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ABSTRACT. We study the boundary of the region of weighted analytic centers for linear matrix
inequality constraints. Let be the convex subseRbfdefined byg simultaneous linear matrix
inequalities (LMIs)

A(])(x) = AE)]) + leAgj) - 0’ ] = 172a -4,
i=1

where Agj) are symmetric matrices and € R". Given a strictly positive vectow =
(w1, wa,...,wq), theweighted analytic centerz,.(w) is the minimizer of the strictly convex
function

q
O EARES Z w; log det[AD) ()] ~*
j=1

overR. The region of weighted analytic centel¥), is a subset oR. We give several examples
for which W has interesting topological properties. We show that every point on a central path
in semidefinite programming is a weighted analytic center.

We introduce the concept of tifimeof WV, which contains the boundary points)af which
are not boundary points ®. The frame has the same dimension as the boundary ahd is
therefore easier to compute thavi itself. Furthermore, we develop a Newton-based algorithm
that uses a Monte Carlo technique to compute the frame pointg aé well as the boundary
points of} that are also boundary points &Bf
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2 SHAFIU JIBRIN AND JAMES W. SWIFT

1. INTRODUCTION

The study of Linear Matrix Inequalities (LMIs) is important in semidefinite programming
([25], [1], [27], [24]). A semidefinite programming problem (SDP) contains an objective func-
tion to be optimized subject to a system of linear matrix inequality (LMI) constraints. SDPs
arise among others in relaxations of combinatorial optimization problems, in control theory, in
solving structural design problems and in statistics.

The interest in weighted analytic centers arises from their success in solving linear program-
ming problems ([19],[[21]). The study of weighted analytic center continues to be of interest in
semidefinite programming because of its connection to the central pathl(séel[4], [23], [15], [12]
and [16]). Most interior point methods in semidefinite programming follow the central path. A
recent paper [17] gives an extension of weighted analytic center for linear programming ([3],
[12], [18]) to semidefinite constraints, and shows that the region of weighted analytic centers is
not convex inR?. Our paper can be considered as an extensidn of [17].

For a symmetric, real matriX, defineA > 0 to mean thatd is positive definite, andl > 0
to mean thatA is positive semidefinite. Consider the following systemgdfinear Matrix
Inequality (LMI) constraints:

(1.1) AD(@) = AP+ 2 AY -0, j=1,2,...q,
i=1
WhereA<j), 0 <1 < n, are square symmetric matrices of size Let

R:{xeR”:A(j)(a:)>—O,j:1,27...,q}

be thefeasible regiorof the LMI constraints. Note thatet A > 0 is a necessary, but not suffi-
cient, condition for4 > 0. Thereforedet AY)(z) > 0forallz € Rand allj € {1,2,...,¢}.
Furthermore, ifr € OR, the boundary oR, thendet AY)(x) = 0 for somej € {1,2,...,q}.
It is well known thatR is convex[25].

Note thatR is open, since we require that tH&’) () are positive definite. In SDR is often
the closed set where the matrices are positive semidefinite[(See [25]). However, interior point
methods use the interior of the ust) which is our seRR.

We shall show that the following assumption is necessary and sufficient for the existence and
uniqueness of the weighted analytic center.

Assumption 1. The feasible regiofR is nonempty and bounded.

Our Assumptioii [1 differs from Assumption 1.1 0f [17]. In particular, we do not assume that
q > n, and we do not assume that thereafmearly independent gradients of the constraints at
everyzr € R. One of the main objectives of the current paper is to explore the consequences of
dropping these two assumptions. The latter assumption, about linear independence, is difficult
to check and somewhat unnatural.

Let R, := (0, 00) be the set opositivereal numbers. Given a weight vectore R?, the
weighted analytic center,.(w) determined by the LMI constraints is given by the unique
optimal solution of thenaxdetproblem [17]

q
(1.2) min ¢, (z) := ij logdet AV (z)™! st AD(z) =0, j=1,2,...,q.

j=1

The weighted analytic center exists, and is unique, given our Assunjption 1. This is shown in
[17] under stronger assumptions, which we will show are implied by our Assumjption 1.
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The functiong, () is a barrier function or a potential function It is a barrier function
because it gets infinitely large if one starts from the interior and goes towards the boundary of
R.

The set of all points iR that are weighted analytic centers for somis called theegion of
weighted analytic centeng/. That is,

W ={z4(w) : weRL} CR.

Unlike the special case of linear inequaliti®®,does not equaR in general.

It was shown in[[1/7] that,.(w) is analytic, using the implicit function theorem. Therefore
W is the image of the open sBf. under an analytic map. It follows th&v is connected, but
we cannot say much more. We show by an exampleltha not in general convex iR2. This
implies thatyV is not necessarily convex iR™ for n > 2. We show that/V is not open ify < n.

We also show by an example that is not necessarily open df> n.

We show that the regiohV of weighted analytic centers df [17] extends the central path
used by most SDP solvers such as SeDuMi [24]. Our definition of the weighted analytic center
has the added advantage that it can be used to define the concept of repelling path and repelling
limits of LMI constraints. A different approach to the notion of weighted analytic center is given
in [23] and [15]. The concept of repelling paths in linear programming was first introduced in
[5]. They showed that a repelling path, as a function of the barrier paramebers a unique
limit as 1 — oo. We extend the notion of repelling paths and repelling limits from linear
programming to semidefinite programming.

The limiting behavior of the central path in semidefinite programming has been studied re-

cently in ([7], [13], [9]). Under an assumption of strict feasibility, Goldfarb and Scheinbérg [7]
show that the central path exists and converges to the analytic center of the optimal solution set
of the SDP. The first correct proof (assuming strict complementarity) is due to Luo et al [13].
Halicka re-derived this result in[[9]. We show that repelling paths in semidefinite programming
are analytic and the repelling limits are not necessarily on the boundary of the feasible region.

The main result of this paper is th¢F Algorithm which finds the boundary points o
by a Monte Carlo method. This approach is more efficient than finding the boundavyyf
computing points iV randomly, since we do not compute most of the interior points. The WF
Algorithm approximates repelling limits to compute the boundanpgfalong with a few more
points, which together we cdllame points Our concept of the frame &1/, which contains the
boundary points o¥V that are inR, is the main theoretical contribution of this paper.

The WF algorithm also finds boundary points/#fwhich are not irR. It uses a modification
of Newton’s method that aids convergence to points extremely close to the boundaryifof
Newton’s method sends a point out Bf we move half-way to the boundary & from the
current iterate along the search direction.

2. BACKGROUND

In this section, we present some basic results on the optimization proplgm (1.2), most of
which are found in[[17]. For a fixed weight vectorc R%, the weighted analytic center is the
unique pointinR at which the gradient af,, (z) is 0. Thus, the weighted analytic centef(w)

is the solution to the: equations in the, unknownse = (1, 2o, . .., z,):
q
Vi|AU) (2)| .
(2.2) Vi, (x ij A (1) =0fori=1,2,...,n
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whereV, = 8%_. To derive ), we used the fact tHag | A~ = log(1/|A]) = —log|A].

Note that the factor multiplying; in equation ) is a rational function in since|AY) (z)|
and its partial derivatives are polynomialsin

There is a unique solution (iR) to the system of equations (R.1), singg(x) is strictly
convex (see([17], and Lemma P.3 below), and the potentiat) grows without bound as
approaches the boundary®f (Note that the systerf (2.1) can have other solutions oufgijie
The equationg (2}1) are defined provided)| # 0 for all 5.

The Hessian matrix of,,(z) is the Jacobian matrix of the system of equati¢ns| (2.1). This
Jacobian matrix is used in Newton’s method, and it is also important in the implicit function
theorem. A formula to compute the gradient and the Hessian, @f), without symbolic dif-
ferentiation, is given in [17]. See also [4].

Lemma 2.1. For ¢,,(z) defined in[(1.R) and € R

Vigo(x Z w; (A Lo AY
H,(x)ij = V0., Zwk ) TAMT o [(A®) (2)) 1AW,

whereV2 = , and the inner producis, on square matrices is defined as

(930 Ox;

AeB=Tr(A"B) = Y A;;By.

i, j=1

Note that there is a typographic error in the formula féy(z) in [17]; the transpose is
missing. The expression for the Hessian can be written in a way that involves the inner product
of symmetrianatrices,

(2.2) A Zwk JRAR (AW ()71 0 (AW () 24P (AN (),

Assumption 2.1 ofi[17] is that the matricg¢sl .-, Ao, ..., A.,~} are linearly independent.
This assumption can be replaced by the assumptiorihabounded and nonempty due to the
following lemma.

Lemma 2.2. If the feasible regiork of (1.1) is bounded and nonempty, then the matrices
Ao = diag[AV AP ... A9 for i=0,1,2,...,n

are linearly independent. Equivalently, R is bounded and nonempty there is no nonzero
s € R" such thaty ", SZAE]) =0forall j € {1,2,--- ,q}.

Proof. Assumezr* € R, and assume that thé_,. are linearly dependent. We must show that
R is unbounded. Since thé.;. are linearly dependent, there is a nonzero vegterR" such
thatd " | s;,Ac;~ = 0. Therefored " , siAEJ) = 0foreachj € {1,2,...,q}. Thus,

AV (z* + g5) :A(()j)+ZA§j)(w*+US) +UZSA = AV (z7)

i=1

for all realo. But AU)(2*) = 0 sincez* € R. Thereforep* + os € R forall o € R, andR is
unbounded. O
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The following lemma is well known for the cage= 1 (see[4]). The extension ip> 1 was
proved in [17].

Lemma 2.3. [17] Assume thaR is nonempty and bounded. Then the Hessian maiyif) is
positive definite for all: € R and allw € R%. Hence g, () is strictly convex oveR.

Remark 2.4. Lemmad 2.8 is false if we remove the hypothesis tRais bounded. For exam-
ple, consider the 2 linear inequalities®¥: z; > 0 and1 — z; > 0. Theng,(z;,7s) =
—wq log(z1) — welog(1l — x1) is notstrictly convex inR = {(z1,x2)| 0 < x; < 1}, which is
an unbounded strip iR?. Furthermore, Lemnfa 2.3 is falseuf> 0 replacess > 0 (w € R%).
Consider the 3 linear inequalities®R? : z; > 0, 1 — x; > 0 andz? + 22 < 1. If wy = 0, then
¢,, is notstrictly convex inR.

It is evident from the structure df (1.2) arjd (2.1) that the weighted analytic center is the same
for the weight vectow and any positive scalar multipléw. That is,

Tae(w) = Toe(kw) forall k > 0.
Therefore the set of weights can be constrained t@pgen simplex

q
AL = {w e RY: ij = 1}.
7=1
Note thatA’~" is open in thég—1)-dimensional affine subspaceRf defined by ! | w; = 1,
but it is not open as a subsetRf. The region of weighted analytic centers can be described in
two ways:
W = {24.(w) : w € RLY = {mg.(w) : w € AT},
The following lemma describes how we choose random weight vectors in our numerical
experiments.

Lemma 2.5. Letw; = —log(u;) independently for each € {1,2,...,q}, whereu; is chosen
from a uniform distribution or{0, 1). Then, the normalized weight vectors
~ w
W=
Ej’:l Wi

are uniformly distributed on the open simplax—!.

Proof. The probability density function for eachy is f(w;) = e™7, wherew,; > 0. Hence the
probability density function ow is

f(w) — e_wle_WQ e e_wq — e_zw]"

Therefore, the probability density af € RY is constant on each slice WheEj.:1 w; is con-
stant. It follows that the probability density ofin A?~! is constant. OJ

The reasom,,(x) is called a potential function comes from physics. We define
¢V (x) :=logdet A (2)~! = —log |AY)(z)|

to be thepotential energyassociated with thg!" constraint. The negative gradient of this po-
tential energy is &oundary forceéhV) (z) pushing away from the boundary:
_ V[AY(2)|
A
It is clear that the components of this boundary force are rational functionssofce| AV ()|
is a polynomial.

F(j)(x) — —ng(j)(x)
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As x approaches thg" boundary, the magnitude of the forE&’ () grows without bound,
and the force points normal to boundary, ifRo

The system of equations for the minimizer@f(z), equation[(2]1), says that the weighted
vector sum of the boundary forces, defined tdhg€x), is the zero vector:

F,(z) = iwj FU)(z) = 0.

Therefore, the region of weighted analytic centers can be characterized as
W = {x € R: there exist& € RL suchthaF,(z) =0}.

In other words, a point is in W if and only if the force vector& ) (x) arepositively linearly
dependentGeometrically, a finite se&f of vectors inR” is positively linearly dependent if and
only if the zero vector is in thepositive convex hulldefined to be

q q
conv'(S) = {ijF(j) twj > O,ij =1, FY ¢ S} :
j=1 j=1
The positive convex hull is precisely the relative interior of the convex huf oflenoted
conv(S) (see8]). LetS be a finite set of points ifR”. Thenconv™(S) is an open subset of
R™ if and only if the interior ofconv(S) is nonempty. Furthermore, the interior @fnv(S) is
nonempty if and only if there is some subsetof- 1 vectors which are affinely independent
[8]. Recall that a set of vectors &dfinely dependernt and only if there is a set of weights;,

not all zero, such that
q q
Z CYjF(j) = 0 and Z Olj = O
=1 i=1

Theorem 2.6.1f z* € W, and{FY(z*) : j = 1,2,...,q} spansR™, thenz* is an interior
point of W.

Proof. Assume that* € W, and letS = {FY(z*) : j =1,2,...,q}. Assume thatpan(S) =
R™. Therefore there is a sét C S consisting of: linearly independent vectors. Sincee W,
we know that) € conv™(S). Thereforeconv™(S) = conv™ (S N {0}). Now, the setS’ N {0}
is a set ofn + 1 affinely independent vectors, sonv' (S’ N {0}) is open. Therefore, this
convex hull has positive-dimensional volume, and it follows thabnv*(S) is open. Since
the force vectors depend continuously .onthere is a neighborhood of z* such thatd €
convt{FU)(z): j=1,2,...,¢} forallz € U. Thereforex € W for all z € U, andz* is an
interior point ofW. O

The following corollary gives conditions which ensure thtis open. This was proved by a
different method in([1/7]. The statement of the theorem_ in [17] has the hypothesis that there is a
set ofn linearly independent force vectors at every point, which is equivalent to our hypothesis
that the force vectors spaii'.

Corollary 2.7. If the set of force vector§FV) (z) : j = 1,2,...,q} spansR" at every point
x € R, then the set of weighted analytic cent®ysis open.

Proposition 2.8. If z* € W andq < n, then the sefF)(z*) : j =1,2,...,q} does not span
R™,

Proof. If ¢ < n the ¢ force vectors cannot spak”. Assume, by way of contradiction, that
g = n, z* € VW and the set of force vectors spalR8. The force vectors must be linearly
independent, so no nontrivial linear combination gives the zero vector. On the other hand,
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sincez* € W, a linear combination with positive weights gives the zero vector. This is a
contradiction. O

Remark 2.9. By Propositiorj 2.8, Corollarly 2.7 does not apply i€ n. In fact,)V is not open
if ¢ < n, sinceW is the continuous image of the s&f—!, which has dimension less than

3. EXAMPLES AND PROPERTIES OF REGIONS OF WEIGHTED ANALYTIC CENTERS

We give four examples of systems of Linear Matrix Inequalities (LMIs) and their associated
feasible regioriR and region of weighted analytic centerd C R. The examples illustrate
some properties of the region of weighted analytic centersThey will reappear later.

Example 3.1. Consider the system of three linear inequalities (a special case of linear matrix
inequalities, withl x 1 matrices):

(3.1) AD(z) =21 >0, AP(2):=25>0, A®¥(2):=1 -2, — 25 > 0.
In this case the feasible region is a triangle, and the three boundary forces are
FO() =S @) = &2 p@®p) = "%
(0) = FO@) = 2, FO@) =

Since the force¥ ) (z) point in the directions;, e, and—e; —e, at everyz € R, itis possible

06r @ 6

1

0.2r

@

Figure 3.1: The feasible regioR for system[(3]1) is a triangle. The direction of the three boundary forces at any
point inR is shown. The region of weighted analytic centerglis= R.

to choose a positive weight vector to balance the forces. Hence the region of weighted analytic
centers is the same as the feasible regléh= R.

It is true in general thatV = R for systems of linear inequalities with a bounded feasible
region. For systems of lineanatrix inequalities the situation is more interesting. The next
example illustrates the fact thav is not open ifg < n, since)V is the image of the — 1
dimensional sef\?~! under ther,,. map.
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Example 3.2. Consider the system of two linear matrix inequalitie®
AV (z) =142, >0,

10 1 0 0 1
@) (N .
A(az).—{01]~l—xl{0 _1}+x2[10}>—0.

The feasible region is? + 22 < 1. The first boundary force always points to the right. The

0.81

0.6r
(€
0.41

0.2F @

_0.2,

-0.4

-0.61

Figure 3.2: The feasible regioR is the open unit disk. The regid is the line segment without the end points.

second boundary force points toward the center of the circle. Hence, the region of weighted
analytic centers is the line segmdltit:;, z5) : 0 < x; < 1 andz, = 0}. Note how the addition

of redundant constrains (like 1) can influence the region of weighted analytic centers. In this
example)V has no interior points. This is always the case whehn.

A point x is called aboundary poinbf A C R", if every neighborhood aof contains a point
in A and a point not inA. The boundary of4, denoted 4, is the set of all boundary points of
A. These definitions are standard. An open set like the feasible ré&yiontains none of its
boundary pointsOR N R = &. In Examplg 3.]L, the boundary & is made of the three line
segments of the triangle, asdV = OR. In Examplg 3., all points ofV belong tooV, but
0V also containg0, 0) and(1,0), which are not inV.

Example 3.3. For eachy, a positive integer, consider the system of linear matrix inequalities:

A(j)(ar) _ 3 — cos (2%) —sin (%)

—ain [ 27 2mj
sm(q) 3—|—COS<q>
1 0 0 1 .
+I1[0 _1:|+I2|:1 0:|>0f0r']:1,...,q.

The feasible regiofR of Examplg 3.8 is the intersection of open disks of radius 3 centered at

(cos (%) ,sin (%)) The region of weighted analytic centéfgis the positive convex hull

of the centers of the disks. Figyre 3.3 is the picture for the gase5. The boundary of the
feasible region was found using tB€Dalgorithm described in [11].
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” @

0.51

o ®

-1 @) ]

Figure 3.3: The region/V of Exampl¢ 3]3 foyy = 5. The dots are the weighted analytic centers for 10,000 weight
vectors chosen randomly from the uniform distribution in the simpléxdescribed in Lemmla 2.5. We used the
WF algorithm, listed in the Appendix, with= 1. The boundary ofV is the pentagon.

Remark 3.1. Finding the boundary points &%: Figure[3.8 demonstrates that it would require

a very large number of random points)ivito get a reasonable number of points near the bound-
ary of W, especially whem is larger tham. In Sectior{ b we give a method of computing the
boundary ofV, which focuses on the distinction between feasible and non-feasible boundary
points. A boundary point* € WV is feasibleif * € R andinfeasibleif z* ¢ R. In Example

[3.1, all boundary points ofV are infeasible. In Examp[e 3.21,0) is an infeasible boundary
point while (z,0) for 0 < z < 1 are feasible boundary points. In Example|3.3, all boundary
points are feasible.

It is well-known thatR is convex. It is natural to ask ifV is convex. Example 2 of [17]
shows thalV is not necessarily convex. In that example, each ofjthe4 constraints involves
ab x 5 matrix inn = 3 variables. A simpler example follows.

Example 3.4. Consider the feasible regioR and the region of weighted analytic centéts
for theseg = 3 LMI constraints inn = 2 variables:
3 =2 1 0 0 2
1) —
AV (x) = 2 3 1+x1{0 _1}+x2{2 01>O

[ 3 -2 0 2 1 0
AP () = | 5 31%1{2 0]+x2l0 —1]>0

@ | 05 0 10 10

A¥(x) = 0 _0‘5}+x1[0 Ll T2 g > 0.

Figure[ 3.4 shows clearly thaw is not convex. The boundary points= (0,1) and f = (1,0)
are the centers of the ellipses whe#é!) (z)| = 0 and|A®) (x)| = 0, respectively. Furthermore,
F(e) = 0andF®@(f) = 0. The boundary points betweemndf are where the forcds™) ()

andF®(z) are positively linearly dependent, which can be computed to,be 1_}5*7‘”11/16 The

forcesFY)(z) andF®(z) are positively linearly dependent betweeandc, which is a line of
slope 1/4. The points betweerand f are where the forces® (z) and F®)(z) are positively
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-4
2r @/ 1
15- 1
1r e L@
3™
ol @ ,
@
-05 0 05 1 15 2 25

Figure 3.4: The regionV of Examplég 3}4 given by 10,000 random points as in Fi§ure 3.3. The cornerqisint
the center of ellipse 1; similarly is the center of ellipse 2.

linearly dependent, which is a line of slope 4. The paint (4/3,4/3) is not an interior point
of W, becausel € W andd € 0YV. Hence,V is not open in this example. The fact that
is not an interior point shows that the hypothesis that the force vectorsEpaneeded in
Theorem§ 216 arfd 3.7. At poitit all of the force vectors are scalar multiplesepft e, so they
do not sparR?.

4. REPELLING PATHS AND REPELLING LIMITS

In this section we study the mapping of the open simple¢x! to the region of weighted
analytic centers. We also study repelling paths and limits. This extends the concept of repelling
limits given in [5].

Define the functiory : R x R% — R", where

q
k=1

The following lemma is a reinstatement of Theorems 3.6 and 3.7 of [17]. The proof uses the
Implicit Function Theorem in [20].

Lemma 4.1. The mapz,. : RL — R;w — x,.(w) is analytic. Furthermore, the partial
derivatives of the weighted analytic center function evaluated-atr,.(w) are:

8$ac<w)i _ 1 a(flaf%"'?f“)
(41) aWk B |H"‘)($)| a(xthaxi—hwkul‘i-ﬁ-lv'"’x’IL),
and satisfy:
024 (
4.2) Z H (1) 2o\ g9y

&uk

Remark 4.2. If one wishes to compute the partial derivatives:gf, the systeni (4]2) should be
solved, rather than using equatipn {4.1).
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Corollary 4.3. The restricted mapping,.|a.—1 : A7! — R is analytic inw.
Proof. This follows from Lemma 4]1, sincA’~! is an affine subspace &f, . O

The next example shows that we cannot extendi.-: to an analytic, or even continuous
function mapping the closure of the simplex to the closur& of

Example 4.1. Consider the system with 4 constraintsRif
A(l) =T >O, A(Z) :1—1’1 >O, A(g) = T2 >0, A(4) :1—.1'2>0
The weighted analytic center is at

w1 w3
I = , Lo = .
w1 + wa w3 + Wy
Note that
lim z,.(w) = (1, s )»
w1 —00 w3 + Wy

which depends ow; andw,. But in the simplex the normalized weights approath, 0, 0)
asw; — oo with the other weights fixed. Therefore,.(w) has no limit asv € AY! ap-
proacheg1,0,0,0). Thereforer,. : A%"! — R cannot be extended to a continuous function
at(1,0,0,0) € A1,

We now show how weighted analytic centers generalize the central path in semidefinite pro-
gramming. Most interior point algorithms for solving SDP approach the optimal solution by
following a central path. Consider the semidefinite programming problem (SDP)

min ¢’ x

st.AV(z) =AY +> AV -0, j=1,2,....q.
=1
Let R denote the feasible region. The central path associated with the SDP is defined by

q
x(p) = argmin {/LCTfE + Zlog det AV (z) Lz e R} :
j=1
As u — oo, more weight is put on the objective term compared to the barrier termy@nd
approaches the optimal solution of the SDP if strict complementarity holds [13].

We can replace the linear objective function with a redundant constraint as follows. Choose
K suchthat”z < K for all z in the (bounded) feasible regid. Then, following the method
of Renegar [19] for linear programming, aslin [5], a central path for the SDP can be defined as:

q
Z(p) = argmax {,ulog(K —clz) + Zlog det AV (z) : x € R}

j=1

q
= argmin {ulog(K —clr) 4 Zlog det AV (2)7!:z € R} :

j=1

Hence, if follows thati () is a weighted analytic center defined B+ (z) := K — ¢’z > 0

and the othey LMI constraints with weighto = (1,...,1, ) (seq 1.R). A3, — oo, the force

from the ‘cut’ K — ¢’z > 0 pushes the poini() to the point on the boundary & wherec! x

is minimized. The definition of weighted analytic cenfer[1.2) generalizes the central path. The
definition has the added advantage that it can be used to define the concept of repelling path and
repelling limits of LMI constraints.
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Let J C {1,2,...,¢} and letw be a weight vector iiR%. Forp > 0, we define thev-
repelling pathassociated with the constraints by

q

q
() = argmin{ Z pw; log det AU ()1 + Z w;logdet AV (2)7!: z € R} .

Jj=1jeJ J=13¢J

Note thatif.J = {1,2,...,q} — I, thenz$" (1) = 2 (1/p).
The patm:f;]) () is given by the unique optimal solution of theaxdetproblem

q q
min Z piw; log det AV ()1 + Z wjlogdet AV ()~

Jj=1jeJ J=13¢J

S.t.A(j)(x) = A(()j) +inA§j) -0, 7=1,2,...,¢q

=1

In other wordsz”) = z,.(w’ (1)), where

pw; ifjed
w’(p); = _ ~
The theory of Maxdet optimization is studied in [26].
Corollary 4.4. The repelling patly : R, — R defined byy(u) = xf;’)(u) is analytic inpu.
Proof. This follows from Corollary 4.11. O

The limit lim xﬁ,‘])(u) is called thew-repelling limit associated with the constraints. It is

H—00
interesting to note that a repelling limit can be an interior poirfRadnd/or an interior point of
W, or neither.

5. COMPUTING THE BOUNDARY OF THE REGION OF WEIGHTED ANALYTIC
CENTERS W USING REPELLING LIMITS

In this section we use the concept of repelling limits defined in the previous section to deter-
mine the boundary of the region of weighted analytic cent®4s We also use a modification
of Newton’s method and a new concept of freme of)V. This is called the WF algorithm,
since it can be used to compute both #veand the Frame ofV.

In our WF algorithmy. is fixed andr” (1) is computed for many random choiceswofnd
J, where|J| = nandJ C {1,2,...,q} has sizen. We show that every repelling limit with
|J| = n is either a boundary point 0f or aframe point(or both). Whery is large, typically

1000 or 10000, each pointcﬁ;”(u) approximates a repelling limit. f = n + 1, these repelling
limits give the boundary of the region of weighted analytic centers in the examples we have
studied. If¢ > n + 1, we observe frame points in the interior)af as well as points i@ .

The WF algorithm uses Newton’s method to find the weighted analytic centers. Newton’s
method is problematic when the weighted analytic center is near the bound&y lof par-
ticular, the Newton step, — x, + s may take the new point out 2. If this happens, our
algorithm uses a step sizesuch thatey — x( + hs is half way to the boundary &R in the di-
rection ofs. This prevents the iterates from leaviRg As an alternative, Newton’s method with
backtracking could be used. Theorem| 5.1 and its corollary give our method for determining the
distance to the boundary &.
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Theorem 5.1.Lets be a nonzero vector iR"”, and A(xz,) > 0, whereA(z) = Ag+ Y ., Aix;
is symmetric. Choose a square matfissuch thatA(zy) = LLT. Let A\, be the maximum
eigenvalue of the symmetric matrix

B = —Lil Y SiAi
>
=1

(@) If Apax > 0, thenA(xg + os) = 0 for all positives < 1/\yax, and A(zg + os) 3 0 for
all 0 > 1/ A ax-
(0) If Mpax <0, thenA(zy + os) = 0 forall o > 0.

(L.

Proof. The matrix A(z) is positive definite, and the region whesgx) >~ 0 is convex, so
A(xg + os) = 0 for all ¢ in the maximal interval including O wheréet A(xzy + os) > 0,

and A(xg + os) # 0 outside this interval. For simplicity, we only consider> 0. Now,

L is nonsingular, sincdet L = y/det A(zo) > 0. Furthermore({L~ YT = (LT)~! for any
nonsingular matrix, s@~* A(zo)(L~1)* = I. Now, for anyo # 0,

det[A(zg + 0s)] =0 < det | A(zo) + 0 Z siA;| =0
L i=1

n

Z SiAi

i=1

1
sdet | =T+ L1
g

(L—l)T] =0

1
& det —[—B] =0
o

1. .
(5.1) < — is an eigenvalue oB.
g

(a) Let\,..x be the largest eigenvalue &f. If \,.x > 0, theno = 1/\,. is the smallest
positives for whichdet A(zo+0s) = 0. This implies thatd(xy+os) is positive definite
for all positives < 1/A\ax, @ndA(zy + o) is not positive definite for alk > 1/ x.
(b) If Muax < 0, thenB has no positive eigenvalues addz, + os) > 0 for all o > 0.

0

Corollary 5.2. Letz, € R, s € R", s # 0. DefineA{), for each constrainti@(z) = 0, as in
Theoreni 5]1. Then, + s, for ¢ > 0, is on the boundary oR if and only if

(5.2) o=min{1/A\Y) :1<j<qgand\i) > 0}.
Proof. By Theoren] 5.1, all of thel(z) are positive definite if: = x, + ts and0 < ¢ < o,
and at least one of theé)(x, + o's) is not positive definite. O

In our Newton-based WF algorithm, if the Newton step— x, + s maps the point out of
the feasible region, then we take the stgp— =, + (0/2)s, wheres is found in Corollary 5.2,
using the Cholesky factorizations af?)(z,). Thus, the new iterate is half way to the boundary
from z, in the direction ofs.

We now give a series of results, culminating with Theofer 5.6 which characterizes the feasi-
ble boundary points in this way; at every feasible boundary poinYdlere is a set of positively
linearly dependent force vectors of sigen.

The vector sum of the constraint fordg§) () can be written as the x ¢ matrix M () times
the column vectow:

ij FO(2) = M(2)w,
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where the columns i/ () are the boundary forcd&?) (z). Using Lemma 2]1 we find that

(5.3) M(z) = [F(l)(x) F(‘I)($>}
AD(z) e Agl) o AD(z) e Agzﬁ
AV (z) L e AL A@(z) 1o AW

Theorem 5.3.If z* € R, z* € 0W, andz* ¢ W, then there is a nonzero weight vector which
satisfiesM (z*)w = 0, w > 0, but there are no solutions b/ (z*)w = 0 for w > 0.

Proof. Assume that:* satisfies the hypotheses of the theorem. Siricec 0)V there is a
sequence of points™ in ¥V which converges ta*. Sincex” € W for eachn € N, there is
sequence of normalized weight vectars € AY~! such thatr,.(w™) = 2. The open simplex
A?"lis a bounded subset Bf!, so there is a convergent subsequenite For simplicity relabel
this convergent subsequencedsnd call its limitw*, so thato’ — w* asi — co. Now, M (z)
is continuous at each € R, andM (z*)w’ = 0 for eachi, so

lim M(z")w' = M (hm xl) lim w’ = M(2*)w* = 0.
Sincer* ¢ W, we know thatv* ¢ A9, Thereforew* is a boundary point of the open simplex,
which implies thatv* > 0, w* # 0, andw* # 0. (At least one, but not all, of the components

of w* is zero.) This satisfies the first part of the conclusion of the theorem. Finally, there is no
w > 0 such thatV (z*)w = 0, sincez™* ¢ W. O

The next example shows that the converse of Theprem 5.3 is false.
Example 5.1. Consider the system of 4 LMIs
AV(z) =142, >0, AY@):=1-2,>0, A®(z):=1+2,>0, and

10 1 0 01
4) —

The feasible regiofR is the interior of the unit circle, ana is the upper half of the disk. The
set of points which satisfy the hypotheses of Thedrem 5.3 is the line segfngnt,) : —1 <
x1 < 1, zo = 0}. However, the lower half of the disk (with, < 0) satisfies the conclusion of
the theorem. Hence, the converse of Thedrerm 5.3 is false.

The important ingredient in this example is thét)(z) and A (x) are independent af,,
not that they are linear. Similar examples can be made with R? without using linear
constraints, by augmenting a set of LMIs which are independeny.of

The following theorem gives a geometric characterization of feasible boundary points of

Theorem 5.4.1f z* € R andz* € 9V, then there is a nonempty sétC {1,2,3,...,q} and
a nonzero vectos € R" such thats - FU)(z*) = 0if j € J,s-F9(2*) > 0if j ¢ J, and the
set of force vector§F ) (z*) : j € J} is positively linearly dependent.

Proof. First, assume that* € 0)V andz* € W. Theorenj 2.6 implies that the set of force
vectors daotspanR™, so they must lie in a subspace of dimension less tharherefore there
is a nonzero vector € R” such thas-FU)(2*) = 0 for all j and we choosé = {1,2,3,...,q}.

Now assume that* € OR andz* € R butz* ¢ W. The hypotheses of Theorém 5.3 hold,
and we will apply the alternative theorems of Stiemke and Gordon to the conclusions of the
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theorem. Stiemke’s theorem of the alternative [([22]] [14]) says that fomary matrix M,
either

Jw > 0 such that\/w = 0
(5.4) or3ssuchthas” M >0, sT M # 0
but not both.

Gordon’s Alternative Theorem [14] is similar: For anyx ¢ matrix M, either

Jw > 0suchthaty # 0andMw =0
(5.5) or 35 such thats” M > 0
but not both.

Sincex* ¢ W, Stiemke’s theorem says that there exists R" such thats - F)(z*) > 0
forall j € {1,2,...,q}, ands - F¥)(z*) > 0 for somej. However, Gordon’s theorem of the
alternative says that there is ssuch that - F)(z*) > 0 for all j. Let.J be the smallest subset
of {1,2,...,q} such that there is anc R" with the property that - FU)(z*) = 0if j € J and
s-FW(z*) > 0if j ¢ J. Fix s to be one such vector. The seis nonempty due to Gordon’s
Theorem.

To complete the proof we must show that the &8t (z*) : j € J} is positively linearly
dependent. Assume, by way of contradiction, that it is not. Then, Stiemke’s theorem implies
that there is a vector ¢ R™ such thatt - FU)(2*) > 0 for all j € J, and an integey* <
J such thatt - FU")(z*) > 0. Using thes defined previously, choose a positiveso that
(s+et)-FO(z*) > 0forallj ¢ J. Then(s+et) - F9(z*) = et - FU)(2*) > 0forall j € J,
and(s+et)-FU)(2*) > 0. Sincej* € J, this contradicts the fact thdtis minimal. Therefore,
{FU)(2*) : j € J} is positively linearly dependent, and the theorem is proved. O

Remark 5.5. Let us apply Theorein 5.4 to Example[3.4, for whighis shown in Figure 3]4.

At the feasible boundary point = (0, 1), the force vectors ar€(e) = 0, F@(e) =
4e; — ey, andF®)(e) = e; + e,. (We have chosen a convenient normalization of the force
vectors since only their direction matters.) The set from The¢rem 54-is{1}, and a choice
of the vector iss = e;.

A more typical feasible boundary point o0& is (1,5/4), where the force vectors are
F)(1,5/4) = —e; — ey, F?(1,5/4) = —ey, andF®)(1,5/4) = e; + e,. Here the set
from Theorenj 54 i/ = {1, 3}, and the vectos = e; — e, is unique up to a positive scalar
multiple.

The feasible boundary point = (4/3,4/3) is a point in)¥V which is not an interior point.
The force vectors arB™ (d) = —e; — ey, F?(d) = —e; — ey, andF®)(d) = e, + e,. Here
the set from Theorefn 5.4 i6= {1, 2, 3}, and the vectos = e; — e, is unique up to a nonzero
scalar multiple.

We need one more lemma before we can characterize feasible boundary poivitsQir
proof of the lemma is similar to the proof of the Carathéodory’s Theorem givén in [8].

Lemma 5.6. Every positively linearly dependent set of vector®incontains a positively lin-
early dependent subset of size- 1 or smaller.

Proof. Assume, by way of contradiction, that a set= {FU) ¢ R" : j =1,2,3,...,p}, with
p > n + 1, is positively linearly dependent, and there is no proper subset which is positively
linearly dependent. Choose a set of positive weightsuch that

p .
> wFY =0.
j=1
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The setS is affinely dependent, meaning that there are weight@ot all zero) such that

p p
Z OéjF(j) =(0and Z a; = 0.
j=1 j=1

This is true sincd FU) — F® . j =123, ...,p — 1}, being a set of vectors iR" of size at
leastn + 1, is linearly dependent.
Choose such a set of weights. For any\ € R, it follows that

p

Z(wj + A )FY) = 0.

j=1
Now, define\* so that all of the weights; + A*a; are nonnegative but at least one is zero.
A =max{\:w; + A o; >0forj=1,2,...,p}.

Since at least one of the; is negative \* exists. Now, define/ = {j : w; + A\*a; > 0}. By
construction]l < |J| < p, and the sum

Z(Wj + )\*Oéj)F(j) =0

jed
demonstrates that the @) ¢ R : j € J} is positively linearly dependent. This contradicts
the assumption that no proper subsefa$ positively linearly dependent. 0J

Remark 5.7. The “or smaller” is needed in the statement of Lenim& 5.6. The positively linearly
dependent set of vectors R, {e;, —e;, e, —ey} has no positively linearly dependent subset
of size 3. Theorer 56 holds, of course, dig, —e, } is a positively linearly dependent subset
of size 2.

We define thédrameof 1V, denoted byF C R, to be the set
(5.6) F:={x: Japositively linearly dependent subset{@")(x)}?_, of size < n}.

If x € F, we callz aframe point We now state oumain theorem. It gives a useful character-
ization of the boundary points o .

Theorem 5.8. Every feasible boundary point ¥ is a frame point. That is, it* € OW N'R,
then there is a set of or fewer positively linearly dependent force vectbfs) (z*).

Proof. Assume that* € OW N R. By Theorenj 514, there is a positively linearly dependent
subset of vector§FU)(z*) : j € J} and a nonzero vecter € R” such thats - FU)(2*) = 0

if j € J. All of the vectorsF(z*) with j € J lie in the (n — 1)-dimensional subspace
perpendicular ta. Therefore, by Theoreim 5.6, there is a positively linearly dependent subset
of {FU)(2*) : j € J} of size(n — 1) + 1 = n or smaller. Therefore;* is a frame point. [

Theoren 5.B is a significant improvement over Theofem 5.4, which gives no information
about the size of the set Our main result (Theorein 5.8) motivates the WF algorithm. The
implementation uses the following corollary.

Corollary 5.9. Every repelling limit lim 2 (1), whereJ is of sizen, is either a frame point
H—00
or an infeasible boundary point o .

Proof. Let z* be a repelling limitlim . (w) for |J| = n. If 2*isin R, then there exists
p—00

positively linearly independent force vectd®$) (z*) atz*. So,z* is a frame point. Ifr* € IR,
thenz* ¢ W. By Theorem 5.8z* € oW. O
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The WF algorithm approximates the repelling limilisn xﬁj”(u), where J is a randomly
H—00

chosen set of size, by choosing large fixeg. This approximates the frame points at which
there existn force vectors which are positively linearly dependent. (The frame points where
fewer thann force vectors are positively linearly dependent can be approximated Jyith n
when one or more random weights are small.)

2F - =T - =
(5). " "
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Figure 5.1: The frame ofV for Examplg 3.3 witly = 5 is composed of the line segments joining the five corner
points of the pentagon. The figure shalWs= 1,000 points which approximate the frame, obtained with the WF
algorithm usingu = 10, 000. This gives a better picture &V than Figurd 3.8, where 10,000 points are plotted.

Figured 5.1} 5]2, ar[d §.3 show the result of the WF algorithm applied to Examplés 8.3, 3.4,
and[5.1 (respectively), with large. Note that the frame pointsnd the infeasible boundary
points are found by the algorithm. Figure]5.3 shows that the converse of Cofollary 5.9 is false:
there are frame points, e.g), —0.5) which are not repelling limits.

As stated earlier, the WF algorithm, wighlarge, approximates the frame 8. To un-
derstand why the algorithm also approximates infeasible boundary points, assume for simplic-
ity that z* is an infeasible boundary point &% at which exactly one of the matrices, call it
A®)(z*), is singular. When the WF algorithm choosewith b ¢ .J, all butn + 1 force vectors
are negligible forx nearz*:

> wiFD (@) + ) i FO (2) 2 wFO(2) + ) pwFU ().

j¢J jeJ jeJ
Thus, the WF algorithm witjy, large approximates points where the 1 “large” forces F®) ()
anduFY)(z) with j € J, are positively linearly dependent. Lem@S.G implies that neglecting
the other force vectors will not prevent us from findirigin this way.

A similar argument holds if the infeasible boundary point is a “corner” poirR pivhere two

(or more) of the matriced ) (x*) are singular. An example is poibin Figur. We suspect
that all infeasible boundary points BY are approximated by the WF algorithm in this way.
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Figure 5.2: The boundary ofy in Exampld 34 is approximated using the WF algorithm viNtk= 1, 000 points
andp = 10,000. Sinceq = n + 1, this example has no frame points which are not on the boundary.ofhese
1,000 points should be compared with the 10,000 points plotted in Higdre 3.4.

osf @ iR T e
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Figure 5.3: The output of the WF Algorithm applied to Examiplé 5.1, showirg 2, 000 points using: = 1, 000.
In this pathological exampld} is the line segment joining—1,0) to (1,0) and the frame oV is the whole
feasible disk, sinc®()(z) andF () (z) are positively linearly dependent at all Frame points which are not in
the closure obV are not found by our WF Algorithm, since these are not repelling limits.

6. CONCLUSION

We studied the boundary of the region of weighted analytic centérior linear matrix
inequality constraints. This is important because many interior point methods in semidefinite
programming are based on weighted analytic centers. We gave many examples that illustrated
the topological properties afV. We showed that the region of weighted analytic centers is not

J. Inequal. Pure and Appl. Mathb(1) Art. 14, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

THE BOUNDARY OF WEIGHTED ANALYTIC CENTERS FORLINEAR MATRIX INEQUALITIES 19

necessarily convex iR”, for alln > 1. We also showed thad is not open ify < n, andW is
not necessarily open if > n.

We extended the notion of repelling paths and repelling limits from linear programming to
semidefinite programming . We gave a characterization of the boundary poivisanfd in-
troduced the new concept of the frame)df. We show that feasible boundary points)of
are frame points ofV. We developed the WF algorithm, which can compute eitheor the
boundary of\V in terms of repelling limits, based on a modification of Newton’s method.

There are many directions that our present work can be extended. To avoid the problem of
unbounded derivatives at the boundaryyrwe can choose positive weightsand solve

(6.1) Zva) )| =0fori=1,2,.

If Newton’s method converges to a solution, and if the solution iRjrthen it is in}. We
have had success in preliminary investigations with this method, but Newton’s method does not
always converge, or it converges to an infeasible point.

The infeasible boundary points &% can be computed using a modification of Lagrange
multipliers. For example a point on th# boundary component 62 can be found by solving
then + 1 equations in the + 1 variables), x:

[A® ()] = 0,
V|A
AV[A®) \+ZMJ|LJ) =0,

J#b
where the weights); are chosen randomly fgrs# b. Spurious solutions to this system abound.
One must check that > 0 and thatz is indeed on thé" boundary component 6.

Preliminary investigations show that points near the intersection of two boundaries are rarely
found by this method. This problem is alleviated if we combine the Lagrange multiplier method
with the polynomial method described in systgm|(6.1). Choose an integierandom, and
choose theg — 1 weightsy;, j # b at random and solve

AP ()] =0

AVIAD ()| + > 1 V[AD (2)[= 0
J#b
for then + 1 variables\ andz. As before, Newton’s method does not always converge, and it
sometimes converges to points that are not on the boundary of
The definition of weighted analytic center led to the concepisositive linear dependence
and positive convex hull Another way that this work can be extended is to explore different
definitions of the weighted analytic center (for example, replacing 0 with w; > 0).

J. Inequal. Pure and Appl. Mathb(1) Art. 14, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

20 SHAFIU JIBRIN AND JAMES W. SWIFT

APPENDIX: THE WF ALGORITHM (WFA)
Algorithm to plot points iV (1 = 1) or Frame and boundary pointsaf (1 > 1)

Input: Any feasible point* of ¢ LMIs in R™, number of points to plaf, stoping conditions
for Newton’s method’OL andmaxIts, and a parameter =1 or u > 1.
Repeat
If © > 1andq > n, choose a random sétC {1,2,...,q} of sizen
Choosey numbersu; randomly and independently frotn(0, 1)
Setw; = —log(u;) (See Lemma 25.)
If x> 1andg > n, setw; = p*w; forall j € J
Setzy = 2%, num = 0 andk = 0
Repeat
ComputeH ,(zx) andV ¢, (zx)
Solve the linear systefl,(zx)s = —V ¢, () for the Newton step
If 2 + s isinfeasible,
Calculates > 0 such thatr;, + 0s € 0W, using Corollary 5.2
Seth = 0.50
Else seth = 1
Updater, | :=z, + hs; k:=k+1
Until v/sTs < TOL or k > maxIts
If v'sTs < TOL plot z;, ~ x&])(,u)
Setnum = num + 1
until num =N
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