journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756

Volume 9 (2008), Issue 4, Article 113, 11 pp.

THREE MAPPINGS RELATED TO CHEBYSHEV-TYPE INEQUALITIES

LIANG-CHENG WANG, LI-HONG LIU, AND XIU-FEN MA

School of Mathematics Science
Chongqing Institute of Technology
No.4 of Xingsheng Lu
YangjiaPing 400050
Chongqing City, The People's Republic of China.
wlc@cqit.edu.cn

CHONGQING INSTITUTE OF TECHNOLOGY THE PEOPLE'S REPUBLIC OF CHINA. 11h-19831017@cqit.edu.cn

maxiufen86@cqit.edu.cn

Received 22 May, 2008; accepted 15 October, 2008 Communicated by F. Qi

ABSTRACT. In this paper, by the Chebyshev-type inequalities we define three mappings, investigate their main properties, give some refinements for Chebyshev-type inequalities, obtain some applications.

Key words and phrases: Chebyshev-type inequality, Monotonicity, Refinement.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

Let $n(\geq 2)$ be a given positive integer, $A=(a_1,a_2,\ldots,a_n)$ and $B=(b_1,b_2,\ldots,b_n)$ be known as sequences of real numbers. Also, let $p_i>0$ and $q_i>0$ $(i=1,2,\ldots,n)$, $P_j=p_1+p_2+\cdots+p_j$ and $Q_j=q_1+q_2+\cdots+q_j$ $(j=1,2,\ldots,n)$.

If A and B are both increasing or both decreasing, then

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right) \le n \sum_{i=1}^{n} a_i b_i.$$

If one of the sequences A or B is increasing and the other decreasing, then the inequality (1.1) is reversed.

The inequality (1.1) is called the Chebyshev's inequality, see [1, 2].

For A and B both increasing or both decreasing, Behdzet in [3] extended inequality (1.1) to

The first author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94. 157-08

$$(1.2) \quad \left(\sum_{i=1}^{n} p_{i} a_{i}\right) \left(\sum_{i=1}^{n} q_{i} b_{i}\right) + \left(\sum_{i=1}^{n} q_{i} a_{i}\right) \left(\sum_{i=1}^{n} p_{i} b_{i}\right) \leq P_{n} \sum_{i=1}^{n} q_{i} a_{i} b_{i} + Q_{n} \sum_{i=1}^{n} p_{i} a_{i} b_{i}.$$

If one of the sequences A or B is increasing and the other decreasing, then the inequality (1.2) is reversed.

For $p_i = q_i$, i = 1, 2, ..., n, the inequality (1.2) reduces to

$$\left(\sum_{i=1}^{n} p_i a_i\right) \left(\sum_{i=1}^{n} p_i b_i\right) \le P_n \sum_{i=1}^{n} p_i a_i b_i,$$

where, A and B are both increasing or both decreasing. If one of the sequences A or B is increasing and the other decreasing, then the inequality (1.3) is reversed.

Let $r, s: [a, b] \to \mathbb{R}$ be integrable functions, either both increasing or both decreasing. Furthermore, let $p, q: [a, b] \to [0, +\infty)$ be the integrable functions. Then

$$(1.4) \quad \int_a^b p(t)r(t)dt \int_a^b q(t)s(t)dt + \int_a^b q(t)r(t)dt \int_a^b p(t)s(t)dt \\ \leq \int_a^b p(t)dt \int_a^b q(t)r(t)s(t)dt + \int_a^b q(t)dt \int_a^b p(t)r(t)s(t)dt.$$

If one of the functions r or s is increasing and the other decreasing, then the inequality (1.4) is reversed.

When p(t) = q(t), $t \in [a, b]$, the inequality (1.4) reduces to

(1.5)
$$\int_a^b p(t)r(t)dt \int_a^b p(t)s(t)dt \le \int_a^b p(t)dt \int_a^b p(t)r(t)s(t)dt,$$

where r and s are both increasing or both decreasing. If one of the functions r or s is increasing and the other decreasing, then the inequality (1.5) is reversed.

Inequalities (1.4) and (1.5) are the integral forms of inequalities (1.2) and (1.3), respectively (see [1, 2]).

The results from other inequalities connected with (1.1) to (1.5) can be seen in [1], [3] - [8] and [2, pp. 61-65].

We define three mappings c, C and \widetilde{C} by $c: \mathbb{N}_+ \times \mathbb{N}_+ \to \mathbb{R}$,

$$(1.6) c(k, n; p_i, q_i) = P_k \sum_{i=1}^k q_i a_i b_i + Q_k \sum_{i=1}^k p_i a_i b_i$$

$$+ \left(\sum_{i=k+1}^n p_i a_i\right) \left(\sum_{i=1}^n q_i b_i\right) + \left(\sum_{i=1}^k p_i a_i\right) \left(\sum_{i=k+1}^n q_i b_i\right)$$

$$+ \left(\sum_{i=k+1}^n q_i a_i\right) \left(\sum_{i=1}^n p_i b_i\right) + \left(\sum_{i=1}^k q_i a_i\right) \left(\sum_{i=k+1}^n p_i b_i\right),$$

where k = 1, 2, ..., n, and

$$\sum_{i=n+1}^{n} q_i a_i = \sum_{i=n+1}^{n} p_i b_i = \sum_{i=n+1}^{n} p_i a_i = \sum_{i=n+1}^{n} q_i b_i = 0$$

is assumed.

For $C: [a, b] \to \mathbb{R}$,

(1.7)
$$C(x; p, q; r, s) = \int_{a}^{x} p(t)dt \int_{a}^{x} q(t)r(t)s(t)dt + \int_{a}^{x} q(t)dt \int_{a}^{x} p(t)r(t)s(t)dt + \int_{x}^{b} p(t)r(t)dt \int_{a}^{b} q(t)s(t)dt + \int_{a}^{x} p(t)r(t)dt \int_{x}^{b} q(t)s(t)dt + \int_{x}^{b} q(t)r(t)dt \int_{x}^{b} p(t)s(t)dt + \int_{x}^{b} q(t)r(t)dt + \int_{$$

and for $\widetilde{C}:[a,b]\to\mathbb{R}$,

$$(1.8) \quad \widetilde{C}(y; p, q; r, s) = \int_{y}^{b} p(t)dt \int_{y}^{b} q(t)r(t)s(t)dt + \int_{y}^{b} q(t)dt \int_{y}^{b} p(t)r(t)s(t)dt + \int_{a}^{b} p(t)r(t)dt \int_{a}^{b} q(t)s(t)dt + \int_{y}^{b} p(t)r(t)dt \int_{a}^{y} q(t)s(t)dt + \int_{y}^{y} q(t)r(t)dt \int_{a}^{y} p(t)r(t)dt \int_{a}^{y} p(t)r(t)dt + \int_{y}^{b} q(t)r(t)dt \int_{a}^{y} p(t)s(t)dt.$$

We write

(1.9)
$$c_1(k, n; p_i) = \frac{1}{2}c(k, n; p_i, p_i)$$

$$= P_k \sum_{i=1}^k p_i a_i b_i + \left(\sum_{i=k+1}^n p_i a_i\right) \left(\sum_{i=1}^n p_i b_i\right) + \left(\sum_{i=1}^k p_i a_i\right) \left(\sum_{i=k+1}^n p_i b_i\right),$$

(1.10)
$$c_2(k,n) = c_1(k,n;1)$$

$$= k \sum_{i=1}^k a_i b_i + \left(\sum_{i=k+1}^n a_i\right) \left(\sum_{i=1}^n b_i\right) + \left(\sum_{i=1}^k a_i\right) \left(\sum_{i=k+1}^n b_i\right),$$

(1.11)
$$C_0(x; p; r, s) = \frac{1}{2}C(x; p, p; r, s)$$

$$= \int_a^x p(t)dt \int_a^x p(t)r(t)s(t)dt + \int_x^b p(t)r(t)dt \int_a^b p(t)s(t)dt$$

$$+ \int_a^x p(t)r(t)dt \int_x^b p(t)s(t)dt$$

and

(1.12)
$$\widetilde{C}_{0}(y;p;r,s) = \frac{1}{2}\widetilde{C}(y;p,p;r,s)$$

$$= \int_{y}^{b} p(t)dt \int_{y}^{b} p(t)r(t)s(t)dt + \int_{a}^{y} p(t)r(t)dt \int_{a}^{b} p(t)s(t)dt + \int_{y}^{b} p(t)r(t)dt \int_{a}^{y} p(t)s(t)dt.$$

(1.10), (1.6), (1.9), (1.7) and (1.8), (1.11) and (1.12) are generated by the inequalities (1.1) to (1.5), respectively.

The aim of this paper is to study the monotonicity properties of c, C and \widetilde{C} , and obtain some refinements of (1.1) to (1.5) using these monotonicity properties. Some applications are given.

2. MAIN RESULTS

The monotonicity properties of the mapping c, c_1 and c_2 are embodied in the following theorem.

Theorem 2.1. Let c, c_1 and c_2 be defined as in the first section. If A and B are both increasing or both decreasing, then we have the following refinements of (1.2), (1.3) and (1.1)

(2.1)
$$\left(\sum_{i=1}^{n} p_{i} a_{i}\right) \left(\sum_{i=1}^{n} q_{i} b_{i}\right) + \left(\sum_{i=1}^{n} q_{i} a_{i}\right) \left(\sum_{i=1}^{n} p_{i} b_{i}\right)$$

$$= c(1, n; p_{i}, q_{i}) \leq \cdots \leq c(k, n; p_{i}, q_{i}) \leq c(k+1, n; p_{i}, q_{i}) \leq \cdots$$

$$\leq c(n, n; p_{i}, q_{i}) = P_{n} \sum_{i=1}^{n} q_{i} a_{i} b_{i} + Q_{n} \sum_{i=1}^{n} p_{i} a_{i} b_{i},$$

(2.2)
$$\left(\sum_{i=1}^{n} p_{i} a_{i}\right) \left(\sum_{i=1}^{n} p_{i} b_{i}\right) = c_{1}(1, n; p_{i}) \leq \dots \leq c_{1}(k, n; p_{i})$$
$$\leq c_{1}(k+1, n; p_{i}) \leq \dots \leq c_{1}(n, n; p_{i})$$
$$= P_{n} \sum_{i=1}^{n} p_{i} a_{i} b_{i}$$

and

(2.3)
$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right) = c_2(1,n) \le \dots \le c_2(k,n)$$
$$\le c_2(k+1,n) \le \dots \le c_2(n,n)$$
$$= n \sum_{i=1}^{n} a_i b_i,$$

respectively. If one of the sequences A or B is increasing and the other decreasing, then inequalities in (2.1)–(2.3) are reversed.

The monotonicity properties of the mappings C and C_0 are given in the following theorem.

Theorem 2.2. Let C and C_0 be defined as in the first section. If r and s are both increasing or both decreasing, then C(x; p, q; r, s) and $C_0(x; p; r, s)$ are increasing on [a, b] with x, and for $x \in [a, b]$ we have the following refinements of (1.4) and (1.5)

(2.4)
$$\int_{a}^{b} p(t)r(t)dt \int_{a}^{b} q(t)s(t)dt + \int_{a}^{b} q(t)r(t)dt \int_{a}^{b} p(t)s(t)dt$$

$$= C(a; p, q; r, s) \leq C(x; p, q; r, s) \leq C(b; p, q; r, s)$$

$$= \int_{a}^{b} p(t)dt \int_{a}^{b} q(t)r(t)s(t)dt + \int_{a}^{b} q(t)dt \int_{a}^{b} p(t)r(t)s(t)dt$$

and

(2.5)
$$\int_{a}^{b} p(t)r(t)dt \int_{a}^{b} p(t)s(t)dt = C_{0}(a; p; r, s)$$

$$\leq C_{0}(x; p; r, s) \leq C_{0}(b; p; r, s)$$

$$= \int_{a}^{b} p(t)dt \int_{a}^{b} p(t)r(t)s(t)dt,$$

respectively. If one of the functions r or s is increasing and the other decreasing, then C(x; p, q; r, s) and $C_0(x; p; r, s)$ are decreasing on [a, b] with x, and inequalities in (2.4) and (2.5) are reversed.

The monotonicity properties of \widetilde{C} and $\widetilde{C_0}$ are given in the following theorem.

Theorem 2.3. Let \widetilde{C} and $\widetilde{C_0}$ be defined as in the first section. If r and s are both increasing or both decreasing, then $\widetilde{C}(y;p,q;r,s)$ and $\widetilde{C}_0(y;p;r,s)$ are decreasing on [a,b] with y, and for $y \in [a,b]$ we have the following refinements of (1.4) and (1.5)

(2.6)
$$\int_{a}^{b} p(t)r(t)dt \int_{a}^{b} q(t)s(t)dt + \int_{a}^{b} q(t)r(t)dt \int_{a}^{b} p(t)s(t)dt$$
$$= \widetilde{C}(b; p, q; r, s) \leq \widetilde{C}(y; p, q; r, s) \leq \widetilde{C}(a; p, q; r, s)$$
$$= \int_{a}^{b} p(t)dt \int_{a}^{b} q(t)r(t)s(t)dt + \int_{a}^{b} q(t)dt \int_{a}^{b} p(t)r(t)s(t)dt$$

and

(2.7)
$$\int_{a}^{b} p(t)r(t)dt \int_{a}^{b} p(t)s(t)dt = \widetilde{C}_{0}(b;p;r,s) \leq \widetilde{C}_{0}(y;p;r,s) \leq \widetilde{C}_{0}(a;p;r,s)$$
$$= \int_{a}^{b} p(t)dt \int_{a}^{b} p(t)r(t)s(t)dt,$$

respectively. If one of the functions r or s is increasing and the other decreasing, then $\widetilde{C}(y;p,q;r,s)$ and $\widetilde{C}_0(y;p;r,s)$ are increasing on [a,b] with y, and the inequalities in (2.6) and (2.7) are reversed.

3. Proof of Theorems

Proof of Theorem 2.1. For k = 2, 3, ..., n, we have

$$(3.1) c(k, n; p_i, q_i) - c(k - 1, n; p_i, q_i)$$

$$= (P_{k-1} + p_k) \left(\sum_{i=1}^{k-1} q_i a_i b_i + q_k a_k b_k \right) + (Q_{k-1} + q_k) \left(\sum_{i=1}^{k-1} p_i a_i b_i + p_k a_k b_k \right)$$

$$- \left[P_{k-1} \sum_{i=1}^{k-1} q_i a_i b_i + Q_{k-1} \sum_{i=1}^{k-1} p_i a_i b_i \right] + \sum_{i=k+1}^{n} p_i a_i \sum_{i=1}^{n} q_i b_i$$

$$+ \left(p_k a_k + \sum_{i=1}^{k-1} p_i a_i \right) \sum_{i=k+1}^{n} q_i b_i - \left(p_k a_k + \sum_{i=k+1}^{n} p_i a_i \right) \sum_{i=1}^{n} q_i b_i$$

$$- \sum_{i=1}^{k-1} p_i a_i \left(q_k b_k + \sum_{i=k+1}^{n} q_i b_i \right) + \sum_{i=k+1}^{n} q_i a_i \sum_{i=1}^{n} p_i b_i$$

$$+ \left(q_k a_k + \sum_{i=1}^{k-1} q_i a_i \right) \sum_{i=k+1}^{n} p_i b_i - \left(q_k a_k + \sum_{i=k+1}^{n} q_i a_i \right) \sum_{i=1}^{n} p_i b_i$$

$$- \sum_{i=1}^{k-1} q_i a_i \left(p_k b_k + \sum_{i=k+1}^{n} p_i b_i \right)$$

$$= \left[p_k \sum_{i=1}^{k-1} q_i a_i b_i + p_k a_k b_k \sum_{i=k+1}^{k-1} q_i - p_k a_k \sum_{i=1}^{k-1} q_i b_i - p_k b_k \sum_{i=1}^{k-1} q_i a_i \right]$$

$$+ \left[q_k \sum_{i=1}^{k-1} p_i a_i b_i + q_k a_k b_k \sum_{i=1}^{k-1} p_i - q_k a_k \sum_{i=1}^{k-1} p_i b_i - q_k b_k \sum_{i=1}^{k-1} p_i a_i \right]$$

$$= p_k \sum_{i=1}^{k-1} q_i \left(a_k - a_i \right) \left(b_k - b_i \right) + q_k \sum_{i=1}^{k-1} p_i \left(a_k - a_i \right) \left(b_k - b_i \right).$$

If A and B are both increasing or both decreasing, then

(3.2)
$$(a_k - a_i)(b_k - b_i) \ge 0, \quad (i = 1, 2, \dots, k - 1).$$

Using (1.6), (3.1) and (3.2), we obtain (2.1).

If one of the sequences A or B is increasing and the other decreasing, then (3.2) is reversed, which implies that the inequalities in (2.1) are reversed.

For i = 1, 2, ..., n, replacing q_i in (2.1) with p_i and replacing p_i in (2.2) with 1, we obtain (2.2) and (2.3), respectively. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. For any $x_1, x_2 \in [a, b], x_1 < x_2$, we write

$$I_{1} = \int_{x_{1}}^{x_{2}} p(t)dt \int_{x_{1}}^{x_{2}} q(t)r(t)s(t)dt + \int_{x_{1}}^{x_{2}} q(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)s(t)dt - \int_{x_{1}}^{x_{2}} q(t)r(t)dt \int_{x_{1}}^{x_{2}} q(t)r(t)dt - \int_{x_{1}}^{x_{2}} q(t)r(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)dt - \int_{x_{1}}^{x_{2}} q(t)r(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)dt - \int_{x_{1}}^{x_{2}} q(t)r(t)dt -$$

For $t \in [a, x_1]$, $u \in [x_1, x_2]$, using the properties of double integrals, we get

$$I_{2} = \iint_{[a,x_{1}]\times[x_{1},x_{2}]} p(t)q(u)\Big(r(t) - r(u)\Big)\Big(s(t) - s(u)\Big)dtdu$$

$$= \int_{a}^{x_{1}} p(t)dt \int_{x_{1}}^{x_{2}} q(t)r(t)s(t)dt + \int_{a}^{x_{1}} p(t)r(t)s(t)dt \int_{x_{1}}^{x_{2}} q(t)dt$$

$$- \int_{a}^{x_{1}} p(t)r(t)dt \int_{x_{1}}^{x_{2}} q(t)s(t)dt - \int_{a}^{x_{1}} p(t)s(t)dt \int_{x_{1}}^{x_{2}} q(t)r(t)dt$$

and

$$I_{3} = \iint_{[a,x_{1}]\times[x_{1},x_{2}]} p(u)q(t)\Big(r(t)-r(u)\Big)\Big(s(t)-s(u)\Big)dtdu$$

$$= \int_{a}^{x_{1}} q(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)s(t)dt + \int_{a}^{x_{1}} q(t)r(t)s(t)dt \int_{x_{1}}^{x_{2}} p(t)dt$$

$$- \int_{a}^{x_{1}} q(t)r(t)dt \int_{x_{1}}^{x_{2}} p(t)s(t)dt - \int_{a}^{x_{1}} q(t)s(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)dt.$$

When $x_1 = a$, from (1.7), we get

(3.3)
$$C(x_{2}; p, q; r, s) - C(x_{1}; p, q; r, s)$$

$$= \int_{x_{1}}^{x_{2}} p(t)dt \int_{x_{1}}^{x_{2}} q(t)r(t)s(t)dt + \int_{x_{1}}^{x_{2}} q(t)dt \int_{x_{1}}^{x_{2}} p(t)r(t)s(t)dt$$

$$- \int_{x_{1}}^{x_{2}} p(t)r(t)dt \int_{x_{1}}^{x_{2}} q(t)s(t)dt - \int_{x_{1}}^{x_{2}} q(t)r(t)dt \int_{x_{1}}^{x_{2}} p(t)s(t)dt$$

$$= I_{1}.$$

When $x_1 > a$, from (1.7), we have

$$\begin{aligned} &C(x_2; p, q; r, s) - C(x_1; p, q; r, s) \\ &= \left(\int_a^{x_1} + \int_{x_1}^{x_2}\right) p(t) dt \left(\int_a^{x_1} + \int_{x_1}^{x_2}\right) q(t) r(t) s(t) dt \\ &+ \left(\int_a^{x_1} + \int_{x_1}^{x_2}\right) q(t) dt \left(\int_a^{x_1} + \int_{x_1}^{x_2}\right) p(t) r(t) s(t) dt \\ &- \int_a^{x_1} p(t) dt \int_a^{x_1} q(t) r(t) s(t) dt - \int_a^{x_1} q(t) dt \int_a^{x_1} p(t) r(t) s(t) dt \\ &+ \int_{x_2}^b p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_1}^{x_2} + \int_{x_2}^b p(t) s(t) dt \\ &+ \left(\int_a^{x_1} + \int_{x_2}^{x_2}\right) p(t) r(t) dt \int_{x_2}^b q(t) s(t) dt \\ &- \left(\int_{x_1}^{x_1} + \int_{x_2}^b p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} + \int_{x_2}^b p(t) s(t) dt \right. \\ &- \int_a^{x_1} p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) s(t) dt \right. \\ &+ \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) s(t) dt \right. \\ &+ \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) s(t) dt \right. \\ &- \left(\int_{x_1}^{x_2} + \int_{x_2}^b p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) s(t) dt \right. \\ &- \left(\int_{x_1}^{x_2} + \int_{x_2}^b p(t) r(t) dt \left(\int_a^{x_1} + \int_{x_2}^{x_2} p(t) r(t) s(t) dt \right. \\ &- \int_a^{x_1} q(t) r(t) dt \left(\int_{x_1}^{x_2} + \int_{x_2}^b p(t) s(t) dt \right. \\ &- \int_{x_1}^{x_2} p(t) r(t) dt \int_{x_1}^{x_2} q(t) s(t) dt - \int_{x_1}^{x_2} q(t) r(t) s(t) dt \int_{x_1}^{x_2} q(t) r(t) dt \\ &- \int_a^{x_1} p(t) r(t) dt \int_{x_1}^{x_2} q(t) r(t) s(t) dt - \int_a^{x_1} p(t) r(t) s(t) dt \int_{x_1}^{x_2} q(t) r(t) dt \\ &- \int_a^{x_1} p(t) r(t) dt \int_{x_1}^{x_2} q(t) r(t) s(t) dt - \int_a^{x_1} p(t) r(t) s(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_1} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) s(t) dt - \int_a^{x_1} q(t) r(t) s(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_2} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) s(t) dt - \int_a^{x_1} q(t) r(t) s(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_2} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) s(t) dt - \int_a^{x_1} q(t) r(t) s(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_2} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) s(t) dt - \int_a^{x_1} q(t) r(t) s(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_2} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) s(t) dt - \int_a^{x_1} q(t) r(t) dt \int_{x_1}^{x_2} p(t) r(t) dt \\ &- \int_a^{x_2} q(t) r($$

(1) If r and s are both increasing or both decreasing, then we have

(3.5)
$$\left(r(t) - r(u)\right)\left(s(t) - s(u)\right) \ge 0,$$

i.e., $I_2 \ge 0$ and $I_3 \ge 0$. By the inequality (1.4), $I_1 \ge 0$ holds . Using (3.3) and (3.4), we obtain that C(x; p, q; r, s) is increasing on [a, b] with x. Further, from (1.11), we get that $C_0(x; p; r, s)$ is increasing on [a, b] with x.

From (1.7) and (1.11), using the increasing properties of C(x; p, q; r, s) and $C_0(x; p; r, s)$, we obtain (2.4) and (2.5), respectively.

(2) If one of the functions r or s is increasing and the other decreasing, then the inequality in (3.5) is reversed, which implies that $I_2 \le 0$ and $I_3 \le 0$. By the reverse of (1.4), $I_1 \le 0$ holds. From (3.3) and (3.4), (1.11), we obtain that C(x; p, q; r, s), $C_0(x; p; r, s)$ are decreasing on [a, b] with x, respectively.

From (1.7) and (1.11), using the decreasing properties of C(x; p, q; r, s) and $C_0(x; p; r, s)$, we obtain the reverse of (2.4) and (2.5), respectively.

This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. Using the same arguments as those in the proof of Theorem 2.2, we can prove Theorem 2.3. \Box

4. APPLICATIONS

Let **I** be a real interval and $u, v, w : \mathbf{I} \to [0, +\infty)$. For any $\alpha, \beta \in \mathbb{R}$ and any $x_i \in \mathbf{I}$ $(i = 1, 2, \dots, n, n \ge 2)$ satisfying $x_1 \le x_2 \le \dots \le x_n$, we define

$$K(k,n) = \sum_{i=1}^{k} v(x_i) w^{\beta}(x_i) \sum_{i=1}^{k} u(x_i) w^{-\beta}(x_i)$$

$$+ \sum_{i=1}^{k} v(x_i) w^{-\alpha}(x_i) \sum_{i=1}^{k} u(x_i) w^{\alpha}(x_i) + \sum_{i=k+1}^{n} v(x_i) w^{\alpha}(x_i) \sum_{i=1}^{n} u(x_i) w^{-\alpha}(x_i)$$

$$+ \sum_{i=1}^{k} v(x_i) w^{\alpha}(x_i) \sum_{i=k+1}^{n} u(x_i) w^{-\alpha}(x_i) + \sum_{i=k+1}^{n} v(x_i) w^{-\beta}(x_i) \sum_{i=1}^{n} u(x_i) w^{\beta}(x_i)$$

$$+ \sum_{i=1}^{k} v(x_i) w^{-\beta}(x_i) \sum_{i=k+1}^{n} u(x_i) w^{\beta}(x_i),$$

and

$$L(k,n) = \sum_{i=1}^{k} v(x_i) w^{\beta}(x_i) \sum_{i=1}^{k} u(x_i) w^{\alpha}(x_i)$$

$$+ \sum_{i=k+1}^{n} v(x_i) w^{\alpha}(x_i) \sum_{i=1}^{n} u(x_i) w^{\beta}(x_i)$$

$$+ \sum_{i=1}^{k} v(x_i) w^{\alpha}(x_i) \sum_{i=k+1}^{n} u(x_i) w^{\beta}(x_i),$$

where, k = 1, 2, ..., n,

$$\sum_{i=n+1}^{n} u(x_i)w^{\beta}(x_i) = \sum_{i=n+1}^{n} v(x_i)w^{\alpha}(x_i) = 0,$$

$$\sum_{i=n+1}^{n} u(x_i)w^{-\alpha}(x_i) = \sum_{i=n+1}^{n} v(x_i)w^{-\beta}(x_i) = 0.$$

Proposition 4.1. Let w and u/v be both increasing or both decreasing. If $\alpha > \beta$, then we have

$$(4.1) \qquad \sum_{i=1}^{n} v(x_i) w^{\alpha}(x_i) \sum_{i=1}^{n} u(x_i) w^{-\alpha}(x_i) + \sum_{i=1}^{n} v(x_i) w^{-\beta}(x_i) \sum_{i=1}^{n} u(x_i) w^{\beta}(x_i)$$

$$= K(1, n) \le \dots \le K(k, n) \le K(k+1, n) \le \dots \le K(n, n)$$

$$= \sum_{i=1}^{n} v(x_i) w^{\beta}(x_i) \sum_{i=1}^{n} u(x_i) w^{-\beta}(x_i) + \sum_{i=1}^{n} v(x_i) w^{-\alpha}(x_i) \sum_{i=1}^{n} u(x_i) w^{\alpha}(x_i)$$

and

(4.2)
$$\sum_{i=1}^{n} v(x_i) w^{\alpha}(x_i) \sum_{i=1}^{n} u(x_i) w^{\beta}(x_i)$$

$$= L(1, n) \le \dots \le L(k, n) \le L(k+1, n) \le \dots \le L(n, n)$$

$$= \sum_{i=1}^{n} v(x_i) w^{\beta}(x_i) \sum_{i=1}^{n} u(x_i) w^{\alpha}(x_i).$$

If $\alpha < \beta$, then the inequalities in (4.1) and (4.2) are reversed.

Proof. Replacing p_i , q_i , a_i and b_i in (2.1) (or the reverse of (2.1)) with $v(x_i)w^{\beta}(x_i)$, $v(x_i)w^{-\alpha}(x_i)$, $w^{\alpha-\beta}(x_i)$ and $u(x_i)/v(x_i)$, respectively, we obtain (4.1) (or the reverse of (4.1)). Replacing p_i , a_i and b_i in (2.2) (or the reverse of (2.2)) with $v(x_i)w^{\beta}(x_i)$, $w^{\alpha-\beta}(x_i)$ and $u(x_i)/v(x_i)$, respectively, we obtain (4.2) (or the reverse of (4.2)).

This completes the proof of Proposition 4.1.

Remark 1. (4.1) and (4.2) are generated by Proposition 1 in [4].

Let $f:[a,b]\to\mathbb{R}$ be a continuous convex function with $f'_+(a)$ (= $f'_-(a)$ is assumed) and $f'_-(b)$, $\{f(x)|x\in[a,b]\}=[d,e]$. Also, let $h:[d,e]\to(0,+\infty)$ be an integrable function, and $g:[d,e]\to\mathbb{R}$ be a strict monotonic function. We define

(4.3)
$$E(g; f, h) = g^{-1} \left[\left(\int_a^b h(f(t)) f'_-(t) dt \right)^{-1} \int_a^b h(f(t)) g(f(t)) f'_-(t) dt \right],$$

(4.4)
$$M(g; f, h) = g^{-1} \left[\left(\int_a^b h(f(t))dt \right)^{-1} \int_a^b h(f(t))g(f(t))dt \right],$$

(4.5)
$$R(x;g;f,h) = g^{-1} \left[\left(\int_a^b h(f(t))dt \int_a^b h(f(t))f'_-(t)dt \right)^{-1} C_0(x;h(f);g(f),f'_-) \right]$$

and

$$(4.6) \quad \widetilde{R}(y;g;f,h) = g^{-1} \left[\left(\int_a^b h(f(t))dt \int_a^b h(f(t))f'_-(t)dt \right)^{-1} \widetilde{C}_0 \Big(y;h(f);g(f),f'_- \Big) \right].$$

Proposition 4.2. If f is monotone, Then we have

(1) R(x; g; f, h) is increasing on [a, b] with x. For $x \in [a, b]$ we have

$$(4.7) M(g; f, h) = R(a; g; f, h) \le R(x; g; f, h) \le R(b; g; f, h) = E(g; f, h).$$

(2) $\tilde{R}(y;q;f,h)$ is decreasing on [a,b] with y. For $y \in [a,b]$ we have

(4.8)
$$M(g; f, h) = \tilde{R}(b; g; f, h) \le \tilde{R}(y; g; f, h) \le \tilde{R}(a; g; f, h) = E(g; f, h).$$

Proof. From the convexity of f, we get that $f'_{-}(t)$ is increasing on [a,b] and the integrals in E(g;f,h), R(x;g;f,h) and $\widetilde{R}(y;g;f,h)$ are valid (see [5]). From h(x)>0, $x\in[d,e]$, we have

From the convexity of f, when f(a) < f(b) or f(a) > f(b), Wang in [5] proved that

(4.10)
$$\int_{a}^{b} h(f(t))f'_{-}(t)dt > 0$$

or

(4.11)
$$\int_{a}^{b} h(f(t))f'_{-}(t)dt < 0.$$

(1) Let us first assume that g is a strictly increasing function.

Case 1. From the increasing properties of f, we have f(a) < f(b). Further, (4.10) holds. To prove that R(x; q; f, h) is increasing, from (4.5), (4.9) and (4.10), we only need to prove that

(4.12)
$$C_0(x; h(f); g(f), f'_-) = \left(\int_a^b h(f(t))dt \int_a^b h(f(t))f'_-(t)dt\right) g(R(x; g; f, h))$$

is increasing on [a, b] with x.

Indeed, since f is increasing on [a, b], we have that g(f(t)) is increasing on [a, b]. By Theorem 2.2, $C_0(x; h(f); g(f), f'_-)$ is monotonically increasing with $x \in [a, b]$. For $x \in [a, b]$, from (4.3), (4.4), (4.5), (4.9) and (4.10), then (4.7) is equivalent to

(4.13)
$$\int_{a}^{b} h(f(t))g(f(t))dt \int_{a}^{b} h(f(t))f'_{-}(t)dt$$

$$= C_{0}(a; h(f); g(f), f'_{-}) \leq C_{0}(x; h(f); g(f), f'_{-}) \leq C_{0}(b; h(f); g(f), f'_{-})$$

$$= \int_{a}^{b} h(f(t))dt \int_{a}^{b} h(f(t))g(f(t))f'_{-}(t)dt.$$

Replacing p(t), r(t) and s(t) in (2.5) with h(f(t)), g(f(t)) and $f'_{-}(t)$, respectively, we obtain (4.13).

Case 2. If f is decreasing on [a, b], then we have f(a) > f(b), i.e. (4.11) holds. To prove that R(x; g; f, h) is increasing, from (4.5), (4.9) and (4.11), we only need to prove that $C_0(x; h(f); g(f), f'_-)$ (see (4.12)) is decreasing on [a, b] with x.

Indeed, since f is decreasing on [a,b], then g(f(t)) is decreasing on [a,b]. By Theorem 2.2, $C_0(x;h(f);g(f),f'_-)$ is decreasing with $x \in [a,b]$.

For $x \in [a, b]$, from (4.3), (4.4), (4.5), (4.9) and (4.11), then (4.7) is equivalent to the reverse of (4.13). Replacing p(t), r(t) and s(t) in the reverse of (2.5) with h(f(t)), g(f(t)) and $f'_{-}(t)$, respectively, we obtain the reverse of (4.13).

The second case: g is a strictly decreasing function. Using the same arguments for g as a strictly increasing function, we can also prove (1).

(2) Using the same arguments as those for (1), with (2.6) and (2.7), we can prove that $\tilde{R}(x;g;f,h)$ is decreasing on [a,b] with x, and (4.8) holds.

This completes the proof of Proposition 4.2.

Remark 2. (4.7)–(4.8) can be generated by (*) in [6] or Proposition 8.1 in [5].

REFERENCES

- [1] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag. Berlin, 1970.
- [2] J.-C. KUANG, Applied Inequalities, Shandong Science and Technology Press, 2004. (Chinese).
- [3] M. BEHDZET, Some results connected with Cebysev's inequality, *Rad. Mat.*, **1**(2) (1985), 185–190.
- [4] L.-C. WANG, On the monotonicity of difference generated by the inequalities of Chebyshev type, *J. Sichuan Univ.*, **39**(3) (2002), 398–403. (Chinese).
- [5] L.-C. WANG, *Convex Functions and Their Inequalities*, Sichuan University Press, Chengdu, China, 2001. (Chinese).
- [6] B.-N. GUO AND FENG QI, Inequalities for generalized weighted mean values of convex function, *Math. Inequalities Appl.*, **4**(2) (2001), 195–202.
- [7] F. QI, L.-H. CUI AND S.-L. XU, Some inequalities constructed by Tchebysheff's integral inequality, *Math. Inequalities Appl.*, **2**(4) (1999), 517–528.
- [8] F. QI, S.-L. XU AND L. DEBNATH, A new proof of monotonicity for extended mean values, *J. Math. Math. Sci.*, **22**(2) (1999), 417–421.