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Abstract: In this paper, by the Chebyshev-type inequalities we define three mappings, in-

vestigate their main properties, give some refinements for Chebyshev-type in-
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1. Introduction

Letn(> 2) be a given positive integed = (a1, as, .. .,a,) andB = (by, b, ..., b,)
be known as sequences of real numbers. Alsg;,letOandg; >0 =1,2,...,n),
Pi=pi+p+---+pjandQ;=q¢+¢+---+q¢;,G=1,2,...,n).

If A andB are both increasing or both decreasing, then

If one of the sequenced or B is increasing and the other decreasing, then the
inequality (L.1) is reversed.

The inequality {.1) is called the Chebyshev’s inequality, sée?].

For A andB both increasing or both decreasing, BehdzeB]rektended inequal-
ity (1.1) to

<P, 2": gia;b; + Qy, Zn:piaibi~
i—1 i—1

If one of the sequenced or B is increasing and the other decreasing, then the
inequality (L.2) is reversed.
Forp; = ¢;,1 =1,2,...,n, the inequality {.2) reduces to

(1.3) (i?i%) <ipibi> < Pnipiaibia
i—1 i—1 i—1
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where,A and B are both increasing or both decreasing. If one of the sequehoes
B is increasing and the other decreasing, then the inequalityi§ reversed.

Letr, s : [a,b] — R be integrable functions, either both increasing or both de-

creasing. Furthermore, lgtq : [a,b] —

(1.4) /

[0, 4+00) be the integrable functions. Then

i [ atost <>dt+/b it [ st
/‘ m/ m+/ ﬁ/

If one of the functiong or s is increasing and the other decreasing, then the inequal-

ity (1.4) is reversed.
Whenp(t) = ¢(t), t € [a, ], the inequality {.4) reduces to

(1.5) lbu(w/ ﬁ</ ﬁ/ :

wherer ands are both increasing or both decreasing. If one of the functiomrss
is increasing and the other decreasing, then the inequaliiyié reversed.

Inequalities (.4) and (L.5) are the integral forms of inequalitie$.?) and (L.3),
respectively (se€l] 2]).

The results from other inequalities connected withl) to (1.5 can be seen in
[1], [3] —[8] and [2, pp. 61-65]. N

We define three mappingsC andC by ¢ : N, xN, —R,

k k
= P, Z giaib; + Qp sz‘aibi
i=1 i=1

(1.6) c(k,n;pi, ;)
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(e (S0 (3 (520)

i=k+1

() (o) (520 (24)

=k+
wherek =1,2,...,n,and

Z qiti = Z pib; = Z Dia; = Z qibi =0

i=n-+1 i=n-+1 i=n-+1 i=n+1
is assumed.
ForC : [a,b] — R,

1.7) C(x;p,q;r,s)

/ Pt / Dt + / £t / "o (D)s(t)dt
[

+L u<wl a(t)s(t)dt + um>/ a(t)s()t

+/:()()dt/ dt+/q

and forC : [a,b] — R,

1.8) Cly;p,qir,s) = / dt/

/ p(t)s(t)dt

dt+/ dt/
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y b b y
+/ p(t)r(t)dt/ q(t)s(t)dt+/ p(t)r(t)dt/ q(t)s(t)dt

+ / T (et / p(®)s(t)dt + / o()r(t)dt / " o(t)s(t)dt.

We write
(1-9) Cl(lﬁn;])i)
1
= §C<k7n7pzapl>

k n n k n
=D Zpiaibi + ( Z pz‘%’) (Zpibi> + (Zpiai) ( Z Pi@') )
i=1 i=k+1 i=1 i=1

1=k+1

(1.10) co(k,n) = c1(k,n; 1)

S () (50 () (32)

i=k+1

(1.11) Co(z;p;r, s)

= %C(:v;p,p; r,s)
:/j dt/ dt+/:p( )r(t)dt/abp(t)s(t)dt
+ [ atorieya / p(t)s(t)dt
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and
(1.12) Co <y-p;r 5)

=—CynnT@
/ dt/ dt+/ay (t)r(t)dt/abp(t)s(t)dt

+/y p()r ()dt/ay (1)s(t)dt.

(1.10, (1.6), (1.9, (1.7 and (L.9), (1.17) and (L.12) are generated by the inequal-
ities (1.1) to (1.5), respectively. N
The aim of this paper is to study the monotonicity properties ¢f andC, and

obtain some refinements of.() to (1.5) using these monotonicity properties. Some
applications are given.
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2. Main Results

The monotonicity properties of the mapping:; andc, are embodied in the follow-
ing theorem.

Theorem 2.1.Letc, ¢; andc, be defined as in the first section.Afand B are both
increasing or both decreasing, then we have the following refinemeritsZyf((L.3)
and (L.1)

=c(l,n;pi,q5) < - <elk,nsps, qi) < clk+1,n5p;,q) <

)=F, Zn: qia;bi + Qn zn:piaibm
i=1 i=1
(2.2) (Zpiai) (sz ) =ca(lnp) < < alkn;p)
i=1

<c(n,n;p;, g

<cak+1np) <--- <ci(n,n;p)
=P, Zpiaibi
=1
and
(2.3) (Z ai> (Z bz> =co(1,n) < -+ < eo(k,n)
=1 =1
<C2(k+17n) < <C2(n7n) :nzaibzu
=1
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respectively. If one of the sequencesr B is increasing and the other decreasing,
then inequalities in4.1)—(2.5) are reversed.

The monotonicity properties of the mappingsandC, are given in the following
theorem.

Theorem 2.2. Let C' and C, be defined as in the first section. rifand s are both
increasing or both decreasing, théix; p, q; r, s) and Cy(z; p; r, s) are increasing
on [a, b] with z, and forz € [a,b] we have the following refinements af4) and

(1.9

(2.4) /p(t)r(t)dt/ q(t)s(t)dt+/ q(t)r(t)dt/ p(t)s(t)dt

— Claip,qir.s) < Claspogir, s) < Clbip, g7, s)

/’ ﬁ/ ﬁ+/ ﬁ/

b b
@8 [ s [ posoi = Culaiirs)
< Col(z;p;rys) < Co(byp;r,y s)

- v

respectively. If one of the functiomsor s is increasing and the other decreasing,
thenC(z; p, ¢;r, s) andCy(x; p; r, s) are decreasing ofu, b] with , and inequalities
in (2.4) and (2.5) are reversed.

The monotonicity properties of andC, are given in the following theorem.
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Theorem 2.3.Let C and@% be defined as in the first section. rlfand s are both

increasing or both decreasing, thé‘(y;p, q;r,s) and éo(y;p; r, s) are decreasing
on [a, b] with y, and fory € [a, b] we have the following refinements Gf4) and

(1.9

(2.6) / p(t)r(t)dt / o(t)s(t)dt + / o()r(t)dt / p(#)s(t)dt

_C bpaQur S <C<y p7Q7T S <C (l p7Q7T 5

/ Pt / Dt + / bt /
b b . N .
(2.7) / p(t)r(t dt/ p(t)s(t)dt = Co(b;p;r,s) < Coly;p;r,s) < Cola;p;r, s)

b b
_ / p(t)dt / p(t)r(t)s(t)dt,

respectively. If one of the functionsr s is increasing and the other decreasing, then

C(y:p,q;r,s) and Co(y; p; r, s) are increasing ora, b] with y, and the inequalities
in (2.6) and (2.7) are reversed.
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3. Proof of Theorems
Proof of Theoren2.1. Fork = 2,3,...,n, we have

(3.1) ek, n;pi, @) — ek — 1,05, ;)

k-1
= (Pi—1 + px) (Z qia;b; + qkakbk>

i—1
k-1

+ (Qrk—1 + qr) (Z Pia;b; + pk@kbk)
i—1

k1 k-1 n n
P4 Z qia;b; + Qi1 Zpiaibi] + Z Dia; Z qib;

i=k+1 =1

i=k+1

+ (pkak +szaz) Z QZb - (pkak + Z pzaz> ZQZ i

i=k+1
k—
sz‘ai (C]kbkz+ Z Qibi) + Z Qiaizpibi
i=1 i=k-+1 i=k+1 i=1
(C.Ikak + Z%az> Z pz ) (qkak + Z Qzaz) sz i
i=k+1 i=k+1
ZQ1az (pkbk + Z Di 2)
i=k+1

_ _ k—1 k—1
= [pk Z qia;b; + pragby, Z qi — Pray Z qibi — prbr Z q'iai]
i=1 i=1 i=1 i=1
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k-1 k—1 k—1 k—1
+ |k Zpiaibi + qraby Zpi — qrQ Zpibi — qiby Zpiai]
i—1 i=1 i=1 i=1
k—1 k—1
= > i (ak — a;) (b — i) + @ Y pi(ax — a;) (b — by).
i=1 i=1

If A andB are both increasing or both decreasing, then

(3.2) (ak — ai> (bk — bi> >0, (i=1,2,...

Using (L.6), (3.1) and @3.2), we obtain £2.1).
If one of the sequences$ or B is increasing and the other decreasing, thef)(
is reversed, which implies that the inequalitiesinif are reversed.
Fori = 1,2,...,n, replacingg; in (2.1) with p;, and replacing; in (2.2) with
1, we obtain £.2) and @.3), respectively. This completes the proof of Theorem
2.1 N

k- 1)

Proof of Theoren?.2. For anyxy, 25 € [a,b], 1 < 2, We write

= [ aar [arwsoins [ oo [ porsoa

1 x1 1 1

_ / (bt / " Ds(t)dt — / P (bt / st

1 1 1 1

Fort € [a, x1], u € [x1,x2], using the properties of double integrals, we get

I = / /[ o POg) (r(t) = r(w) (5(6) — s(u) ) drd
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2

= /xl p(t)dt /wz q(t)r(t)s(t)dt + /x1 p(t)r(t)s(t)dt/ q(t)dt

- [ toroa [ aswa— [ p)swar [ e
and
s = / /[G,wﬂx[zl,:cg} Plu)et) <r<t) B T(u)> (S(t) - 8(u)>dtdu
= [ awar [ arosies [ arwsar [ o

_ / Yt / " o)s(t)dt — / Y st / S ()t

Tl a 1

Whenzx; = a, from (1.7), we get
(3.3) Cl(xa;p,q;r,s) — Clx1;p, g7, 8)
_ / p(t)dt / Q(t)r(t)s(t)dt + / Q(t)dt / plt)r(t)s(t)dt

x1 1 xr1 x1
2

_ / C (bt / P syt — / Cawrwde [ p)sedt

T T T T
= 1.

Whenzx; > a, from (1.7), we have

(3.4) Cl(xa;p,q;r,8) — Clay;p,q;1, 5)
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- { / e / gttty + / gttt / (st

/ p(t / q(t)s(t)dt — / / 2p(t)s(t)dt}
+ [/ p(t / dt+/ p(t /:QQ(t)dt
/ p(t / q(t / p(t / 2 q(t)r(t)dt]
+ [/ q(t / p(t dt+/ q(t /;2p(t)dt
- [ ator <>dt/“p<> at— [ atstoyas mp( g
:[1+[Z+13. N ' N
(2) If » ands are both increasing or both decreasing, then we have
(3.5) (r() = () () = s(w)) = 0,

i.e.,, I, > 0andl; > 0. By the inequality {.4), I; > 0 holds . Using £.5) and (3.4),
we obtain thaC(z; p, ¢; r, s) is increasing ota, b] with z. Further, from {.11), we
get thatCy(x; p; r, s) is increasing orja, b] with z.

From (L.7) and (L.17), using the increasing properties©fz; p, ¢; r, s) andCy(x; p; r, s),

we obtain £.4) and @.5), respectively.

(2) If one of the functions or s is increasing and the other decreasing, then the
inequality in 3.5) is reversed, which implies thd < 0 and/; < 0. By the reverse

of (1.4), I; < 0 holds. From §.3) and (3.4), (1.11), we obtain thatC(x; p, ¢; r, s),
Co(x; p;r, s) are decreasing o, b] with z, respectively.
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From (L.7) and (L.17), using the decreasing propertiesfx; p, ¢; r, s) andCy(x; p; , s),
we obtain the reverse of (4) and ¢.5), respectively.

This completes the proof of Theoren®. O

Proof of Theoren2.3. Using the same arguments as those in the proof of Theorem
2.2, we can prove Theorem 3. O]
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4. Applications

LetI be areal interval and, v, w : I — [0,4+00). For anya, 5 € R and anyz; € 1

(1=1,2,...,n,n > 2)satisfyingr; < xy <--- < x,, we define

CISTED SIS S
D EIED SEEED SO ST
3 staua) 3 )+ 3wl o) Yol
Y ) 3 e ),
and
Bken) = Y (a3 )
IPIEE D) D
3 sheeta) 3wl
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wherek =1,2,...,n

Z u(z)w’ (z;) = Z v(x;)w*(z;) =0,
Z u(z;)w *(x;) = Z v(z)w P (z;) = 0.
i=n+1 i=nt1

Proposition 4.1. Letw andu/v be both increasing or both decreasing.alf> g,

then we have

n n

(4.2) Z v(z;)w(x;) Z (x;)w™*(z;) —1—2 vz )w " (x;) Zu(ml)wﬁ(xz)
:K(l n)_---<K(k n)<K(kJ—|—1 n)_---<K(n,n)
:Z x;)w” (z; Zl ;) 513'1 +Z v(x;)w xz);u(:& w

3

Z

bj:
HM

If & < 3, then the inequalities in/(1) and (4.2) are reversed.
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Proof. Replacingp;, ¢;, a; andb; in (2.1) (or the reverse of4.1)) with v(z;)w”(z;),
v(z)w(2;), wP(z;) andu(xz;)/v(x;), respectively, we obtaird(1) (or the re-

verse of {.1)). Replacing;, a; andb; in (2.2) (or the reverse of1.2)) with v(z;)w®(x;),

w* A (x;) andu(z;) /v(x;), respectively, we obtaini(?) (or the reverse of4 2)).
This completes the proof of Propositidnl. O
Remarkl. (4.1) and @.2) are generated by Proposition 1 #].[

Let f : [a,b] — R be a continuous convex function witf{ (a) (= f"(a) is
assumed) and’ (b), {f(z)|z € [a,b]} = [d, e]. Also, leth : [d,e] — (0,+oc0) be an
integrable function, ang : [d, ¢] — R be a strict monotonic function. We define

-1

(4.3) E(g:f,h)=g" [(/ h(f(t))f’_(t)dt) /h(f(t))g(f(t))f’_(t)dt],

-1

b b
4.4 Mg fh)=g" [(/ h(f(t))dt> /h(f(t))g(f(t))dt],

(4.5) R(z;g;f,h)
_ 4! [(/ab h(f(t))dt /abh(f(t))f/_(t)dt> Co <$; h(f);9(f), f,—>]

and

(4.6) R(y;g:f.h)

s [( / h( () / b h(f(t))f:(t)dt)

-1

5o(y;h(f);g(f),f’_)] .
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Proposition 4.2. If f is monotone, Then we have
1. R(x;g; f, h) isincreasing orja, b] with x. For = € [a, b] we have
(4.7) M(g; f,h) = R(a; g; f, h)
< R(z;g; f,h) < R(b;g; f, h) = E(g; [, h).
2. R(y; g; f, h) is decreasing offu, b] with y. For y € [a, b] we have
(4.8)  M(g; f.h) = R(bsg; f, h)
< R(y;g; f,h) < R(a; g; f, h) = E(g; £, h).
Proof. From the convexity off, we get thatf’ (¢) is increasing o, b] and the inte-

gralsinE(g; f,h), R(z; g; f,h) andﬁ(y;g; f,h) are valid (seef]). Fromh(z) > 0,
x € [d,e], we have

(4.9) / Bt > 0.

From the convexity of’, whenf(a) < f(b) or f(a) > f(b), Wang in ] proved that
b

(4.10) / h(f()f.(t)dt >0

or
b

(4.11) / h(f(t)fL(t)dt < 0.

(1) Let us first assume thatis a strictly increasing function.
Case 1 From the increasing properties ff we havef(a) < f(b). Further, {.10
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holds. To prove thaR(z; g; f, h) is increasing, from4.5), (4.9 and ¢.10), we only
need to prove that

(4.12) Co(a:h(1):9(f). 1")
— (/abh(f(t))dt /abh(f(t))f'_(t)dt) g(R(w;g; f; h))

is increasing offa, b] with x.

Indeed, sincef is increasing orja, b], we have thay(f(t)) is increasing orfia, b].
By TheoremZ 2, Co(z; h(f); 9(f), f_) is monotonically increasing with € [a, b].
Forx € [a, b, from (4.3), (4.4), (4.5), (4.9) and ¢.10), then ¢.7) is equivalent to

(4.13) / ))dt / h(f(t))f(t)dt
= Colas h(F): 9(F). 1) < Cola: h(F): g(F)s ) < Colbs () (), 1)
- / B (1))t / B E)g(F () (1)t

Replacingp(t), r(t) ands(t) in (2.5) with h(f(t)), g(f(t)) and f" (t), respectively,
we obtain ¢.13).

Case 2 If f is decreasing ofu, b], then we havef(a) > f(b), i.e. (¢.17) holds. To
prove thatR(zx; g; f, h) is increasing, from4.5), (4.9 and ¢.11), we only need to
prove thatCy(z; h(f); g(f), f") (see ¢.12) is decreasing ofu, b] with z.

Indeed, sinc¢ is decreasing ofu, b], theng(f(t)) is decreasing ofu, b]. By Theo-
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rem2.2, Co(z; h(f); g(f), f) is decreasing with: € [a, b].

Forx € [a,b], from (4.3), (4.4), (4.5, (4.9 and ¢.17), then ¢..7) is equivalent to the
reverse of {.13. Replacingp(t), r(t) ands(t) in the reverse of4.5) with h(f(t)),
g(f(t)) andf’ (t), respectively, we obtain the reverse 4f1(3).
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The second case:is a strictly decreasing function. Using the same argumentg for
as a strictly increasing function, we can also prove (1).

(2) Using the same arguments as those for (1), with)(and ¢.7), we can prove
that R(z; g; f, h) is decreasing ofu, b] with =, and ¢.8) holds.
This completes the proof of Propositidri’. O

Remarlk2. (4.7)—(4.8) can be generated ky) in [6] or Proposition 8.1 in%).
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