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ABSTRACT. In this paper, by the Chebyshev-type inequalities we define three mappings, inves-

tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain some
applications.
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1. INTRODUCTION

Let n(> 2) be a given positive integedd = (aj,as,...,a,) andB = (
known as sequences of real numbers. Alsoplet- 0 andg; > 0 (i = 1
prtpet--4pandQ; =g+ q+---+q (G =1,2,...,n).

If A andB are both increasing or both decreasing, then

If one of the sequences$ or B is increasing and the other decreasing, then the inequality (1.1)
is reversed.

The inequality[(1.]1) is called the Chebyshev’s inequality, seel[1, 2].
For A and B both increasing or both decreasing, Behdzet'in [3] extended inequality (1.1) to

bl,b ...,by) be
2,...,n), P; =

Y
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(1-2) (sz‘az) <Z Qibz’) + (Z %%) (sz‘bz) < PnZQiaibi + @y Zpiaibi~
i=1 i=1 i=1 i=1 i=1 i=1

If one of the sequence$ or B is increasing and the other decreasing, then the inequality (1.2)
is reversed.
Forp, = ¢, i =1,2,...,n, the inequality[(1.2) reduces to

(1.3) (imw) (i:pibi> < Pnzn:piaibia
=1 =1 =1

where, A and B are both increasing or both decreasing. If one of the sequeta®sB is
increasing and the other decreasing, then the inequiality (1.3) is reversed.

Let r,s : [a,b] — R be integrable functions, either both increasing or both decreasing.
Furthermore, lep, g : [a, b] — [0, +00) be the integrable functions. Then

b b b b
(1.4) /p(t)r(t)dt/ q(t)s(t)dt+/ q(t)r(t)dt/ p(t)s(t)dt
< / p(t)dt / o) (t)s(t)dt + / o(t)dt / p(t)r()s(t)dt.

If one of the functions- or s is increasing and the other decreasing, then the inequality (1.4) is
reversed.
Whenp(t) = ¢(t), t € [a,b], the inequality[(14) reduces to

(15) / p(t)r(t)dt / p(t)s(t)dt < / p(t)dt / p(t)r(t)s(t)dt,

wherer ands are both increasing or both decreasing. If one of the functias; is increasing
and the other decreasing, then the inequdlity| (1.5) is reversed.

Inequalities[(I.4) and (1.5) are the integral forms of inequalifies (1.2)[and (1.3), respectively
(seel1l2]).

The results from other inequalities connected with](1.1) tg (1.5) can be seen in [1])[3] — [8]
and [2, pp. 61-65]. _

We define three mappingsC andC by ¢ : N, xN, —R,

k k
(1.6) c(k,n;pi,q;) = Py Z giaib; + Qp Zpiaibi
i=1 i=1

A (o) () ()

n

Z qia; = Z pibi = Z pia; = Z qibi =0

i=n-+1 1=n+1 i=n+1 i=n-+1

wherek =1,2,...,n,and

is assumed.
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ForC : [a,b] — R,

1.7) C(z;p,q;r,8) = /xp(t)dt ’ q(t)r(t)s(t)dt + /w q(t)ydt | p(t)r(t)s(t)dt

—~~
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We write
1
(1.9) ci(k,nipi) = §C(kanspi,pi>
k n n k n
= P Zpiaibi + ( Z Pz’%’) (Zpibi> + (ZPz‘%) ( Z pibi> )
i=1 i=k+1 i=1 i=1 i=k+1

(1.10) co(k,n) = (k: n;1)

(£ () () (£9)

1
(1.11) Co(z;p;r,s) = 50(56'29 p;T,S)

_ / Pt / Bt + / " oty (e)dt / " p()s(0)dt

; / plt)r(t)dt / p(t)s(t)dt
and

~ 1~
(1.12) Coly;p;r,s) = §C(y'p p;T,S)

/ dt/ dt+/y ()T(t)dt/abp(t)s(t)dt

+/y p(t)r ()dt/ay (1)s(t)dt.

(1.10), (1.6),[(T.p)[(1]7) anf (1.8), (1]11) apd (1.12) are generated by the ineqyaliiies (1.1) to
(1.5), respectively.

The aim of this paper is to study the monotonicity properties of andC, and obtain some
refinements of (1]1) tg (1.5) using these monotonicity properties. Some applications are given.
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2. MAIN RESULTS

The monotonicity properties of the mappiag:; andc, are embodied in the following theo-
rem.

Theorem 2.1.Letc, ¢; andc, be defined as in the first section.Afand B are both increasing
or both decreasing, then we have the following refinemenis af (I.2), (1.3) ahd (1.1)

(2.1) (sz‘az) (Z Qibi> + (Z Qiai> (ZP@)
i=1 i=1 i=1 i=1
=c(L,n;pi,qi) < - < clk,nspiyqi) < elk+1,n5p;,q:) <

< c(n,n;pi i) = Po Zqzazb +Qn2pzaz i

(2.2) <Zpiai> (sz ) =ca(linp) <o < ek, nspi)
=1

<cak+1,np) < <ci(n,np)

and

(2.3) (Z al-) (Z bz-) =c(l,n) < - < ea(k,n)

respectively. If one of the sequencé®r B is increasing and the other decreasing, then in-
equalities in[(2.]1)+(2]3) are reversed.

The monotonicity properties of the mappingsandC), are given in the following theorem.

Theorem 2.2. LetC' and C, be defined as in the first section.rlind s are both increasing or
both decreasing, the@'(z; p, ¢;r, s) and Cy(x; p;r, s) are increasing onfa, b] with z, and for
z € [a, b] we have the following refinements [of {1.4) and](1.5)

(2.4) /p(t)r(t)dt/ q(t)s(t)dt+/ q(t)r(t)dt/ p(t)s(t)dt

—CCLp,q,T’S <C(l’ panrS <Cbp7QﬂT8)
/ dt/ dt+/ dt/
and

b b
(2.5) / p(t)r(t)dt / p(t)s(t)dt = Cola: pi . )

< Colz;pyrys) < Co(byp;rys)
/ dt/ :
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respectively. If one of the functionsr s is increasing and the other decreasing, théfx:; p, ¢; r, s)
andCy(z; p; r, s) are decreasing ofu, b] with z, and inequalities in (2]4) andl (3.5) are reversed.

The monotonicity properties of and@vo are given in the following theorem.

Theorem 2.3.LetC agd@vo be defined as in the first section.rland s are both increasing or
both decreasing, the@'(y; p, ¢; r, s) and Cy(y; p; r, s) are decreasing offu, b] with y, and for
y € [a, b] we have the following refinements [of {1.4) gnd](1.5)

(2.6) /p(t)r(t)dt/ q(t)s(t)dt+/ q(t)r(t)dt/ p(t)s(t)dt

= C(b;p,q;m,8) < Cly;p,q;m,8) < Clagp, g;r, 8)
/ Pt / Pt + / £t /
and
b b . - .
(2.7) / p(t)r(t)dt/ p(t)s(t)dt = Co(b; p;r,s) < Coly;p; 7, 5) < Cola; s, )

b b
= [ pivit [ soros(orat,

respectively. If one of the functionsr s is increasing and the other decreasing, thfé@; D, q;T,S)
and Cy(y; p; r, s) are increasing orja, b] with y, and the inequalities i.6) an.7) are re-
versed.

3. PROOF OF THEOREMS
Proof of Theorem 2]1Fork = 2,3, ..., n, we have
3.1  clk,nipiai) — c(k = 1,n;pi, q:)

k—1 k-1
= (Py—1 + pr) <Z gia;b; + Qkakbk> + (Qr—1 + qr) (Z Dia;b; +pkakbk)

i=1 i=1

k—1 k—1
Py_y Z qiazb; + Q1 Zpiaibi + Z Dia; Z qibi
i ] i=k+1
(pkak + szaz> Z le - <pkak + Z pzaz> Z% i
i=k+1 i=k+1
- szaz <kak + Z i 1) + Z qicuZp@-bi
i=k+1 i=k+1 i=1
<Qkak + Z%m) Z pibi — (Qkak + Z qwu) sz
i=k+1 i=k+1
- Z%az <pkbk + Z Di z>
i=k+1

_ k—1 k-1
= [pk Z ¢ia;b; + pragby, Z q; — Pray Z qibi — piby Z Qiai]
i=1 i=1 i=1 i=1
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k-1 k-1 k-1 k-1
+ gk Y piibi + qrarbe Y pi — quak Y pibi — qrbe Y pic
i=1 i=1 =1 i=1

k—1 k—1
=k Y g (ar — a;) (be = bs) + i Y pi(ax — @) (b = by) .
im1 i=1

If A andB are both increasing or both decreasing, then
(3.2) (ak—ai><bk—bi) >0, (i=12... k1)
Using (1.6),[(3.1.) and (3} 2), we obtajn (2.1).
If one of the sequence$ or B is increasing and the other decreasing, therj (3.2) is reversed,
which implies that the inequalities ip (2.1) are reversed.

Fori = 1,2,...,n, replacingg; in (2.1) with p; and replacing; in (2.2) with 1, we obtain
(2.2) and|[(2.B), respectively. This completes the proof of Theprem 2.1. O

Proof of Theorem 2|2For anyz,, x5 € [a,b], 71 < 2, We Write

h= [ aar [ arwsoins [ oo [ porsoar

T T

_ / (bt / P s(t)dt — / Y et /  o)s(t)dt.

Fort € [a, z1], u € [21, 22, Using the properties of double integrals, we get
I, = //[ . ]p(t)q(u) <r<t) - r(u)) (s(t) - 3(u)>dtdu

_ / " p(tydt / " ar(t)s(t)dt + / plt)r(t)s(t)dt / §(t)dt
)

_ / ()t / f2q(t)s(t)dt— / e s(:;dt / fzq(t)r(t)dt

I = / /[ e p(w)q(t) (r(t) - T(u)) (s(t) - s(u))dtdu
= [ awar [ sty ”d”/a A (®)s(t)d / p(t)d
_ /:lq(t)r(t)dt / H(B)s(E)dt - / " / () ()t

Whenz, = a, from (1.7), we get
(3.3) Claa;p,q;r,s) — Clz;p, 47, )
_ / ()t / o) (1)s(t)dt + / T (t)dt / () (#)s(8)dt

— /ZQ p(t)r(t)dt " q(t)s(t)dt — /552 q(t)r(t)dt p(t)s(t)dt

and

xr1
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Whenz, > a, from (1.7), we have
(3.4)  Clzaip,gr,s) — Claip,qir,s)

" V st [ oot [ aortron o

) /jlq(t)r(t) " /x p(t)s(t)dt — / q(t)s(t)dt / jap(t)r(t)dt}
=L+ L+

(1) If » ands are both increasing or both decreasing, then we have

(3.5) (r(t) = r(w) (s)) = s(w)) = 0,
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i.e.,I, > 0andl; > 0. By the inequality[(1}4)/; > 0 holds . Using[(3.8) and (3.4), we obtain
thatC(z; p, ¢; , s) is increasing offa, b] with . Further, from|(1.1]1), we get thék, (z; p; r, s)
is increasing ofja, b] with x.

From [1.7) and (1.11), using the increasing propertigs(af; p, ¢; r, s) andCo (z; p; r, s), we
obtain [2.4) and (2]5), respectively.
(2) If one of the functions or s is increasing and the other decreasing, then the inequality in
(3.9) is reversed, which implies that < 0 and; < 0. By the reverse of (1}4);; < 0 holds.
From 3.3) and (3]4)[ (1.11), we obtain thatz; p, g; , s), Co(x; p; 1, s) are decreasing da, b]
with x, respectively.

From (1.7) and (1.11), using the decreasing properti€¥of p, ¢; r, s) andCy (z; p; r, s), we
obtain the reverse of (4.4) ar{d (R.5), respectively.

This completes the proof of Theorgm|2.2. O
Proof of Theorem 2|3Using the same arguments as those in the proof of Thelorgm 2.2, we can
prove Theorem 2]3. O

4. APPLICATIONS

Let I be a real interval and,v,w : I — [0,400). For anya,s € R and anyz; € I
(t=1,2,...,n,n > 2)satisfyingr; < xy < --- < x,, we define

K(k,n) = Z v(zw® () > ula)w ™ (z;)

+ Zv(xl)wa(xl) Z u(xi)w_a(xz) + Z U(xz)w_ﬁ(xi) u(xl)wﬁ(zz)
£ 0w Y (),

i=k+1 =1
k n
) vl () Y ula)w(x),
i=1 i=k+1
where,k =1,2,...,n,
Z w(z;)w’ (z;) = Z v(x;)w*(z;) =0,
i=n-+1 i=n+1
Z u(z)w *(x;) = Z v(z)w " (z;) =0
1=n+1 i=n+1
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Proposition 4.1. Letw andu /v be both increasing or both decreasingalf> 3, then we have

n

4.2) Zv(a:z)wa(xl)Zu(xl) +Z v(x)w " (z; Zu(:vl)wﬁ(xz)

i:K(l,n) < ..ZlK(k n) < K(k + 1 n) < - < K(n1 n)
:iv(xi)wﬂ(xi)i z)w P () +Z (@) w () y u(@;)w® (2;)
and h B h
(4.2) Zn:v (z)w () S ulz)w’ (z;)
:1 L(1,n) < ;L(k; n) < L(k+1,n) <--- < L(n,n)
:anv D’ (z; Zlu(xi)w ().

If « < 3, then the inequalities in (4.1) and (4.2) are reversed.

Proof. Replacing;, ¢;, a; andb; in (2.1) (or the reverse of (3.1)) with(z;)w” (z;), v(z;)w=(;),
w A (x;) andu(z;)/v(x;), respectively, we obtaif (4.1) (or the reverse{of|(4.1)). Replaging
a; andb; in (2.9) (or the reverse of (2.2)) with(z;)w”(z,), w*?(x;) andu(z;) /v(x;), respec-
tively, we obtain[(4.R) (or the reverse of (B.2)).

This completes the proof of Proposition4.1. O

Remark 1. (4.7) and|[(4.R) are generated by Proposition Lin [4].

Let f : [a,b] — R be a continuous convex function wifff (a) (= f’ (a) is assumed) and
fL0), {f(x)|x € [a,b]} = [d,e]. Also, leth : [d,e] — (0,+00) be an integrable function, and
g : |d, e] — R be a strict monotonic function. We define
-1

4.3)  Elgfh)=g" [(/abh(f(t))f’_(t)dt)

(4.4) M(g; f,h) =g [(/abh(f(t))dt)

b
/ h(f(t))g(f(t))f’_(t)dt],

-1

b
/ h(f(t))g(f(t))dt] ,

45) Riigif.h) =g [( [ nopar [ bh(f(t)>f’_(t)dt>_1 Colw:h():a(1), f’_)]

and

(4.6) R(y;g;f,h) =g [(/abh(f(t))dt/abh(f(t))f'_(t)dt>

-1
Co (y;w);g(f),f'_)] .
Proposition 4.2. If f is monotone, Then we have
(1) R(z;g; f, h) is increasing orja, b] with z. For x € [a, b] we have
(4.7) M(g; f,h) = R(a; g; f,h) < R(w; g5 f,h) < R(b;g; [, h) = E(g; f, h).
(2) R(y; g; f, h) is decreasing offu, b] with 7. For y € [a, b] we have
(4.8)  M(g; f,h) = R(b;g; f,h) < R(y; g; f,h) < R(a; g; f,h) = E(g; f, h).
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Proof. From the convexity off, we get thatf’ (¢) is increasing orja, b and the integrals in

E(g; f,h), R(x;q; f,h) andf%(y;g; f,h) are valid (see [5]). Fromi(z) > 0, x € [d,e], we
have

(4.9) / B ()t > 0.

From the convexity off, whenf(a) < f(b) or f(a) > f(b), Wang in [5] proved that

(4.10) / h(f(t))fL(t)dt >0
or

b
(4.11) / h(f(t))f.(t)dt <O.

(1) Let us first assume thatis a strictly increasing function.
Case 1 From the increasing properties $f we havef(a) < f(b). Further,|(4.10) holds. To
prove thatR(z; g; f, h) is increasing, from] (4]5)[ (4.9) a 10), we only need to prove that

(412)  Colw:h(f):g(f). 1) = ( / o / bh(f(t))f’_(t)dt) g(Rlwig: 1))

is increasing offa, b] with x.
Indeed, since is increasing ona, b], we have thay(f( ))is increasing ofja, b]. By Theorem
2.2, CO(:z; h(f); g(f), ") is monotonically increasing with € [a, b].

Forz € [a, 0], from (4.3), (4.4),[(45)] (4]9) anfl (4]10), thén (4. 7) is equivalent to

(4.13) / B(F(£)g (D) dt / B(F () (t)dt
= Cola; h(f); g(f), fL) < Cola; h(f); g(f), [1) < Colby h(f); 9(f), f1)

b b
:/ h(f(t))dt/ h(f()g(f()f-(t)dt.

Replacingp(t), r(t) ands(t) in (2.5) withh(f(t)), g(f(t)) and f’ (t), respectively, we obtain
@13

Case 2 If f is decreasing ofu, b], then we havef(a) > f(b), i.e. (4.1]) holds. To prove that
R(z; g; f, h) is increasing, from (4|5)[ (4.9) and (4]11), we only need to provedhat; h(f);
g(f), f") (see[(4.1R)) is decreasing an b] with z.

Indeed, sincef is decreasing of, b], theng(f(t)) is decreasing oifu, b]. By Theorenj 2.2,
Co(z; h(f); g(f), f.) is decreasing with: € [a, b].

Forz € [a,b], from (4.3), (4.4),[(45)[(4]9) andl (4]11), th¢n (4.7) is equivalent to the reverse
of (4.13). Replacing(t), r(t) ands(t) in the reverse of (2|5) with(f(t)), g(f(t)) and f’ (t),
respectively, we obtain the reverse[of (4.13).

The second case:is a strictly decreasing function. Using the same argumentgdsra strictly
increasing function, we can also prove (1).

(2) Using the same arguments as those for (1), (2.6) (2.7), we can prokéihat f, h)
is decreasing ofu, b] with =, and [4.8) holds.
This completes the proof of Propositipn}4.2. O

Remark 2. (4.7)—[4.8) can be generated ) in [6] or Proposition 8.1 in[[5].
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