
volume 5, issue 1, article 14,
2004.

Received 28 October, 2003;
accepted 03 February, 2004.

Communicated by: F. Zhang

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

THE BOUNDARY OF WEIGHTED ANALYTIC CENTERS FOR
LINEAR MATRIX INEQUALITIES

SHAFIU JIBRIN AND JAMES W. SWIFT
Department of Mathematics and Statistics
Northern Arizona University, Flagstaff
Arizona 86011-5717, USA.
EMail : Shafiu.Jibrin@nau.edu

EMail : Jim.Swift@nau.edu

c©2000Victoria University
ISSN (electronic): 1443-5756
158-03

Please quote this number (158-03) in correspondence regarding this paper with the Editorial Office.

mailto:zhang@polaris.nova.edu
http://jipam.vu.edu.au/
mailto:Shafiu.Jibrin@nau.edu
mailto:Jim.Swift@nau.edu
http://www.vu.edu.au/


The Boundary of Weighted
Analytic Centers for Linear

Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004

http://jipam.vu.edu.au

Abstract

We study the boundary of the region of weighted analytic centers for linear
matrix inequality constraints. Let be the convex subset of Rn defined by q
simultaneous linear matrix inequalities (LMIs)

A(j)(x) := A
(j)
0 +

n∑
i=1

xiA
(j)
i � 0, j = 1, 2, . . . , q,

where A
(j)
i are symmetric matrices and x ∈ Rn. Given a strictly positive vector

ω = (ω1, ω2, . . . , ωq), the weighted analytic center xac(ω) is the minimizer of the
strictly convex function

φω(x) :=
q∑

j=1

ωj log det[A(j)(x)]−1

over R. The region of weighted analytic centers, W, is a subset of R. We give
several examples for which W has interesting topological properties. We show
that every point on a central path in semidefinite programming is a weighted
analytic center.

We introduce the concept of the frame of W, which contains the boundary
points of W which are not boundary points of R. The frame has the same
dimension as the boundary of W and is therefore easier to compute than W
itself. Furthermore, we develop a Newton-based algorithm that uses a Monte
Carlo technique to compute the frame points of W as well as the boundary
points of W that are also boundary points of R.

2000 Mathematics Subject Classification: 90C22, 15A39, 49M15, 90C53
Key words: Linear matrix inequalities, Analytic center, Central path, Semidefinite

programming.
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1. Introduction
The study of Linear Matrix Inequalities (LMIs) is important in semidefinite pro-
gramming ([25], [1], [27], [24]). A semidefinite programming problem (SDP)
contains an objective function to be optimized subject to a system of linear
matrix inequality (LMI) constraints. SDPs arise among others in relaxations
of combinatorial optimization problems, in control theory, in solving structural
design problems and in statistics.

The interest in weighted analytic centers arises from their success in solv-
ing linear programming problems ([19], [21]). The study of weighted analytic
center continues to be of interest in semidefinite programming because of its
connection to the central path (see [4], [23], [15], [12] and [16]). Most interior
point methods in semidefinite programming follow the central path. A recent
paper [17] gives an extension of weighted analytic center for linear program-
ming ([3], [12], [18]) to semidefinite constraints, and shows that the region of
weighted analytic centers is not convex inR3. Our paper can be considered as
an extension of [17].

For a symmetric, real matrixA, defineA � 0 to mean thatA is positive defi-
nite, andA � 0 to mean thatA is positive semidefinite. Consider the following
system ofq Linear Matrix Inequality (LMI) constraints:

(1.1) A(j)(x) := A
(j)
0 +

n∑
i=1

xiA
(j)
i � 0, j = 1, 2, . . . , q,

whereA
(j)
i , 0 ≤ i ≤ n, are square symmetric matrices of sizemj. Let

R =
{
x ∈ Rn : A(j)(x) � 0, j = 1, 2, . . . , q

}
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be thefeasible regionof the LMI constraints. Note thatdet A > 0 is a necessary,
but not sufficient, condition forA � 0. Therefore,det A(j)(x) > 0 for all
x ∈ R and allj ∈ {1, 2, . . . , q}. Furthermore, ifx ∈ ∂R, the boundary ofR,
thendet A(j)(x) = 0 for somej ∈ {1, 2, . . . , q}. It is well known thatR is
convex [25].

Note thatR is open, since we require that theA(j)(x) are positive definite. In
SDP,R is often the closed set where the matrices are positive semidefinite (see
[25]). However, interior point methods use the interior of the usualR, which is
our setR.

We shall show that the following assumption is necessary and sufficient for
the existence and uniqueness of the weighted analytic center.

Assumption 1.1.The feasible regionR is nonempty and bounded.

Our Assumption1.1 differs from Assumption 1.1 of [17]. In particular, we
do not assume thatq > n, and we do not assume that there aren linearly
independent gradients of the constraints at everyx ∈ R. One of the main
objectives of the current paper is to explore the consequences of dropping these
two assumptions. The latter assumption, about linear independence, is difficult
to check and somewhat unnatural.

Let R+ := (0,∞) be the set ofpositivereal numbers. Given a weight vector
ω ∈ Rq

+, the weighted analytic centerxac(ω) determined by theq LMI con-
straints is given by the unique optimal solution of themaxdetproblem [17]

(1.2) min φω(x) :=

q∑
j=1

ωj log det A(j)(x)−1 s.t.A(j)(x) � 0,

j = 1, 2, . . . , q.
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The weighted analytic center exists, and is unique, given our Assumption1.1.
This is shown in [17] under stronger assumptions, which we will show are im-
plied by our Assumption1.1.

The functionφω(x) is a barrier function, or a potential function. It is a
barrier function because it gets infinitely large if one starts from the interior and
goes towards the boundary ofR.

The set of all points inR that are weighted analytic centers for someω is
called theregion of weighted analytic centersW. That is,

W = {xac(ω) : ω ∈ Rq
+} ⊆ R.

Unlike the special case of linear inequalities,W does not equalR in general.
It was shown in [17] that xac(ω) is analytic, using the implicit function the-

orem. ThereforeW is the image of the open setRq
+ under an analytic map.

It follows thatW is connected, but we cannot say much more. We show by
an example thatW is not in general convex inR2. This implies thatW is not
necessarily convex inRn for n ≥ 2. We show thatW is not open ifq ≤ n. We
also show by an example thatW is not necessarily open ifq > n.

We show that the regionW of weighted analytic centers of [17] extends the
central path used by most SDP solvers such as SeDuMi [24]. Our definition
of the weighted analytic center has the added advantage that it can be used to
define the concept of repelling path and repelling limits of LMI constraints. A
different approach to the notion of weighted analytic center is given in [23] and
[15]. The concept of repelling paths in linear programming was first introduced
in [5]. They showed that a repelling path, as a function of the barrier parameter
µ, has a unique limit asµ → ∞. We extend the notion of repelling paths and
repelling limits from linear programming to semidefinite programming.
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The limiting behavior of the central path in semidefinite programming has
been studied recently in ([7], [13], [9]). Under an assumption of strict feasibility,
Goldfarb and Scheinberg [7] show that the central path exists and converges to
the analytic center of the optimal solution set of the SDP. The first correct proof
(assuming strict complementarity) is due to Luo et al [13]. Halicka re-derived
this result in [9]. We show that repelling paths in semidefinite programming
are analytic and the repelling limits are not necessarily on the boundary of the
feasible region.

The main result of this paper is theWF Algorithm, which finds the boundary
points ofW by a Monte Carlo method. This approach is more efficient than
finding the boundary ofW by computing points inW randomly, since we do not
compute most of the interior points. The WF Algorithm approximates repelling
limits to compute the boundary ofW, along with a few more points, which
together we callframe points. Our concept of the frame ofW, which contains
the boundary points ofW that are inR, is the main theoretical contribution of
this paper.

The WF algorithm also finds boundary points ofW which are not inR.
It uses a modification of Newton’s method that aids convergence to points ex-
tremely close to the boundary ofR: If Newton’s method sends a point out of
R, we move half-way to the boundary ofR from the current iterate along the
search direction.
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2. Background
In this section, we present some basic results on the optimization problem (1.2),
most of which are found in [17]. For a fixed weight vectorω ∈ Rq

+, the weighted
analytic center is the unique point inR at which the gradient ofφω(x) is 0. Thus,
the weighted analytic centerxac(ω) is the solution to then equations in then
unknownsx = (x1, x2, . . . , xn):

(2.1) ∇iφω(x) = −
q∑

j=1

ωj
∇i|A(j)(x)|
|A(j)(x)|

= 0 for i = 1, 2, . . . , n,

where∇i = ∂
∂xi

. To derive (2.1), we used the fact thatlog |A−1| = log(1/|A|) =
− log |A|. Note that the factor multiplyingωj in equation (2.1) is a rational
function inx, since|A(j)(x)| and its partial derivatives are polynomials inx.

There is a unique solution (inR) to the system of equations (2.1), since
φω(x) is strictly convex (see [17], and Lemma2.3 below), and the potential
φω(x) grows without bound asx approaches the boundary ofR. (Note that
the system (2.1) can have other solutions outsideR.) The equations (2.1) are
defined provided|A(j)| 6= 0 for all j.

The Hessian matrix ofφω(x) is the Jacobian matrix of the system of equa-
tions (2.1). This Jacobian matrix is used in Newton’s method, and it is also
important in the implicit function theorem. A formula to compute the gradient
and the Hessian ofφω(x), without symbolic differentiation, is given in [17]. See
also [4].
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Lemma 2.1. For φω(x) defined in (1.2) andx ∈ R

∇iφω(x) = −
q∑

j=1

ωj(A
(j)(x))−1 • A

(j)
i

Hω(x)ij := ∇2
ijφω(x) =

q∑
k=1

ωk[(A
(k)(x))−1A

(k)
i ]T • [(A(k)(x))−1A

(k)
j ],

where∇2
ij = ∂2

∂xi∂xj
, and the inner product,•, on square matrices is defined as

A •B = Tr(AT B) =
m∑

i, j=1

AijBij.

Note that there is a typographic error in the formula forHω(x) in [17]; the
transpose is missing. The expression for the Hessian can be written in a way
that involves the inner product ofsymmetricmatrices,

(2.2) Hω(x)ij =

q∑
k=1

ωk[(A
(k)(x))−1/2A

(k)
i (A(k)(x))−1/2]

• [(A(k)(x))−1/2A
(k)
j (A(k)(x))−1/2].

Assumption 2.1 of [17] is that the matrices{A<1>, A<2>, . . . , A<q>} are lin-
early independent. This assumption can be replaced by the assumption thatR
is bounded and nonempty due to the following lemma.
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Lemma 2.2. If the feasible regionR of (1.1) is bounded and nonempty, then
the matrices

A<i> = diag[A
(1)
i , A

(2)
i , · · · , A

(q)
i ] for i = 0, 1, 2, . . . , n

are linearly independent. Equivalently, ifR is bounded and nonempty there is
no nonzeros ∈ Rn such that

∑n
i=1 siA

(j)
i = 0 for all j ∈ {1, 2, · · · , q}.

Proof. Assumex∗ ∈ R, and assume that theA<i> are linearly dependent. We
must show thatR is unbounded. Since theA<i> are linearly dependent, there is
a nonzero vectors ∈ Rn such that

∑n
i=1 siA<i> = 0. Therefore

∑n
i=1 siA

(j)
i =

0 for eachj ∈ {1, 2, . . . , q}. Thus,

A(j)(x∗+σs) = A
(j)
0 +

n∑
i=1

A
(j)
i (x∗+σs) = A(j)(x∗)+σ

n∑
i=1

siA
(j)
i = A(j)(x∗)

for all realσ. But A(j)(x∗) � 0 sincex∗ ∈ R. Therefore,x∗ + σs ∈ R for all
σ ∈ R, andR is unbounded.

The following lemma is well known for the caseq = 1 (see [4]). The exten-
sion toq > 1 was proved in [17].

Lemma 2.3. [17] Assume thatR is nonempty and bounded. Then the Hessian
matrix Hω(x) is positive definite for allx ∈ R and all ω ∈ Rq

+. Hence,φω(x)
is strictly convex overR.

Remark 2.1. Lemma2.3is false if we remove the hypothesis thatR is bounded.
For example, consider the 2 linear inequalities inR2: x1 > 0 and 1 − x1 >
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0. Thenφω(x1, x2) = −ω1 log(x1) − ω2 log(1 − x1) is not strictly convex in
R = {(x1, x2)| 0 < x1 < 1}, which is an unbounded strip inR2. Furthermore,
Lemma2.3 is false ifω ≥ 0 replacesω > 0 (ω ∈ Rq

+). Consider the 3 linear
inequalities inR2 : x1 > 0, 1− x1 > 0 andx2

1 + x2
2 < 1. If ω3 = 0, thenφω is

not strictly convex inR.

It is evident from the structure of (1.2) and (2.1) that the weighted analytic
center is the same for the weight vectorω and any positive scalar multiple,kω.
That is,

xac(ω) = xac(kω) for all k > 0.

Therefore the set of weights can be constrained to theopen simplex

∆q−1 :=

{
ω ∈ Rq

+ :

q∑
j=1

ωj = 1

}
.

Note that∆q−1 is open in the(q−1)-dimensional affine subspace ofRq defined
by

∑q
j=1 ωj = 1, but it is not open as a subset ofRq. The region of weighted

analytic centers can be described in two ways:

W = {xac(ω) : ω ∈ Rq
+} = {xac(ω) : ω ∈ ∆q−1}.

The following lemma describes how we choose random weight vectors in
our numerical experiments.

Lemma 2.4. Let ωj = − log(uj) independently for eachj ∈ {1, 2, . . . , q},
whereuj is chosen from a uniform distribution on(0, 1). Then, the normalized
weight vectors

ω̃ =
ω∑q

j=1 ωj
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are uniformly distributed on the open simplex∆q−1.

Proof. The probability density function for eachωj is f(ωj) = e−ωj , where
ωj > 0. Hence the probability density function onω is

f(ω) = e−ω1e−ω2 · · · e−ωq = e−
∑

ωj .

Therefore, the probability density ofω ∈ Rq
+ is constant on each slice where∑q

j=1 ωj is constant. It follows that the probability density ofω̃ in ∆q−1 is
constant.

The reasonφω(x) is called a potential function comes from physics. We
define

φ(j)(x) := log det A(j)(x)−1 = − log |A(j)(x)|

to be thepotential energyassociated with thej th constraint. The negative gradi-
ent of this potential energy is aboundary forceF(j)(x) pushing away from the
boundary:

F(j)(x) := −∇φ(j)(x) =
∇|A(j)(x)|
|A(j)(x)|

.

It is clear that the components of this boundary force are rational functions of
x, since|A(j)(x)| is a polynomial.

As x approaches thej th boundary, the magnitude of the forceF(j)(x) grows
without bound, and the force points normal to boundary, intoR.

The system of equations for the minimizer ofφω(x), equation (2.1), says that
the weighted vector sum of the boundary forces, defined to beFω(x), is the zero
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vector:

Fω(x) :=

q∑
j=1

ωj F(j)(x) = 0.

Therefore, the region of weighted analytic centers can be characterized as

W = {x ∈ R : there existsω ∈ Rq
+ such thatFω(x) = 0}.

In other words, a pointx is in W if and only if the force vectorsF(j)(x) are
positively linearly dependent. Geometrically, a finite setS of vectors inRn is
positively linearly dependent if and only if the zero vector is in theirpositive
convex hull, defined to be

conv+(S) =

{
q∑

j=1

ωjF
(j) : ωj > 0,

q∑
j=1

ωj = 1, F(j) ∈ S

}
.

The positive convex hull is precisely the relative interior of the convex hull
of S, denotedconv(S) (see [8]). Let S be a finite set of points inRn. Then
conv+(S) is an open subset ofRn if and only if the interior ofconv(S) is
nonempty. Furthermore, the interior ofconv(S) is nonempty if and only if
there is some subset ofn + 1 vectors which are affinely independent [8]. Recall
that a set of vectors isaffinely dependentif and only if there is a set of weights
αj, not all zero, such that

q∑
j=1

αjF
(j) = 0 and

q∑
j=1

αj = 0.
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Theorem 2.5. If x∗ ∈ W, and{F(j)(x∗) : j = 1, 2, . . . , q} spansRn, thenx∗

is an interior point ofW.

Proof. Assume thatx∗ ∈ W, and letS = {F(j)(x∗) : j = 1, 2, . . . , q}. Assume
that span(S) = Rn. Therefore there is a setS ′ ⊆ S consisting ofn linearly
independent vectors. Sincex∗ ∈ W, we know that0 ∈ conv+(S). Therefore
conv+(S) = conv+(S ∩ {0}). Now, the setS ′ ∩ {0} is a set ofn + 1 affinely
independent vectors, soconv+(S ′ ∩ {0}) is open. Therefore, this convex hull
has positiven-dimensional volume, and it follows thatconv+(S) is open. Since
the force vectors depend continuously onx, there is a neighborhoodU of x∗

such that0 ∈ conv+{F(j)(x) : j = 1, 2, . . . , q} for all x ∈ U . Therefore
x ∈ W for all x ∈ U , andx∗ is an interior point ofW.

The following corollary gives conditions which ensure thatW is open. This
was proved by a different method in [17]. The statement of the theorem in [17]
has the hypothesis that there is a set ofn linearly independent force vectors at
every point, which is equivalent to our hypothesis that the force vectors span
Rn.

Corollary 2.6. If the set of force vectors{F(j)(x) : j = 1, 2, . . . , q} spansRn

at every pointx ∈ R, then the set of weighted analytic centersW is open.

Proposition 2.7. If x∗ ∈ W andq ≤ n, then the set{F(j)(x∗) : j = 1, 2, . . . , q}
does not spanRn.

Proof. If q < n theq force vectors cannot spanRn. Assume, by way of contra-
diction, thatq = n, x∗ ∈ W and the set of force vectors spansRn. The force
vectors must be linearly independent, so no nontrivial linear combination gives

http://jipam.vu.edu.au/
mailto:
mailto:Shafiu.Jibrin@nau.edu
mailto:
mailto:Jim.Swift@nau.edu
http://jipam.vu.edu.au/


The Boundary of Weighted
Analytic Centers for Linear

Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004

http://jipam.vu.edu.au

the zero vector. On the other hand, sincex∗ ∈ W, a linear combination with
positive weights gives the zero vector. This is a contradiction.

Remark 2.2. By Proposition2.7, Corollary2.6does not apply ifq ≤ n. In fact,
W is not open ifq ≤ n, sinceW is the continuous image of the set∆q−1, which
has dimension less thann.
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3. Examples and Properties of Regions of Weighted
Analytic Centers

We give four examples of systems of Linear Matrix Inequalities (LMIs) and
their associated feasible regionR and region of weighted analytic centersW ⊆
R. The examples illustrate some properties of the region of weighted analytic
centersW. They will reappear later.

Example 3.1. Consider the system of three linear inequalities (a special case
of linear matrix inequalities, with1× 1 matrices):

(3.1) A(1)(x) := x1 > 0, A(2)(x) := x2 > 0, A(3)(x) := 1− x1 − x2 > 0.

In this case the feasible region is a triangle, and the three boundary forces are

F(1)(x) =
e1

x1

, F(2)(x) =
e2

x2

, F(3)(x) =
−e1 − e2

1− x1 − x2

.

Since the forcesF(j)(x) point in the directionse1, e2 and−e1 − e2 at every
x ∈ R, it is possible to choose a positive weight vector to balance the forces.
Hence the region of weighted analytic centers is the same as the feasible region:
W = R.

It is true in general thatW = R for systems of linear inequalities with a
bounded feasible region. For systems of linearmatrix inequalities the situation
is more interesting. The next example illustrates the fact thatW is not open if
q ≤ n, sinceW is the image of theq − 1 dimensional set∆q−1 under thexac

map.
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Figure 1: The feasible regionR for system (3.1) is a triangle. The direction of
the three boundary forces at any point inR is shown. The region of weighted
analytic centers isW = R.

Example 3.2.Consider the system of two linear matrix inequalities inR2

A(1)(x) := 1 + x1 > 0,

A(2)(x) :=

[
1 0
0 1

]
+ x1

[
1 0
0 −1

]
+ x2

[
0 1
1 0

]
� 0.

The feasible region isx2
1 + x2

2 < 1. The first boundary force always points
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Figure 2: The feasible regionR is the open unit disk. The regionW is the line
segment without the end points.

to the right. The second boundary force points toward the center of the circle.
Hence, the region of weighted analytic centers is the line segment{(x1, x2) :
0 < x1 < 1 andx2 = 0}. Note how the addition of redundant constrains (like
1) can influence the region of weighted analytic centers. In this exampleW has
no interior points. This is always the case whenq ≤ n.

A point x is called aboundary pointof A ⊆ Rn, if every neighborhood ofx
contains a point inA and a point not inA. The boundary ofA, denoted∂A, is
the set of all boundary points ofA. These definitions are standard. An open set
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like the feasible regionR contains none of its boundary points:∂R ∩R = ∅.
In Example3.1, the boundary ofR is made of the three line segments of the
triangle, and∂W = ∂R. In Example3.2, all points ofW belong to∂W, but
∂W also contains(0, 0) and(1, 0), which are not inW.

Example 3.3.For eachq, a positive integer, consider the system of linear matrix
inequalities:

A(j)(x) =

 3− cos
(

2πj
q

)
− sin

(
2πj
q

)
− sin

(
2πj
q

)
3 + cos

(
2πj
q

) 
+ x1

[
1 0
0 −1

]
+ x2

[
0 1
1 0

]
� 0 for j = 1, . . . , q.

The feasible regionR of Example3.3 is the intersection of open disks of radius

3 centered at
(
cos

(
2πj
q

)
, sin

(
2πj
q

))
. The region of weighted analytic centers

W is the positive convex hull of the centers of the disks. Figure3 is the picture
for the caseq = 5. The boundary of the feasible region was found using the
SCDalgorithm described in [11].

Remark 3.1. Finding the boundary points ofW: Figure 3 demonstrates that it
would require a very large number of random points inW to get a reasonable
number of points near the boundary ofW, especially whenq is larger thann. In
Section5 we give a method of computing the boundary ofW, which focuses on
the distinction between feasible and non-feasible boundary points. A boundary
pointx∗ ∈ ∂W is feasibleif x∗ ∈ R and infeasibleif x∗ /∈ R. In Example3.1,
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Figure 3: The regionW of Example3.3 for q = 5. The dots are the weighted
analytic centers for 10,000 weight vectors chosen randomly from the uniform
distribution in the simplex∆4 described in Lemma2.4. We used the WF algo-
rithm, listed in the Appendix, withµ = 1. The boundary ofW is the pentagon.

all boundary points ofW are infeasible. In Example3.2, (1, 0) is an infeasible
boundary point while(x, 0) for 0 ≤ x < 1 are feasible boundary points. In
Example3.3, all boundary points are feasible.

It is well-known thatR is convex. It is natural to ask ifW is convex. Ex-
ample 2 of [17] shows thatW is not necessarily convex. In that example, each
of theq = 4 constraints involves a5 × 5 matrix in n = 3 variables. A simpler
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example follows.

Example 3.4. Consider the feasible regionR and the region of weighted ana-
lytic centersW for theseq = 3 LMI constraints inn = 2 variables:

A(1)(x) =

[
3 −2
−2 3

]
+ x1

[
1 0
0 −1

]
+ x2

[
0 2
2 0

]
� 0

A(2)(x) =

[
3 −2
−2 3

]
+ x1

[
0 2
2 0

]
+ x2

[
1 0
0 −1

]
� 0

A(3)(x) =

[
−0.5 0

0 −0.5

]
+ x1

[
1 0
0 1

]
+ x2

[
1 0
0 1

]
� 0.

Figure 4 shows clearly thatW is not convex. The boundary pointse =
(0, 1) and f = (1, 0) are the centers of the ellipses where|A(1)(x)| = 0 and
|A(2)(x)| = 0, respectively. Furthermore,F(1)(e) = 0 andF(2)(f) = 0. The
boundary points betweene andf are where the forcesF(1)(x) andF(2)(x) are
positively linearly dependent, which can be computed to bex2 = 1−x1

1−15x1/16
. The

forcesF(1)(x) andF(3)(x) are positively linearly dependent betweene and c,
which is a line of slope 1/4. The points betweena andf are where the forces
F (2)(x) andF (3)(x) are positively linearly dependent, which is a line of slope
4. The pointd = (4/3, 4/3) is not an interior point ofW, becaused ∈ W
andd ∈ ∂W. Hence,W is not open in this example. The fact thatd is not an
interior point shows that the hypothesis that the force vectors spanRn is needed
in Theorems2.5and2.6. At pointd, all of the force vectors are scalar multiples
of e1 + e2, so they do not spanR2.
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Figure 4: The regionW of Example3.4 given by 10,000 random points as in
Figure3. The corner pointe is the center of ellipse 1; similarlyf is the center
of ellipse 2.
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4. Repelling Paths and Repelling Limits
In this section we study the mapping of the open simplex∆q−1 to the region
of weighted analytic centers. We also study repelling paths and limits. This
extends the concept of repelling limits given in [5].

Define the functionf : R× Rq
+ 7→ Rn, where

fi(x, ω) =

q∑
k=1

ωkF
(k)
i (x).

The following lemma is a reinstatement of Theorems 3.6 and 3.7 of [17]. The
proof uses the Implicit Function Theorem in [20].

Lemma 4.1. The mapxac : Rq
+ → R; ω 7→ xac(ω) is analytic. Furthermore,

the partial derivatives of the weighted analytic center function evaluated atx =
xac(ω) are:

(4.1)
∂xac(ω)i

∂ωk

= −|Hω(x)|−1 ∂(f1, f2, . . . , fn)

∂(x1, x2, xi−1, ωk, xi+1, . . . , xn)
,

and satisfy:

(4.2)
n∑

j=1

Hω(x)ij
∂xac(x)j

∂ωk

= −F
(k)
i (x).

Remark 4.1. If one wishes to compute the partial derivatives ofxac, the system
(4.2) should be solved, rather than using equation (4.1).
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Corollary 4.2. The restricted mappingxac|∆q−1 : ∆q−1 −→ R is analytic inω.

Proof. This follows from Lemma4.1, since∆q−1 is an affine subspace ofRq
+.

The next example shows that we cannot extendxac|∆q−1 to an analytic, or
even continuous function mapping the closure of the simplex to the closure of
R.

Example 4.1.Consider the system with 4 constraints inR2:

A(1) = x1 > 0, A(2) = 1− x1 > 0, A(3) = x2 > 0, A(4) = 1− x2 > 0.

The weighted analytic center is at

x1 =
ω1

ω1 + ω2

, x2 =
ω3

ω3 + ω4

.

Note that

lim
ω1→∞

xac(ω) =

(
1,

ω3

ω3 + ω4

)
,

which depends onω3 and ω4. But in the simplex the normalized weights ap-
proach(1, 0, 0, 0) asω1 → ∞ with the other weights fixed. Thereforexac(ω)
has no limit asω ∈ ∆q−1 approaches(1, 0, 0, 0). Therefore,xac : ∆q−1 → R
cannot be extended to a continuous function at(1, 0, 0, 0) ∈ ∆q−1.

We now show how weighted analytic centers generalize the central path in
semidefinite programming. Most interior point algorithms for solving SDP ap-
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proach the optimal solution by following a central path. Consider the semidefi-
nite programming problem (SDP)

min cT x

s.t.A(j)(x) := A
(j)
0 +

n∑
i=1

xiA
(j)
i � 0, j = 1, 2, . . . , q.

LetR denote the feasible region. The central path associated with the SDP is
defined by

x(µ) = argmin

{
µcT x +

q∑
j=1

log det A(j)(x)−1 : x ∈ R

}
.

As µ → ∞, more weight is put on the objective term compared to the barrier
term, andx(µ) approaches the optimal solution of the SDP if strict complemen-
tarity holds [13].

We can replace the linear objective function with a redundant constraint as
follows. ChooseK such thatcT x < K for all x in the (bounded) feasible region
R. Then, following the method of Renegar [19] for linear programming, as in
[5], a central path for the SDP can be defined as:

x̂(µ) = argmax

{
µ log(K − cT x) +

q∑
j=1

log det A(j)(x) : x ∈ R

}

= argmin

{
µ log(K − cT x)−1 +

q∑
j=1

log det A(j)(x)−1 : x ∈ R

}
.
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Hence, if follows that̂x(µ) is a weighted analytic center defined byA(q+1)(x) :=
K − cT x > 0 and the otherq LMI constraints with weightω = (1, . . . , 1, µ)
(see1.2). As µ → ∞, the force from the ‘cut’K − cT x > 0 pushes the point
x̂(µ) to the point on the boundary ofR wherecT x is minimized. The definition
of weighted analytic center (1.2) generalizes the central path. The definition has
the added advantage that it can be used to define the concept of repelling path
and repelling limits of LMI constraints.

Let J ⊆ {1, 2, . . . , q} and letω be a weight vector inRq
+. For µ > 0, we

define theω-repelling pathassociated with theJ constraints by

x(J)
ω (µ) = argmin

{
q∑

j=1,j∈J

µωj log det A(j)(x)−1

+

q∑
j=1,j 6∈J

ωj log det A(j)(x)−1 : x ∈ R

}
.

Note that ifJ = {1, 2, . . . , q} − I, thenx
(J)
ω (µ) = x

(I)
ω (1/µ).

The pathx(J)
ω (µ) is given by the unique optimal solution of themaxdetprob-

lem

min

q∑
j=1,j∈J

µωj log det A(j)(x)−1 +

q∑
j=1,j 6∈J

ωj log det A(j)(x)−1

s.t.A(j)(x) := A
(j)
0 +

n∑
i=1

xiA
(j)
i � 0, j = 1, 2, . . . , q
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In other words,x(J)
ω = xac(ω

J(µ)), where

ωJ(µ)j =


µωj if j ∈ J

ωj if j /∈ J
.

The theory of Maxdet optimization is studied in [26].

Corollary 4.3. The repelling pathg : R+ −→ R defined byg(µ) = x
(J)
ω (µ) is

analytic inµ.

Proof. This follows from Corollary4.1.

The limit lim
µ→∞

x
(J)
ω (µ) is called theω-repelling limit associated with theJ

constraints. It is interesting to note that a repelling limit can be an interior point
ofR and/or an interior point ofW, or neither.
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5. Computing the Boundary of the Region of
Weighted Analytic CentersW Using Repelling
Limits

In this section we use the concept of repelling limits defined in the previous
section to determine the boundary of the region of weighted analytic centers
∂W. We also use a modification of Newton’s method and a new concept of the
frame ofW. This is called the WF algorithm, since it can be used to compute
both theW and the Frame ofW.

In our WF algorithm,µ is fixed andx(J)
ω (µ) is computed for many random

choices ofω andJ , where|J | = n andJ ⊆ {1, 2, . . . , q} has sizen. We show
that every repelling limit with|J | = n is either a boundary point ofW or a
frame point(or both). Whenµ is large, typically1000 or 10000, each point
x

(J)
ω (µ) approximates a repelling limit. Ifq = n + 1, these repelling limits give

the boundary of the region of weighted analytic centers in the examples we have
studied. Ifq > n + 1, we observe frame points in the interior ofW as well as
points in∂W.

The WF algorithm uses Newton’s method to find the weighted analytic cen-
ters. Newton’s method is problematic when the weighted analytic center is near
the boundary ofR. In particular, the Newton stepx0 → x0 + s may take the
new point out ofR. If this happens, our algorithm uses a step sizeh such that
x0 → x0 + hs is half way to the boundary ofR in the direction ofs. This
prevents the iterates from leavingR. As an alternative, Newton’s method with
backtracking could be used. Theorem5.1and its corollary give our method for
determining the distance to the boundary ofR.
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Theorem 5.1. Let s be a nonzero vector inRn, andA(x0) � 0, whereA(x) =
A0 +

∑n
i=1 Aixi is symmetric. Choose a square matrixL such thatA(x0) =

LLT . Letλmax be the maximum eigenvalue of the symmetric matrix

B = −L−1

[
n∑

i=1

siAi

]
(L−1)T .

(a) If λmax > 0, thenA(x0 + σs) � 0 for all positive σ < 1/λmax, and
A(x0 + σs) 6� 0 for all σ ≥ 1/λmax.

(b) If λmax ≤ 0, thenA(x0 + σs) � 0 for all σ > 0.

Proof. The matrixA(x0) is positive definite, and the region whereA(x) � 0
is convex, soA(x0 + σs) � 0 for all σ in the maximal interval including 0
wheredet A(x0 + σs) > 0, andA(x0 + σs) 6� 0 outside this interval. For
simplicity, we only considerσ > 0. Now, L is nonsingular, sincedet L =√

det A(x0) > 0. Furthermore,(L−1)T = (LT )−1 for any nonsingular matrix,
soL−1A(x0)(L

−1)T = I. Now, for anyσ 6= 0,

det[A(x0 + σs)] = 0 ⇔ det

[
A(x0) + σ

n∑
i=1

siAi

]
= 0

⇔ det

[
1

σ
I + L−1

[
n∑

i=1

siAi

]
(L−1)T

]
= 0

⇔ det

[
1

σ
I −B

]
= 0

⇔ 1

σ
is an eigenvalue ofB.(5.1)
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(a) Let λmax be the largest eigenvalue ofB. If λmax > 0, thenσ = 1/λmax is
the smallest positiveσ for which det A(x0 + σs) = 0. This implies that
A(x0 +σs) is positive definite for all positiveσ < 1/λmax, andA(x0 +σs)
is not positive definite for allσ ≥ 1/λmax.

(b) If λmax ≤ 0, thenB has no positive eigenvalues andA(x0 + σs) � 0 for
all σ > 0.

Corollary 5.2. Let x0 ∈ R, s ∈ Rn, s 6= 0. Defineλ
(j)
max for each constraint

A(j)(x) � 0, as in Theorem5.1. Thenx0 + σs, for σ > 0, is on the boundary of
R if and only if

(5.2) σ = min
{
1/λ(j)

max : 1 ≤ j ≤ q andλ(j)
max > 0

}
.

Proof. By Theorem5.1, all of theA(j)(x) are positive definite ifx = x0 + ts
and0 < t < σ, and at least one of theA(j)(x0 +σs) is not positive definite.

In our Newton-based WF algorithm, if the Newton stepx0 7→ x0 + s maps
the point out of the feasible region, then we take the stepx0 7→ x0 + (σ/2)s,
whereσ is found in Corollary5.2, using the Cholesky factorizations ofA(j)(x0).
Thus, the new iterate is half way to the boundary fromx0, in the direction ofs.

We now give a series of results, culminating with Theorem5.6 which char-
acterizes the feasible boundary points in this way; at every feasible boundary
point ofW there is a set of positively linearly dependent force vectors of size
≤ n.
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The vector sum of the constraint forcesF(j)(x) can be written as then × q
matrixM(x) times the column vectorω:

q∑
j=1

ωj F(j)(x) = M(x)ω,

where the columns ofM(x) are the boundary forcesF(j)(x). Using Lemma2.1
we find that

M(x) :=
[
F(1)(x) · · · F(q)(x)

]
(5.3)

=

 A(1)(x)−1 • A
(1)
1 · · · A(q)(x)−1 • A

(q)
1

· · · · · · · · ·
A(1)(x)−1 • A

(1)
n · · · A(q)(x)−1 • A

(q)
n

 .

Theorem 5.3. If x∗ ∈ R, x∗ ∈ ∂W, and x∗ /∈ W, then there is a nonzero
weight vector which satisfiesM(x∗)ω = 0, ω ≥ 0, but there are no solutions to
M(x∗)ω = 0 for ω > 0.

Proof. Assume thatx∗ satisfies the hypotheses of the theorem. Sincex∗ ∈ ∂W
there is a sequence of pointsxn in W which converges tox∗. Sincexn ∈ W
for eachn ∈ N, there is sequence of normalized weight vectorsωn ∈ ∆q−1

such thatxac(ω
n) = xn. The open simplex∆q−1 is a bounded subset ofRq, so

there is a convergent subsequenceωni. For simplicity relabel this convergent
subsequence asωi and call its limitω∗, so thatωi → ω∗ asi →∞. Now,M(x)
is continuous at eachx ∈ R, andM(xi)ωi = 0 for eachi, so

lim
i→∞

M(xi)ωi = M
(

lim
i→∞

xi
)

lim
i→∞

ωi = M(x∗)ω∗ = 0.
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Sincex∗ /∈ W, we know thatω∗ /∈ ∆q−1. Therefore,ω∗ is a boundary point of
the open simplex, which implies thatω∗ ≥ 0, ω∗ 6= 0, andω∗ 6> 0. (At least
one, but not all, of the components ofω∗ is zero.) This satisfies the first part of
the conclusion of the theorem. Finally, there is noω > 0 such thatM(x∗)ω = 0,
sincex∗ /∈ W.

The next example shows that the converse of Theorem5.3 is false.

Example 5.1.Consider the system of 4 LMIs

A(1)(x) := 1 + x1 > 0, A(2)(x) := 1− x1 > 0, A(3)(x) := 1 + x2 > 0, and

A(4)(x) :=

[
1 0
0 1

]
+ x1

[
1 0
0 −1

]
+ x2

[
0 1
1 0

]
� 0.

The feasible regionR is the interior of the unit circle, andW is the upper half
of the disk. The set of points which satisfy the hypotheses of Theorem5.3 is the
line segment{(x1, x2) : −1 ≤ x1 ≤ 1, x2 = 0}. However, the lower half of the
disk (withx2 ≤ 0) satisfies the conclusion of the theorem. Hence, the converse
of Theorem5.3 is false.

The important ingredient in this example is thatA(1)(x) andA(2)(x) are in-
dependent ofx2, not that they are linear. Similar examples can be made with
x ∈ R3 without using linear constraints, by augmenting a set of LMIs which
are independent ofx3.

The following theorem gives a geometric characterization of feasible bound-
ary points ofW.
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Theorem 5.4. If x∗ ∈ R and x∗ ∈ ∂W, then there is a nonempty setJ ⊆
{1, 2, 3, . . . , q} and a nonzero vectors ∈ Rn such thats ·F(j)(x∗) = 0 if j ∈ J ,
s · F(j)(x∗) > 0 if j /∈ J , and the set of force vectors{F(j)(x∗) : j ∈ J} is
positively linearly dependent.

Proof. First, assume thatx∗ ∈ ∂W andx∗ ∈ W. Theorem2.5 implies that the
set of force vectors donot spanRn, so they must lie in a subspace of dimension
less thann. Therefore there is a nonzero vectors ∈ Rn such thats·F(j)(x∗) = 0
for all j and we chooseJ = {1, 2, 3, . . . , q}.

Now assume thatx∗ ∈ ∂R andx∗ ∈ R but x∗ /∈ W. The hypotheses of
Theorem5.3 hold, and we will apply the alternative theorems of Stiemke and
Gordon to the conclusions of the theorem. Stiemke’s theorem of the alternative
([22], [14]) says that for anyn× q matrixM , either

(5.4)
∃ω > 0 such thatMω = 0

or ∃ s such thatsT M ≥ 0, sT M 6= 0
but not both.

Gordon’s Alternative Theorem [14] is similar: For anyn× q matrixM , either

(5.5)
∃ω ≥ 0 such thatω 6= 0 andMω = 0

or ∃ s such thatsT M > 0
but not both.

Sincex∗ /∈ W, Stiemke’s theorem says that there existss ∈ Rn such that
s · F(j)(x∗) ≥ 0 for all j ∈ {1, 2, . . . , q}, ands · F(j)(x∗) > 0 for somej.
However, Gordon’s theorem of the alternative says that there is nos such that
s · F(j)(x∗) > 0 for all j. Let J be the smallest subset of{1, 2, . . . , q} such
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that there is ans ∈ Rn with the property thats · F(j)(x∗) = 0 if j ∈ J and
s · F(j)(x∗) > 0 if j /∈ J . Fix s to be one such vector. The setJ is nonempty
due to Gordon’s Theorem.

To complete the proof we must show that the set{F(j)(x∗) : j ∈ J} is
positively linearly dependent. Assume, by way of contradiction, that it is not.
Then, Stiemke’s theorem implies that there is a vectort ∈ Rn such thatt ·
F(j)(x∗) ≥ 0 for all j ∈ J , and an integerj∗ ∈ J such thatt · F(j∗)(x∗) > 0.
Using thes defined previously, choose a positiveε so that(s+ε t) ·F(j)(x∗) > 0
for all j /∈ J . Then(s + ε t) · F(j)(x∗) = ε t · F(j)(x∗) ≥ 0 for all j ∈ J , and
(s+ε t) ·F(j∗)(x∗) > 0. Sincej∗ ∈ J , this contradicts the fact thatJ is minimal.
Therefore,{F(j)(x∗) : j ∈ J} is positively linearly dependent, and the theorem
is proved.

Remark 5.1. Let us apply Theorem5.4 to Example3.4, for whichW is shown
in Figure4.

At the feasible boundary pointe = (0, 1), the force vectors areF(1)(e) = 0,
F(2)(e) = 4e1 − e2, andF(3)(e) = e1 + e2. (We have chosen a convenient
normalization of the force vectors since only their direction matters.) The set
from Theorem5.4 is J = {1}, and a choice of the vector iss = e1.

A more typical feasible boundary point ofW is (1, 5/4), where the force
vectors areF(1)(1, 5/4) = −e1 − e2, F(2)(1, 5/4) = −e2, andF(3)(1, 5/4) =
e1+e2. Here the set from Theorem5.4is J = {1, 3}, and the vectors = e1−e2

is unique up to a positive scalar multiple.
The feasible boundary pointd = (4/3, 4/3) is a point inW which is not an

interior point. The force vectors areF(1)(d) = −e1 − e2, F(2)(d) = −e1 − e2,
andF(3)(d) = e1 + e2. Here the set from Theorem5.4is J = {1, 2, 3}, and the
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vectors = e1 − e2 is unique up to a nonzero scalar multiple.

We need one more lemma before we can characterize feasible boundary
points ofW. Our proof of the lemma is similar to the proof of the Carathéodory’s
Theorem given in [8].

Lemma 5.5. Every positively linearly dependent set of vectors inRn contains
a positively linearly dependent subset of sizen + 1 or smaller.

Proof. Assume, by way of contradiction, that a setS := {F(j) ∈ Rn : j =
1, 2, 3, . . . , p}, with p > n + 1, is positively linearly dependent, and there is no
proper subset which is positively linearly dependent. Choose a set of positive
weightsωj such that

p∑
j=1

ωjF
(j) = 0.

The setS is affinely dependent, meaning that there are weightsαj (not all zero)
such that

p∑
j=1

αjF
(j) = 0 and

p∑
j=1

αj = 0.

This is true since{F(j) − F(p) : j = 1, 2, 3, . . . , p − 1}, being a set of vectors
in Rn of size at leastn + 1, is linearly dependent.

Choose such a set of weightsαj. For anyλ ∈ R, it follows that

p∑
j=1

(ωj + λαj)F
(j) = 0.
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Now, defineλ∗ so that all of the weightsωj + λ∗αj are nonnegative but at least
one is zero.

λ∗ = max{λ : ωj + λαj ≥ 0 for j = 1, 2, . . . , p}.

Since at least one of theαj is negative,λ∗ exists. Now, defineJ = {j : ωj +
λ∗αj > 0}. By construction,1 ≤ |J | < p, and the sum∑

j∈J

(ωj + λ∗αj)F
(j) = 0

demonstrates that the set{F(j) ∈ Rn : j ∈ J} is positively linearly dependent.
This contradicts the assumption that no proper subset ofS is positively linearly
dependent.

Remark 5.2. The “or smaller” is needed in the statement of Lemma5.5. The
positively linearly dependent set of vectors inR2, {e1,−e1, e2,−e2} has no
positively linearly dependent subset of size 3. Theorem5.5 holds, of course,
and{e1,−e1} is a positively linearly dependent subset of size 2.

We define theframeofW, denoted byF ⊆ R, to be the set

(5.6) F := {x : ∃ a positively linearly dependent subset of

{F(j)(x)}q
j=1 of size ≤ n

}
.

If x ∈ F , we callx a frame point. We now state ourmain theorem. It gives a
useful characterization of the boundary points ofW.
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Theorem 5.6. Every feasible boundary point ofW is a frame point. That is, if
x∗ ∈ ∂W ∩ R, then there is a set ofn or fewer positively linearly dependent
force vectorsF(j)(x∗).

Proof. Assume thatx∗ ∈ ∂W∩R. By Theorem5.4, there is a positively linearly
dependent subset of vectors{F(j)(x∗) : j ∈ J} and a nonzero vectors ∈ Rn

such thats · F(j)(x∗) = 0 if j ∈ J . All of the vectorsF(j)(x∗) with j ∈ J lie in
the (n − 1)-dimensional subspace perpendicular tos. Therefore, by Theorem
5.5, there is a positively linearly dependent subset of{F(j)(x∗) : j ∈ J} of size
(n− 1) + 1 = n or smaller. Therefore,x∗ is a frame point.

Theorem5.6is a significant improvement over Theorem5.4, which gives no
information about the size of the setJ . Our main result (Theorem5.6) motivates
the WF algorithm. The implementation uses the following corollary.

Corollary 5.7. Every repelling limit lim
µ→∞

x
(J)
ω (µ), whereJ is of sizen, is either

a frame point or an infeasible boundary point ofW.

Proof. Let x∗ be a repelling limit lim
µ→∞

x
(J)
ω (µ) for |J | = n. If x∗ is inR, then

there existsn positively linearly independent force vectorsF(j)(x∗) at x∗. So,
x∗ is a frame point. Ifx∗ ∈ ∂R, thenx∗ 6∈ W . By Theorem5.6, x∗ ∈ ∂W .

The WF algorithm approximates the repelling limitslim
µ→∞

x
(J)
ω (µ), whereJ

is a randomly chosen set of sizen, by choosing large fixedµ. This approxi-
mates the frame points at which there existn force vectors which are positively
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linearly dependent. (The frame points where fewer thann force vectors are pos-
itively linearly dependent can be approximated with|J | = n when one or more
random weights are small.)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(4) 

(3) 

(5) 

(1) 

(2) 

Figure 5: The frame ofW for Example3.3with q = 5 is composed of the line
segments joining the five corner points of the pentagon. The figure showsN =
1, 000 points which approximate the frame, obtained with the WF algorithm
usingµ = 10, 000. This gives a better picture of∂W than Figure3, where
10,000 points are plotted.
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Figure 6: The boundary ofW in Example3.4 is approximated using the WF
algorithm withN = 1, 000 points andµ = 10, 000. Sinceq = n + 1, this
example has no frame points which are not on the boundary ofW. These 1,000
points should be compared with the 10,000 points plotted in Figure4.
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Figure 7: The output of the WF Algorithm applied to Example5.1, showing
N = 2, 000 points usingµ = 1, 000. In this pathological example,W is the
line segment joining(−1, 0) to (1, 0) and the frame ofW is the whole feasible
disk, sinceF(1)(x) andF(2)(x) are positively linearly dependent at allx. Frame
points which are not in the closure ofW are not found by our WF Algorithm,
since these are not repelling limits.
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Figures5, 6, and7 show the result of the WF algorithm applied to Examples
3.3, 3.4, and5.1(respectively), with largeµ. Note that the frame pointsand the
infeasible boundary points are found by the algorithm. Figure7 shows that the
converse of Corollary5.7 is false: there are frame points, e.g.(0,−0.5) which
are not repelling limits.

As stated earlier, the WF algorithm, withµ large, approximates the frame
ofW. To understand why the algorithm also approximates infeasible boundary
points, assume for simplicity thatx∗ is an infeasible boundary point ofW at
which exactly one of the matrices, call itA(b)(x∗), is singular. When the WF
algorithm choosesJ with b /∈ J , all butn + 1 force vectors are negligible forx
nearx∗:∑

j /∈J

ωjF
(j)(x) +

∑
j∈J

µωjF
(j)(x) ≈ ωbF

(b)(x) +
∑
j∈J

µωjF
(j)(x).

Thus, the WF algorithm withµ large approximates points where then + 1
“large” forces,F(b)(x) andµF(j)(x) with j ∈ J , are positively linearly depen-
dent. Lemma5.5implies that neglecting the other force vectors will not prevent
us from findingx∗ in this way.

A similar argument holds if the infeasible boundary point is a “corner” point
of R, where two (or more) of the matricesA(j)(x∗) are singular. An example
is pointb in Figure6. We suspect that all infeasible boundary points ofW are
approximated by the WF algorithm in this way.
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6. Conclusion
We studied the boundary of the region of weighted analytic centersW for linear
matrix inequality constraints. This is important because many interior point
methods in semidefinite programming are based on weighted analytic centers.
We gave many examples that illustrated the topological properties ofW. We
showed that the region of weighted analytic centers is not necessarily convex in
Rn, for all n > 1. We also showed thatW is not open ifq ≤ n, andW is not
necessarily open ifq > n.

We extended the notion of repelling paths and repelling limits from linear
programming to semidefinite programming . We gave a characterization of the
boundary points ofW and introduced the new concept of the frame ofW. We
show that feasible boundary points ofW are frame points ofW. We developed
the WF algorithm, which can compute eitherW or the boundary ofW in terms
of repelling limits, based on a modification of Newton’s method.

There are many directions that our present work can be extended. To avoid
the problem of unbounded derivatives at the boundary orR, we can choose
positive weightsνj and solve

(6.1)
q∑

j=1

νj∇i|A(j)(x)| = 0 for i = 1, 2, . . . , n.

If Newton’s method converges to a solution, and if the solution is inR, then it
is in W. We have had success in preliminary investigations with this method,
but Newton’s method does not always converge, or it converges to an infeasible
point.
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The infeasible boundary points ofW can be computed using a modification
of Lagrange multipliers. For example a point on thebth boundary component of
R can be found by solving then + 1 equations in then + 1 variablesλ, x:

|A(b)(x)| = 0,

λ∇|A(b)(x)|+
∑
j 6=b

ωj
∇|A(j)(x)|
|A(j)(x)|

= 0,

where the weightsωj are chosen randomly forj 6= b. Spurious solutions to
this system abound. One must check thatλ > 0 and thatx is indeed on thebth

boundary component ofR.
Preliminary investigations show that points near the intersection of two bound-

aries are rarely found by this method. This problem is alleviated if we combine
the Lagrange multiplier method with the polynomial method described in sys-
tem (6.1). Choose an integerb at random, and choose theq−1 weightsνj, j 6= b
at random and solve

|A(b)(x)| = 0

λ∇|A(b)(x)|+
∑
j 6=b

νj∇|A(j)(x)|= 0

for then + 1 variablesλ andx. As before, Newton’s method does not always
converge, and it sometimes converges to points that are not on the boundary of
R.
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The definition of weighted analytic center led to the concepts ofpositive
linear dependenceandpositive convex hull. Another way that this work can be
extended is to explore different definitions of the weighted analytic center (for
example, replacingωj > 0 with ωj ≥ 0).
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Appendix: The WF Algorithm (WFA)
Algorithm to plot points inW (µ = 1) or Frame and boundary points ofW
(µ � 1)

Input: Any feasible pointx∗ of q LMIs in Rn, number of points to plotN,
stoping conditions for Newton’s methodTOL andmaxIts, and a parameterµ =
1 or µ � 1.
Repeat

If µ > 1 andq > n, choose a random setJ ⊆ {1, 2, . . . , q} of sizen

Chooseq numbersuj randomly and independently fromU(0, 1)

Setωj = − log(uj) (See Lemma2.4.)
If µ > 1 andq > n, setωj = µ ∗ ωj for all j ∈ J

Setx0 = x∗, num = 0 andk = 0

Repeat
ComputeHω(xk) and∇φω(xk)

Solve the linear systemHω(xk)s = −∇φω(xk) for the Newton steps
If xk + s is infeasible,

Calculateσ > 0 such thatxk + σs ∈ ∂W, using Corollary5.2
Seth = 0.5σ

Else seth = 1

Updatexk+1 := xk + hs; k := k + 1

Until
√

sT s ≤ TOL or k > maxIts

If
√

sT s ≤ TOL plot xk ≈ x
(J)
ω (µ)

Setnum = num + 1

Until num = N
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