyperbolic counterpart,
. h 3
(6.6) (smx x) > coshx for x>0,

was implicit in [5].

Here we provide monotonicity properties for appropriate ratios, which imply inequalities
(6.4), (6.5), and[(616) in a quite elementary way. As will be seen from our proof, inequalities
(6.4) turn out to be indirectly related with (6.5) and (6.6).

Let us begin with the monotonicity properties pertaining to inequalitie$ (6.5 and (6.6).

Proposition 6.6. The ratio

(+5)°

COS X
increases from to oo asx increases front) to 7 /2.

Proof. The cubic root of this ratio is the ratio(z) := stzcsz \whose derivative ratio

p(z) = 2 cos?®x + % cos™/3 x is increasing inv € (0,7/2). It remains to refer to the special-
case rule for monotonicity (Propositipn #.1). O

Quite similarly one can prove
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Proposition 6.7. The ratio

sinh 3
(s22)
cosh z
increases froni to co asz increases frond to co.

Clearly, inequalities[ (6]5) andl (6.6) immediately follow from Proposition$ 6.6/ arjd 6.7, re-
spectively.
Now one is prepared to consider the monotonicity property pertaining to inequalities (6.4).

Proposition 6.8. The ratio
_ T
rie) = tan(mwx/2)

increases fron2/x to /4 asx increases frond) to 7 /2. Hence, one has inequaliti€6.4) and
also the mentioned fact that the constant factbend 2 in (6.4) are the best possible ones.

Proof. Let f(z) := cot(nz/2) andg(z) := (1 — 2?)/z for x € (0, 1), so thatf/g = r. Let

_ [0 _ A
7@~ gila)

ri(z) = p(z)

wheref(z) := 7sin ?*(7z/2) andg, (z) := 2+ 2272,z € (0,1). Consider also

P _ 5 T fi(x) 2 cost
pP=q —, pP1:=0]{ and p1lx) = = — - )
g P TR 7 R EIY
wherez € (0,1) andt := mz/2, so thatp; \, on (0, 1), by Propositiori 6J6. Alsog; (0+) =
z—2 <0andp (1—) = 7 > 0. Hence, by Corollary 3|2 (Table 3.1, line 3),\, / on (0, 1);
that is,p .,/ on (0,1). Next, 5(0+) = 0. Therefore, by Propositign 4.4 (Taljle }4.2, line 7),
r/on(0,1). O

This proof of Proposition 6|8 provides a good illustration of the monotonicity rules developed
in Section$ B andl 4.

6.5. Amonotonicity property of right-angled triangles in hyperbolic geometry. The Pythago-

ras theorem for the Poincaré model of hyperbolic geometry (see e.g. [7, Theorem 7.11.1]) states
that for any right-angled (geodesic) triangle with a hypotenuse (of geodesic leragtticatheti

a andb one has

cosh ¢ = cosh a coshb.

Proposition 6.9. For the isosceles (with = b) right-angled hyperbolic triangle, the ratio/a
increases from/2 to 2 asa increases fronf) to co.

Proof. Fora > 0, let f(a) := arccosh(cosh® @) andg(a) := a, S0 that

f_f(a)_,ra " :f’(a): 2cosha
a gla) (@) andhence p(a) g(@) /14 cosh’a

Therefore,p(a) increases from/2 to 2 asa increases frond to co. The same holds far(a),
by the special-case rule for monotonicity (Proposifion 4.1) and I'Hospital’s rules for limiis.
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