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Abstract

We study the boundary of the region of weighted analytic centers for linear
matrix inequality constraints. Let be the convex subset of R™ defined by ¢
simultaneous linear matrix inequalties (LMIs)
A @)= AP + Y i) -0, j=1,2,....0
. i=1
where AE'” are symmetric matrices and = € R". Given a strictly positive vector
w = (wy,wy, ..., wy), the weighted analytic center z,.(w) is the minimizer of the

strictly convex function ,

Ou(z) = ij log det[A) (z)] !

over R. The region of weighted éﬁlalytic centers, W, is a subset of R. We give
several examples for which WV has interesting topological properties. We show
that every point on a central path in semidefinite programming is a weighted
analytic center.

We introduce the concept of the frame of W, which contains the boundary
points of W which are not boundary points of R. The frame has the same
dimension as the boundary of W and is therefore easier to compute than W
itself. Furthermore, we develop a Newton-based algorithm that uses a Monte
Carlo technique to compute the frame points of W as well as the boundary
points of W that are also boundary points of R.

2000 Mathematics Subject Classification: 90C22, 15A39, 49M15, 90C53
Key words: Linear matrix inequalities, Analytic center, Central path, Semidefinite
programming.
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The study of Linear Matrix Inequalities (LMIs) is important in semidefinite pro-
gramming (5], [1], [27], [24]). A semidefinite programming problem (SDP)
contains an objective function to be optimized subject to a system of linear
matrix inequality (LMI) constraints. SDPs arise among others in relaxations
of combinatorial optimization problems, in control theory, in solving structural
design problems and in statistics.

The interest in weighted analytic centers arises from their success in solv-
ing linear programming problemsi(f], [21]). The study of weighted analytic
center continues to be of interest in semidefinite programming because of its
connection to the central path (se€, [22], [15], [17] and [L6]). Most interior
point methods in semidefinite programming follow the central path. A recent
paper [.7] gives an extension of weighted analytic center for linear program-
ming ([3], [17], [1€]) to semidefinite constraints, and shows that the region of
weighted analytic centers is not convexRA. Our paper can be considered as
an extension of 7).

For a symmetric, real matri®, defineA - 0 to mean thatd is positive defi-
nite, andA > 0 to mean thatd is positive semidefinite. Consider the following
system ofy Linear Matrix Inequality (LMI) constraints:

A (z) = A+ 24 =0, j=1.2,...,q,

=1

(1.1)

whereAgj), 0 <@ < n, are square symmetric matrices of size. Let

.4}

R={reR":AD(z) =0, j=1,2,...

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 4 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:Shafiu.Jibrin@nau.edu
mailto:
mailto:Jim.Swift@nau.edu
http://jipam.vu.edu.au/

be thefeasible regiorof the LMI constraints. Note thaliet A > 0 is a necessary,
but not sufficient, condition ford = 0. Therefore,det AY)(z) > 0 for all
x € Randallj € {1,2,...,q}. Furthermore, ift € OR, the boundary ofk,
thendet AV (z) = 0 for somej € {1,2,...,q}. Itis well known thatR is
convex P5).

Note thatR is open, since we require that td&) () are positive definite. In
SDP,R is often the closed set where the matrices are positive semidefinite (see
[25]). However, interior point methods use the interior of the ugRialvhich is
our setRk. The Boundary of Weighted

We shall show that the following assumption is necessary and sufficient for Analﬁi;miemg;i for Linear
the existence and uniqueness of the weighted analytic center.

. . . . Shafiu Jibri d . Swif
Assumption 1.1. The feasible regiofk is nonempty and bounded. b and dames T SwE

Our Assumptiori.1 differs from Assumption 1.1 ofl[/]. In particular, we

: Title P

do not assume that > n, and we do not assume that there arénearly e Page
independent gradients of the constraints at everg R. One of the main Contents
objectives of the current paper is to explore the consequences of dropping these < b
two assumptions. The latter assumption, about linear independence, is difficult
to check and somewnhat unnatural. 4 >

LetR, := (O,_oo) be the set opositivereal numbers. Given a weight vector Go Back
w € R%, theweighted analytic centet,.(w) determined by theg LMI con-
straints is given by the unique optimal solution of thaxdetproblem [.7] Clless

q Quit
(1.2) ming,(z):= ij logdet AV (z)7! s.t. AU (z) = 0, Page 5 of 49
j=1
j - 1, 2, ey q J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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The weighted analytic center exists, and is unique, given our Assumption
This is shown in { 7] under stronger assumptions, which we will show are im-
plied by our Assumption.L

The function¢, (=) is a barrier function or a potential function It is a
barrier function because it gets infinitely large if one starts from the interior and
goes towards the boundary &f.

The set of all points inR that are weighted analytic centers for somés
called theregion of weighted analytic centey®. That is,

The Boundary of Weighted
W = {xac(w) TweE Ri} Q R. Analytic Centers for Linear
) ) ) ) . . Matrix Inequalities
Unlike the special case of linear inequaliti®®,does not equak in general.

It was shown in [ 7] that z,.(w) is analytic, using the implicit function the-
orem. ThereforéV is the image of the open s&! under an analytic map.
It follows that WV is connected, but we cannot say much more. We show by Title Page
an example thatV is not in general convex iit?. This implies that/V is not

Shafiu Jibrin and James W. Swift

nien
necessarily convex iR"™ for n > 2. We show thatV is not open ifg < n. We contents
also show by an example the is not necessarily openf > n. 4« >
We show that the regiol of weighted analytic centers of [] extends the < >
central path used by most SDP solvers such as SeDufijli [Our definition o Back
O bac

of the weighted analytic center has the added advantage that it can be used to
define the concept of repelling path and repelling limits of LMI constraints. A Close
different approach to the notion of weighted analytic center is giveaihgnd

[15]. The concept of repelling paths in linear programming was first introduced EEL

in [5]. They showed that a repelling path, as a function of the barrier parameter Page 6 of 49

1, has a unique limit ag — oo. We extend the notion of repelling paths and

repelling limits from linear programming to semidefinite programming. - Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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The limiting behavior of the central path in semidefinite programming has
been studied recently inq[, [ 1], [9]). Under an assumption of strict feasibility,
Goldfarb and Scheinberg] show that the central path exists and converges to
the analytic center of the optimal solution set of the SDP. The first correct proof
(assuming strict complementarity) is due to Luo etlaf]] Halicka re-derived
this result in P]. We show that repelling paths in semidefinite programming
are analytic and the repelling limits are not necessarily on the boundary of the
feasible region.

The main result of this paper is tNéF Algorithm which finds the boundary The Boundary of Weighted
points of W by a Monte Carlo method. This approach is more efficient than ~ Aneiie “enem oo nesr
finding the boundary ofV by computing points ixV randomly, since we do not
compute most of the interior points. The WF Algorithm approximates repelling
limits to compute the boundary o#/, along with a few more points, which

Shafiu Jibrin and James W. Swift

together we calframe points Our concept of the frame o4/, which contains Title Page
the boundary points ofV that are inR, is the main theoretical contribution of Fe—
this paper.
The WF algorithm also finds boundary points)af which are not inR. A 44
It uses a modification of Newton’s method that aids convergence to points ex- < >
tremely close to the boundary &: If Newton’s method sends a point out of
R, we move half-way to the boundary & from the current iterate along the Go Back
search direction. Close
Quit
Page 7 of 49
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In this section, we present some basic results on the optimization probl&m (
most of which are found inl[/]. For a fixed weight vectar € R?, the weighted
analytic center is the unique pointRat which the gradient af,, () is 0. Thus,
the weighted analytic center,.(w) is the solution to the: equations in the:
unknownse = (z1, xs, ..., Ty,):

g ,
(2.2) Vigbw(x):—ijW:Oforz:l,Z...,n

7=1
whereV; = -2 To derive @.1), we used the fact thatg |A~!| = log(1/|A]) =
—log | Al. Note that the factor multiplying; in equation 2.1) is a rational
function inz, since| AY)(z)| and its partial derivatives are polynomialszin

There is a unique solution (iR) to the system of equation&.Q), since
¢, (x) is strictly convex (seel[/], and Lemma2.3 below), and the potential
¢.(x) grows without bound asg approaches the boundary &f. (Note that
the system4.1) can have other solutions outsi@®@) The equationsZ.1) are
defined providedA")| # 0 for all ;.

The Hessian matrix ob,(z) is the Jacobian matrix of the system of equa-
tions 2.1). This Jacobian matrix is used in Newton’s method, and it is also
important in the implicit function theorem. A formula to compute the gradient
and the Hessian af, (x), without symbolic differentiation, is given in[]. See
also [].
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Lemma 2.1. For ¢, (z) defined in {.2) andx € R

Vipo(x Z W le Agj )
k — k
Ho(2);; = V50, Zwk (AW () A o (AW (@) 1A,
whereV2 = (% 81 , and the inner producis, on square matrices is defined as The Boundary of Weighted
Analytic Centers for Linear
m Matrix Inequalities
AeB=Tr(ATB) = Z A;jB;;. Shafiu Jibrin and James W. Swift
i, j=1

Note that there is a typographic error in the formula fby(z) in [17]; the M2 PEEE

transpose is missing. The expression for the Hessian can be written in a way Contents
that involves the inner product sifmmetrianatrices,

<44 44
< >
2.2) H,( w )2AP (AW ()71
(2.2) Z kl( (A @)~ Go Back
o [(A(k)(:L’))_l/QA;-k)(A(k)<l'))_1/2]- Close
Quit

Assumption 2.1 of [7] is that the matrice§ A;~, Acos, ..., Ao~} are lin-
early independent. This assumption can be replaced by the assumpti@ that Page 9 of 49
is bounded and nonempty due to the following lemma.
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Lemma 2.2. If the feasible regioriR of (1.1) is bounded and nonempty, then
the matrices

Ao = diag[AV, AP ... A9 for i =0,1,2,..

°

are linearly independent. Equivalently, 7 is bounded and nonempty there is
no nonzeros € R” such thaty ", siAZ(]) =0forall j € {1,2,--- ,q}.

Proof. Assumez* € R, and assume that thé_;. are linearly dependent. We
must show thaR is unbounded. Since thé_,.. are linearly dependent, there is
a nonzero vectos € R" such thaly " | s;A_;» = 0. Therefored" , 5; A7)

0 for eachj € {1,2,...,q}. Thus,

A(j)(x*—l—as) :Aéj)—FZAEJ)(.T*—FO'S) +UZSAO A(] )

i=1

for all realo. But AW (z*) > 0 sincez* € R. Thereforex* + s € R for all
o € R, andR is unbounded. O

The following lemma is well known for the cage= 1 (see [l]). The exten-
sion tog > 1 was proved in]7].

Lemma 2.3.[17] Assume thaRR is nonempty and bounded. Then the Hessian
matrix H,,(z) is positive definite for al: € R and allw € R%. Hence ¢, (x)
is strictly convex oveR.

Remark 2.1. Lemma2.3is false if we remove the hypothesis tiRais bounded.
For example, consider the 2 linear inequalitiesi&d: z; > 0 and1 — z; >

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 10 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:Shafiu.Jibrin@nau.edu
mailto:
mailto:Jim.Swift@nau.edu
http://jipam.vu.edu.au/

0. Theng,(z1,z2) = —wqlog(xy) — wylog(l — x1) is not strictly convex in
R = {(x1,22)| 0 < z; < 1}, which is an unbounded strip iR?. Furthermore,
Lemma2.3is false ifw > 0 replacesw > 0 (w € R%). Consider the 3 linear
inequalities inR? : x; > 0,1 —x; > 0and2? + 23 < 1. If w3 = 0, theng,, is
not strictly convex inRk.

It is evident from the structure ofL.(2) and @.1) that the weighted analytic
center is the same for the weight vecioand any positive scalar multipléw.
That is,

T (w) = (kw) forallk > 0 The Boundary of Weighted
ac ac ’ Analytic Centers for Linear
Therefore the set of weights can be constrained t@g®n simplex L TS
q Shafiu Jibrin and James W. Swift
AT = {w eRL: ij = 1}.
Jj=1 Title Page
Note thatA‘~ ! is open in theq — 1)-dimensional affine subspaceldf defined Contents
by Z;?:l w; = 1, but it is not open as a subsetRf. The region of weighted
analytic centers can be described in two ways: b dd
W = {24(w) : w € RL} = {wge(w) : w € AT}, < 4
The following lemma describes how we choose random weight vectors in Go Back
our numerical experiments. Close
Lemma 2.4. Letw; = —log(u;) independently for each € {1,2,...,q}, Quit
whereu; is chosen from a uniform distribution @f, 1). Then, the normalized
. Page 11 of 49
weight vectors
~ w
W=
X1 i
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are uniformly distributed on the open simpla%—!.

Proof. The probability density function for eacah; is f(w;) = e 4, where
w; > 0. Hence the probability density function anis

flw)=e e . ..e7¥ = LW,

Therefore, the probability density af € R? is constant on each slice where
;1.:1 w; is constant. It follows that the probability density @fin A?"! is
constant. ] The B(_)undary of Weighted
Analytic Centers for Linear
Matrix Inequalities

The reasony,(z) is called a potential function comes from physics. We

define Shafiu Jibrin and James W. Swift
¢V (z) :=logdet AW ()™t = —log |AY) (z))
to be thepotential energyassociated with thg" constraint. The negative gradi- Title Page
ent of this potential energy iskoundary forceFV)(z) pushing away from the Contents
boundary: « "
A . V|A(j)(m)\
() — T —

FY (z) := =Vo¢Y' (2) AO()| P >
It is clear that the components of this boundary force are rational functions of Go Back
, since|AY)(z)] is a polynomial. Close

As r approaches thg" boundary, the magnitude of the forB¢’) (x) grows
without bound, and the force points normal to boundary, Tto Quit

The system of equations for the minimizerggf(x), equation 2.1), says that Page 12 of 49
the weighted vector sum of the boundary forces, defined 1 lfe), is the zero

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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vector: .
F,(z):= Zu)j FU(z) = 0.
7=1
Therefore, the region of weighted analytic centers can be characterized as

W = {z € R: there exist&w € RY suchthaF,(z) =0}.

In other words, a point is in W if and only if the force vector&")(x) are
positively linearly dependentGeometrically, a finite sef of vectors inR” is
positively linearly dependent if and only if the zero vector is in thpositive
convex hull defined to be

q q
conv’(8) = {ijF(j) fwy > O,ij =1, FY ¢ S} .
P =1

The positive convex hull is precisely the relative interior of the convex hull
of S, denotedconv(S) (see []). Let S be a finite set of points ifR™. Then
convt(S) is an open subset &™ if and only if the interior ofconv(S) is
nonempty. Furthermore, the interior efnv(S) is nonempty if and only if
there is some subset of+ 1 vectors which are affinely independef}.[Recall
that a set of vectors iaffinely dependent and only if there is a set of weights
a;, not all zero, such that

q q
Z@jF(j) =0 and ZOéj =0.
i=1 j=1
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Theorem 2.5.1f z* € W, and{FU)(2*) : j =1,2,...,q} spansR”, thenz*
is an interior point of\V.

Proof. Assume that* € W, and letS = {F@W(2*): j =1,2,...,q}. Assume
thatspan(S) = R". Therefore there is a s& C S consisting ofn linearly
independent vectors. Sine¢ € W, we know that) € conv™(S). Therefore
convt(S) = convt (S N {0}). Now, the setS’ N {0} is a set ofn + 1 affinely
independent vectors, sonv' (S’ N {0}) is open. Therefore, this convex hull
has positive:-dimensional volume, and it follows thatnv*(S) is open. Since

The Boundary of Weighted

the force vectors depend continuously onthere is a neighborhood of =* Analytic Centers for Linear

such that) € convt{FU(x) : j = 1,2,...,q} forall z € U. Therefore Matrix Inequalities

x € W forall x € U, andz* is an interior point oi/\. ] Shafiu Jibrin and James W. Swift
The following corollary gives conditions which ensure thtis open. This

was proved by a different method in{. The statement of the theorem in/] Title Page

has the hypothesis that there is a set dhearly independent force vectors at Contents

every point, which is equivalent to our hypothesis that the force vectors span « R

R™. d

Corollary 2.6. If the set of force vector§FY)(z) : j =1,2,...,q} spansR” S £

at every pointr € R, then the set of weighted analytic cent®ysis open. Go Back

Proposition 2.7.If * € W andq < n, thenthe sefFV) (z*) : j =1,2,...,q} Close

does not spaiR™. Quit

Proof. If ¢ < n theq force vectors cannot sp&i'. Assume, by way of contra- Page 14 of 49

diction, thatg = n, * € W and the set of force vectors spaR®. The force

vectors must be linearly independent, so no nontrivial linear combination gives . ineq. pure and Appl. Math. 51) Art. 14, 2004
http://jipam.vu.edu.au
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the zero vector. On the other hand, sinc¢ec W, a linear combination with
positive weights gives the zero vector. This is a contradiction. ]

Remark 2.2. By Propositior2.7, Corollary 2.6 does not apply if < n. In fact,
W is not open ify < n, sinceW is the continuous image of the s&t~!, which
has dimension less than
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We give four examples of systems of Linear Matrix Inequalities (LMIs) and
their associated feasible regidhand region of weighted analytic centéfg C

R. The examples illustrate some properties of the region of weighted analytic
centerg/V. They will reappear later.

Example 3.1. Consider the system of three linear inequalities (a special case :
. . . . . The Boundary of Weighted
of linear matrix inequalities, with x 1 matrices): Analytic Centers for Linear
Matrix Inequalities

(3.1) AV () =2, >0, AP (@) :=2,>0, A®(z):=1—2y — 25> 0.

Shafiu Jibrin and James W. Swift

In this case the feasible region is a triangle, and the three boundary forces are

Title Page
FO() =& @) = &2 p@®p) = "%
(517) 5171’ (fE) 332’ (l’) 1= — 2y Contents
. , o o <44 44
Since the forceFU)(x) point in the directions, e; and —e; — e, at every
x € R, itis possible to choose a positive weight vector to balance the forces. < >
Hence the region of weighted analytic centers is the same as the feasible region: Go Back
W ="~R.
Close
It is true in general thatV = R for systems of linear inequalities with a Quit
bounded feasible region. For systems of lineatrix inequalities the situation
is more interesting. The next example illustrates the factithias not open if Page 16 of 49
q < n, sinceWV is the image of the — 1 dimensional sef\’~! under ther,.
map J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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0.8

06F @ 3

0.41 I
The Boundary of Weighted

02y Analytic Centers for Linear
Matrix Inequalities

‘ @ ‘ ‘ ‘ ‘ Shafiu Jibrin and James W. Swift
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Title Page
. . . . . . . Contents
Figure 1: The feasible regioR for system 8.1) is a triangle. The direction of
the three boundary forces at any pointRnis shown. The region of weighted <44 44
analytic centers i3V = R. P >
Example 3.2. Consider the system of two linear matrix inequalitie®Rh Cio EEES
Close
AW(z) =14z, >0, .
10 1 0 01 Qult
A(Q)(x);:[o 1]+x1{0 _1}4—:1:2{1 0}>-0. Page 17 of 49

The feasible region is? + 22 < 1. The first boundary force always points 3 neq. Pure and Appl. Math. 5(1) Art. 14, 2004
http://jipam.vu.edu.au
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@)

Figure 2: The feasible regioR is the open unit disk. The regiow is the line
segment without the end points.

to the right. The second boundary force points toward the center of the circle.

Hence, the region of weighted analytic centers is the line segfientz,) :

0 < z; < landz, = 0}. Note how the addition of redundant constrains (like
1) can influence the region of weighted analytic centers. In this exavidias

no interior points. This is always the case whef n.

A point x is called aboundary poinbf A C R", if every neighborhood aof
contains a point iMl and a point not inA. The boundary of4, denoted 4, is
the set of all boundary points of. These definitions are standard. An open set
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like the feasible regiofR contains none of its boundary poinBR N R = @.

In Example3.1, the boundary ofR is made of the three line segments of the
triangle, andW = JR. In Example3.2, all points of W belong tooVV, but
OW also containg0, 0) and(1, 0), which are not inV.

Example 3.3.For eachg, a positive integer, consider the system of linear matrix
inequalities:

() . 3 — cos (Tj) —sin (27;]) The Boundary of Weighted
A (x) - o] 2mj Analytic Centers for Linear
—sin (T) 3 + cos < ) Matrix Inequalities
T { (1) _01 :| . |: (i (1] :| .0 fOI'j _ 1’ g Shafiu Jibrin and James W. Swift
The feasible regioR of Example3.3is the intersection of open disks of radius Tite Page
3 centered a(cos ( 27”) ,sin (%22 ) ). The region of weighted analytic centers Contents
W is the positive convex hull of the centers of the disks. FiGusethe picture <« (33
for the casey = 5. The boundary of the feasible region was found using the P >
SCDalgorithm described in1].
Go Back
Remark 3.1. Finding the boundary points o/: Figure 3 demonstrates that it Close
would require a very large number of random point9Anhto get a reasonable _
number of points near the boundary)f, especially when is larger thann. In Quit
Sectionb we give a method of computing the boundary\afwhich focuses on Page 19 of 49
the distinction between feasible and non-feasible boundary points. A boundary
pointz* € 0W is feasibleif 2* € R andinfeasibleif z* ¢ R. In Example3.1, 3. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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® .
L@

0.5+
o @
-0.5
4l ,/"/(3) The Boundary of Weighted
‘x\ / Analytic Centers for Linear
4 Matrix Inequalities
-1.5 .
Ll @ | | Shafiu Jibrin and James W. Swift
-2 -1 0 1 2
Title Page
Figure 3: The regionV of Example3.3for ¢ = 5. The dots are the weighted Contents
analytic centers for 10,000 weight vectors chosen randomly from the uniform
distribution in the simplexA* described in Lemma&.4. We used the WF algo- 44 >»
rithm, listed in the Appendix, witix = 1. The boundary o¥V is the pentagon. < >
. . . . . . Go Back
all boundary points o#V are infeasible. In Exampl@.2, (1,0) is an infeasible
boundary point whilg(z,0) for 0 < z < 1 are feasible boundary points. In Close
Example3.3 all boundary points are feasible. Quit
It is well-known thatR is convex. It is natural to ask ifV is convex. Ex- Page 20 of 49
ample 2 of [L /] shows tha?V is not necessarily convex. In that example, each
of theq = 4 constraints involves & x 5 matrix inn = 3 variables. A simpler 3. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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example follows.

Example 3.4. Consider the feasible regioR and the region of weighted ana-
lytic centers)V for theseg = 3 LMI constraints inn = 2 variables:

3 =2 1 0 0 2
AV = | 5 3]”1[0 —1}”2{2 o]w
3 =2 0 2 1 0
AP (@) = | 7 3]”1[2 0%"@2{0 —1%0
[ —05 0 10 10
A®(z) = 0 _0'5]%—%[0 1}%—@[0 1}%0.

Figure 4 shows clearly thatV is not convex. The boundary points =
(0,1) and f = (1,0) are the centers of the ellipses wher")(z)| = 0 and
|A®)(z)| = 0, respectively. Furthermor& ¥ (e) = 0 andF®(f) = 0. The
boundary points betweenand f are where the forceB(!)(z) andF®(z) are

positively linearly dependent, which can be computed te,be #jﬁ/m The

forcesF()(z) and F®) () are positively linearly dependent betweeand c,
which is a line of slope 1/4. The points betweeand f are where the forces
F®(z) and F®(x) are positively linearly dependent, which is a line of slope
4. The pointd = (4/3,4/3) is not an interior point ofW, becausel € W
andd € oW. Hence,)V is not open in this example. The fact théts not an
interior point shows that the hypothesis that the force vectors Bjyda needed

in Theorems.5and2.6. At pointd, all of the force vectors are scalar multiples
of e; + ey, so they do not spaR?.
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2r (2) i
1.5 1 The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities
1 e 1
Shafiu Jibrin and James W. Swift
05f 1
\ Title Page
or T 1 Contents
W
—015 6 0‘.5 ] i/ 115 é 2‘.5 ‘4 ’»
< >
Figure 4: The regionV of Example3.4 given by 10,000 random points as in Go Back
Figure3. The corner point is the center of ellipse 1; similarly is the center
of ellipse 2. Close
Quit
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In this section we study the mapping of the open simplx! to the region

of weighted analytic centers. We also study repelling paths and limits. This

extends the concept of repelling limits given &j.[
Define the functiory : R x R% — R”, where

filw,w) =" wFP ().
k=1

The following lemma is a reinstatement of Theorems 3.6 and 3.7 @f [The
proof uses the Implicit Function Theorem ix].

Lemma 4.1. The mapz,. : R — R;w — z,.(w) is analytic. Furthermore,
the partial derivatives of the weighted analytic center function evaluated-at
Tae(w) are:

813&(;((«0)1‘ -1 a(fhf%"'?f“)
4.1 —= =—|H
( ) aCUk ’ w<x>’ 8(m1,x2,xi_1,wk,xi+1,...,xn)’
and satisfy:
- aIGC(x)j _ (k)
(4.2) ; Ho(w)iy—5, = = —F (@),

Remark 4.1. If one wishes to compute the partial derivatives @f the system
(4.2) should be solved, rather than using equatidri).
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Corollary 4.2. The restricted mapping,.|a«—1 : A"t — R is analytic inw.

Proof. This follows from Lemma4.1, sinceA?! is an affine subspace &’ .
O

The next example shows that we cannot extepnda.-: to an analytic, or
even continuous function mapping the closure of the simplex to the closure of
R.

Example 4.1. Consider the system with 4 constraintsif: The Boundary of Weighted

Analytic Centers for Linear
AN — x> 0, A? —1 x> 0, AB) — Ty > 0, AW —1 - z9 > 0. Matrix Inequalities

. . . Shafiu Jibrin and James W. Swift
The weighted analytic center is at

v — w1 = W3 . Title Page
w1 + ws w3 + wy Contents
Note that ¥ <« 44
lim z,.(w)= (1 >
w1—00 ’ ws + Wy 7 < d
which depends ows; andw,. But in the simplex the normalized weights ap- Go Back
proach(1,0,0,0) asw; — oo with the other weights fixed. Thereforg.(w) Close

has no limit asv € A?"! approacheg1,0,0,0). Thereforez,. : ATt — R
cannot be extended to a continuous functiofila0, 0,0) € A1, Quit

Page 24 of 49

We now show how weighted analytic centers generalize the central path in
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proach the optimal solution by following a central path. Consider the semidefi-
nite programming problem (SDP)

min ¢’z

st.AY(z) = A(()j) + inAﬁj) -0, 7=1,2,...,q.
i=1

Let R denote the feasible region. The central path associated with the SDP is
defined by

q
x(p) = argmin {,uch + Zlog det AV(z) :ze R} .

j=1

As u — oo, more weight is put on the objective term compared to the barrier
term, andz () approaches the optimal solution of the SDP if strict complemen-
tarity holds [L3].

We can replace the linear objective function with a redundant constraint as
follows. Choosék such that?z < K for all z in the (bounded) feasible region
R. Then, following the method of Renegar] for linear programming, as in
[5], a central path for the SDP can be defined as:

q
() = argmax {ulog(K —cl'z) + Z logdet AY)(z) : z € R}
j=1

= argmin {,ulog(K —clr)yt+ Zlog det AD(z) 1z e R} :
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Hence, if follows that: (1) is a weighted analytic center defined A+ (z) :=
K — ¢z > 0 and the other; LMI constraints with weightv = (1,...,1, u)
(seel.?). As u — oo, the force from the ‘cutk — ¢z > 0 pushes the point
2 () to the point on the boundary @& wherec’ z is minimized. The definition

of weighted analytic centefi(2) generalizes the central path. The definition has
the added advantage that it can be used to define the concept of repelling path

and repelling limits of LMI constraints.
LetJ C {1,2,...,¢} and letw be a weight vector ilR%.. Foru > 0, we
define thev-repelling pathassociated with thé constraints by

q
2 (1) = argmin { Z pw; log det AY) ()71

Jj=1jeJ

q
+ Z wilogdet AV (z)7! 2 € R} :

J=13¢J

Note that if.J = {1,2,...,¢} — I, thenz'" (1) = 27 (1/p).
The pathrff) (u) is given by the unique optimal solution of theaxdetprob-
lem

q q
min Z piw; log det AW ()71 + Z w;logdet AW ()71

Jj=ljeJ J=13¢J

s.t. AV (z) := A[()j) + inAE” =0, 7=1,2,...,q

i=1
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In other words ) = z..(w’ (1)), where

pw; ifjeJ
Wl (p); = :

The theory of Maxdet optimization is studied ix].

Corollary 4.3. The repelling patly : R, — R defined byy(u) = 2 (p)is

analytic in .

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Proof. This follows from Corollary4.1. O]

Shafiu Jibrin and James W. Swift

The limit lim z” (1) is called thew-repelling limit associated with the
H—00

constraints. Itis interesting to note that a repelling limit can be an interior point Title Page
of R and/or an interior point ofV, or neither.
Contents
<44 >»
< >
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In this section we use the concept of repelling limits defined in the previous
section to determine the boundary of the region of weighted analytic centers
JW. We also use a modification of Newton’s method and a new concept of the
frame ofWW. This is called the WF algorithm, since it can be used to compute

The Boundary of Weighted

both the)V and the Frame ofV. Analytic Centers for Linear

In our WF algorithm . is fixed andz’” (1) is computed for many random Matrix Inequalities
choices ofv andJ, where|J| = nandJ C {1,2,...,q} has sizex. We show Shafiu Jibrin and James W. Swift
that every repelling limit withJ| = n is either a boundary point ofV or a
frgr)ne point(or. both). Whenu. is Igrge, typically1000 or 10009, egch poi'nt Title Page
xy () approximates a repelling limit. if = n + 1, these repelling limits give
the boundary of the region of weighted analytic centers in the examples we have Contents
studied. If¢ > n + 1, we observe frame points in the interiordf as well as <« >
points inOW. P >

The WF algorithm uses Newton’s method to find the weighted analytic cen-
ters. Newton’s method is problematic when the weighted analytic center is near Go Back
the boundary ofR. In particular, the Newton step, — ¢ + s may take the Close
new point out ofR. If this happens, our algorithm uses a step gizrich that _
zy — xo + hs is half way to the boundary oR in the direction ofs. This Quit
prevents the iterates from leavifi®) As an alternative, Newton’s method with Page 28 of 49
backtracking could be used. Theorém and its corollary give our method for
determining the distance to the boundaryaf 3. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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Theorem 5.1. Let s be a nonzero vector iR", and A(xq) > 0, whereA(z) =
Ao + >0, Ajz; is symmetric. Choose a square matfixsuch thatA(z) =
LL". Let A\ be the maximum eigenvalue of the symmetric matrix

Z Sz‘AZ’

=1

(@) If Apax > 0, then A(zg + os) > 0 for all positives < 1/Ayax, and
A(zg+os) # 0forall o > 1/Anax-

(b) If Mpax <0, thenA(zp + os) = 0forall o > 0.

Proof. The matrix A(z,) is positive definite, and the region whe#éz) >~ 0
is convex, soA(zy + os) = 0 for all o in the maximal interval including O
wheredet A(zg + 0s) > 0, and A(zy + os) % 0 outside this interval. For
simplicity, we only consider > 0. Now, L is nonsingular, sincéet L =

det A(zo) > 0. Furthermore(L~1)" = (L*)~! for any nonsingular matrix,
SOL ' A(xo) (L) = I. Now, for anyo # 0,

B=-L"! (LHT.

det[A(zg + 05)] =0 < det | A(zo) + 0 Z siA;| =0
i i=1
2 .
det | =1+ L~ A (LT =
& det | I+ ;s (LY ] 0

& det l[—B} =0

g

1. .
(5.1) < — Is an eigenvalue oB.
o
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(a) Let \..x be the largest eigenvalue &% If A, > 0, theno = 1/\.x IS
the smallest positive for which det A(xzy + os) = 0. This implies that
A(zo+os) is positive definite for all positive < 1/ ax, andA(zo+o0s)
is not positive definite for alb > 1/

(b) If Anax < 0, thenB has no positive eigenvalues addzx, + os) > 0 for

all o > 0.

]

Corollary 5.2. Letxg € R, s € R", s # 0. Define\Y), for each constraint
AW (z) = 0, as in Theorens. 1 Thenz, + os, for o > 0, is on the boundary of
R if and only if

(5.2) o =min {1/A0) 1< j<gand\{) >0}.

Proof. By Theorem5.1, all of the AY)(z) are positive definite i = z( + ts
and0 < t < o, and at least one of th&\?) (z, + o's) is not positive definite. [

In our Newton-based WF algorithm, if the Newton step— z, + s maps
the point out of the feasible region, then we take the step> = + (0/2)s,
whereos is found in Corollarys.2, using the Cholesky factorizations ) ().
Thus, the new iterate is half way to the boundary fregnin the direction ofs.

We now give a series of results, culminating with Theotfa@which char-

acterizes the feasible boundary points in this way; at every feasible boundary
point of W there is a set of positively linearly dependent force vectors of size

<n.
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The vector sum of the constraint forcBS) (x) can be written as the x ¢
matrix M (z) times the column vectap:

ij FU) (z) = M(z)w,

where the columns af/ () are the boundary forcdd”) (x). Using Lemma2.1
we find that

(5.3) M(z) == [FY(z) - - F9(2)]

AW (7)1 0 AWM A@ ()L e ALY

AN (z)" 1 e AP AD(r)" e A

Theorem 5.3.1f z* € R, z* € 0W, andz* ¢ W, then there is a nonzero
weight vector which satisfie¥ (z*)w = 0, w > 0, but there are no solutions to
M (z*)w = 0forw > 0.

Proof. Assume that:* satisfies the hypotheses of the theorem. Sirice oW
there is a sequence of point8 in YW which converges ta*. Sincex™ € W
for eachn € N, there is sequence of normalized weight vectotse A?!
such that,.(w™) = ™. The open simpleX\?~! is a bounded subset &, so
there is a convergent subsequenée. For simplicity relabel this convergent
subsequence as and call its limitw*, so that’ — w* asi — oco. Now, M (z)

is continuous at each € R, andM (z")w’ = 0 for eachi, so

lim M(2')w' = M (hm .7)2> lim w' = M (2*)w* = 0.

1—00 1—00 1—00

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 31 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:Shafiu.Jibrin@nau.edu
mailto:
mailto:Jim.Swift@nau.edu
http://jipam.vu.edu.au/

Sincez* ¢ W, we know thato* ¢ A?~'. Thereforew* is a boundary point of
the open simplex, which implies that > 0, w* # 0, andw* # 0. (At least
one, but not all, of the componentswf is zero.) This satisfies the first part of
the conclusion of the theorem. Finally, there is;noe- 0 such thatV/ (z*)w = 0,
sincex* ¢ W. O

The next example shows that the converse of Thedré&ls false.

Example 5.1. Consider the system of 4 LMIs
The Boundary of Weighted

AD(z) :=1+4121 >0, AP(2):=1-27 >0, A®(2) := 1+, >0, and R
1 0 1 0 0 1 Shafiu Jibrin and James W. Swift
4) —

The feasible regiofRk is the interior of the unit circle, andV is the upper half Title Page

of the disk. The set of points which satisfy the hypotheses of Thédsesrthe Contents

line segmenf{(z;,xs) : —1 < x; <1, x5 = 0}. However, the lower half of the

disk (withz, < 0) satisfies the conclusion of the theorem. Hence, the converse A »

of Theoren®.3is false. < >
The important ingredient in this example is thét) (z) and A?) () are in- Go Back

dependent of,, not that they are linear. Similar examples can be made with —

x € R3 without using linear constraints, by augmenting a set of LMIs which

are independent of;. Quit
The following theorem gives a geometric characterization of feasible bound- Page 32 of 49

ary points ofW.
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Theorem 5.4.If z* € R andz* € 0W, then there is a nonempty sétC
{1,2,3,...,q} and a nonzero vector € R" such thats - FU)(z*) = 0if j € J,
s-FU(z*) > 0if j ¢ J, and the set of force vectofF V) (z*) : j € J} is
positively linearly dependent.

Proof. First, assume that* € 9)V andz* € W. Theorem2.5implies that the
set of force vectors dnot spanR™, so they must lie in a subspace of dimension

less tham. Therefore there is a nonzero vector R" such that-F)(z*) = 0
for all 7 and we choosd = {1,2,3,...,q}.

Now assume that* € OR andz* € R butz* ¢ WW. The hypotheses of
Theorem5.3 hold, and we will apply the alternative theorems of Stiemke and

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Gordon to the conclusions of the theorem. Stiemke’s theorem of the alternative shafiu Jibrin and James W. Swift

([27], [14]) says that for any: x ¢ matrix M, either

Jw > 0 such thatM/w = 0
(5.4) or3ssuchthas” M >0, s M #0
but not both.

Gordon’s Alternative Theorem.]] is similar: For anyn x ¢ matrix M, either

Jw > 0suchthatv # 0andMw = 0
(5.5) or3s such that” M > 0
but not both.

Sincez* ¢ W, Stiemke’s theorem says that there exist& R™ such that
s-FO(z*) > 0forallj € {1,2,...,¢}, ands - FY(z*) > 0 for somej.

However, Gordon’s theorem of the alternative says that there issuzh that
s - FU)(z*) > 0 for all j. LetJ be the smallest subset ¢t,2,...,¢} such
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that there is ay € R™ with the property that - FU)(2*) = 0if j € J and
s-FU)(z*) > 0if j ¢ J. Fix s to be one such vector. The séis nonempty
due to Gordon’s Theorem.

To complete the proof we must show that the §Bt) (*) : j € J}is
positively linearly dependent. Assume, by way of contradiction, that it is not.
Then, Stiemke’s theorem implies that there is a ve¢tar R™ such thatt -
FU)(z*) > 0 forall j € J, and an integej* € J such that - FU") (z*) > 0.
Using thes defined previously, choose a positivgo that(s +et)-FU) (2*) > 0
for all 5 §Zf J. Then(s + Et) . F(j)(l’*) =€t F(j)(l’*) > 0forallj € J,and The Boundary of Weighted
(s+et)-FU)(z*) > 0. Sincej* € J, this contradicts the fact thatis minimal. R e
Therefore {F\)(z*) : j € J} is positively linearly dependent, and the theorem

is pFOVEd ] Shafiu Jibrin and James W. Swift
Remark 5.1. Let us apply Theorerd.4to Examples.4, for whichV is shown Title Page
in Figure 4.

At the feasible boundary poiat= (0, 1), the force vectors ar&)(¢) = 0, Contents
F®(e) = 4e; — ey, andF®(e) = e; + e,. (We have chosen a convenient <« NS
normalization of the force vectors since only their direction matters.) The set R

from Theorenb.4is J = {1}, and a choice of the vector is= e;.
A more typical feasible boundary point ®¥ is (1,5/4), where the force Go Back
vectors areF () (1,5/4) = —e; — ey, FA(1,5/4) = —ey, andF®)(1,5/4) =

e; +ey. Here the set from Theoreb¥dis J = {1, 3}, and the vectos = e; —e» Close
IS unique up to a positive scalar multiple. Quit
The feasible boundary poidt= (4/3,4/3) is a point in)¥ which is not an Page 34 of 49
interior point. The force vectors aB(!)(d) = —e; — ey, F?)(d) = —e; — ey,
andF®)(d) = e, + e,. Here the set from Theorefis J = {1, 2, 3}, and the 3. 1neq. Pure and Appl. Math. 5(1) Art. 14, 2004
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vectors = e; — e, IS Unique up to a nonzero scalar multiple.

We need one more lemma before we can characterize feasible boundary
points ofWW. Our proof of the lemma is similar to the proof of the Carathéodory’s
Theorem given ind].

Lemma 5.5. Every positively linearly dependent set of vector®incontains
a positively linearly dependent subset of size 1 or smaller.

Proof. Assume, by way of contradiction, that a set= {F € R" : j = S —
1,2,3,...,p}, withp > n + 1, is positively linearly dependent, and there is no Analytic Centers for Linear
proper subset which is positively linearly dependent. Choose a set of positive Matrix Inequalities
weightsw; such that Shafiu Jibrin and James W. Swift
p
Z ij(j) =0. .
= Title Page
The setS is affinely dependent, meaning that there are weigh{(sot all zero) Contents
such that ) ) pp b
d a;FV =0and ) a; =0. < >
j=1 j=1
. . . ) Go Back
This is true sincdFY) — F® : j =1,23,... p— 1}, being a set of vectors
in R" of size at least + 1, is linearly dependent. Close
Choose such a set of weights. For any\ € R, it follows that Quit
P Page 35 of 49
Z(w]‘ + /\Oéj)F(j) = 0
7=1 J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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Now, definel* so that all of the weights; 4+ A*«; are nonnegative but at least

one is zero.
N =max{\:w;+ Aa; >0forj=1,2,...,p}

Since at least one of the; is negative \* exists. Now, define/ = {j : w; +
Ao > 0}. By construction] < |J| < p, and the sum

Z(wj + XN, )FY =0

jedJ

demonstrates that the S@V) € R™ : j € J} is positively linearly dependent.
This contradicts the assumption that no proper subss&tispositively linearly
dependent. O

Remark 5.2. The “or smaller” is needed in the statement of Lemma The
positively linearly dependent set of vectorsRA, {e;, —e;, e;, —e,} has no
positively linearly dependent subset of size 3. Thedsénholds, of course,
and{e;, —e; } is a positively linearly dependent subset of size 2.

We define thdrameof WV, denoted byF C R, to be the set
(5.6) F :={x: Japositively linearly dependent subset of
{FO(2)}9_, of size <n}.

If x € F, we callx aframe point We now state oumain theorem. It gives a
useful characterization of the boundary point3%f

The Boundary of Weighted
Analytic Centers for Linear
Matrix Inequalities

Shafiu Jibrin and James W. Swift

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 36 of 49

J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:Shafiu.Jibrin@nau.edu
mailto:
mailto:Jim.Swift@nau.edu
http://jipam.vu.edu.au/

Theorem 5.6. Every feasible boundary point &% is a frame point. That is, if
x* € OW N'R, then there is a set of or fewer positively linearly dependent
force vectord () (z*).

Proof. Assume that* € 9WWNR. By Theorenb.4, there is a positively linearly
dependent subset of vectdfB")(z*) : j € J} and a nonzero vector € R”
such thats - FU)(z*) = 0 if j € J. All of the vectorsF") (z*) with j € J lie in
the (n — 1)-dimensional subspace perpendiculastorherefore, by Theorem
5.5, there is a positively linearly dependent subsefiof’ (+*) : j € J} of size _

The Boundary of Weighted

(n — 1) + 1 = n or smaller. Therefore;* is a frame point. O Analytic Centers for Linear
Matrix Inequalities

Theorenb.6is a significant improvement over Theorém, which gives no
information about the size of the sét Our main result (Theorem 6) motivates
the WF algorithm. The implementation uses the following corollary.

Shafiu Jibrin and James W. Swift

J Title Page
Corollary 5.7. Every repelling limitlim z$ )(u), where/J is of sizen, is either Content
H—00 ontents
a frame point or an infeasible boundary point)of.
<44 >»
Proof. Let z* be a repelling limitlim 2" (w) for |J| = n. If z* isin R, then P >
H—00
there exists: positively linearly independent force vectdf§ (z*) atz*. So, ——
xz* is a frame point. Ift* € OR, thenz* ¢ W. By Theorenb.6, z* € oW. [
Close
The WF algorithm approximates the repelling limitisn 2 (1), whereJ Quit
H—00 ul

is a randomly chosen set of size by choosing large fixeg. This approxi-

mates the frame points at which there exisorce vectors which are positively PEgE S G s
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linearly dependent. (The frame points where fewer th&orce vectors are pos-
itively linearly dependent can be approximated with= »n when one or more
random weights are small.)

2F ' ' e o 7\‘\\ i i h
®). o N
15f o 1
7 L@
r // - /”\ \ |
i S |
0 ;\ T e \'\ The Boundary of Weighted
1y [N 7 % Tl \ Analytic Centers for Linear
or 3 i / N\ f_,.—/;?’ i Matrix Inequalities
’/" /,(“/I rd /
—05r L Wb / 1 Shafiu Jibrin and James W. Swift
T /
Ll 4 e
\\ /// i
15+ S ] Title Page
ol (2) e / ‘ | Contents
-2 -1 0 1 2
<44 >»
Figure 5: The frame ofV for Example3.3with ¢ = 5 is composed of the line < 4
segments joining the five corner points of the pentagon. The figure sNows Go Back
1,000 points which approximate the frame, obtained with the WF algorithm o
ose

usingp = 10,000. This gives a better picture @fV than Figure3, where
10,000 points are plotted. Quit
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Figure 6: The boundary ofV in Example3.4 is approximated using the WF

algorithm with N = 1,000 points andu = 10,000. Sinceq = n + 1, this
example has no frame points which are not on the boundary.ofhese 1,000

points should be compared with the 10,000 points plotted in Figure
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Figure 7: The output of the WF Algorithm applied to Exampléd, showing
N = 2,000 points usingu = 1,000. In this pathological examplé}’ is the
line segment joining—1, 0) to (1,0) and the frame ofV is the whole feasible
disk, sinceF'™ (x) andF®)(z) are positively linearly dependent at all Frame
points which are not in the closure ¥ are not found by our WF Algorithm,
since these are not repelling limits.
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Figures5, 6, and7 show the result of the WF algorithm applied to Examples
3.3 3.4, and5.1 (respectively), with large.. Note that the frame poinendthe
infeasible boundary points are found by the algorithm. Figusaows that the
converse of Corollarp.7is false: there are frame points, e(§, —0.5) which
are not repelling limits.

As stated earlier, the WF algorithm, wiihlarge, approximates the frame
of W. To understand why the algorithm also approximates infeasible boundary
points, assume for simplicity that* is an infeasible boundary point & at

which exactly one of the matrices, call 4" (x*), is singular. When the WF The Boundary of Weighted
algorithm choosed with b ¢ .J, all butn + 1 force vectors are negligible far R e
nearx*:
Shafiu Jibrin and James W. Swift

ijF(j)(x) + Z (1w; FO (1) ~ w,FO () + Z piw; FO ().

j¢J jed jed Title Page
Thus, the WF algorithm with: large approximates points where thet 1 Contents
“large” forces,F®)(z) andpFU) (2) with j € J, are positively linearly depen- « >
dent. Lemm&.5implies that neglecting the other force vectors will not prevent
us from findingz* in this way. < >

A similar argument holds if the infeasible boundary point is a “corner” point Go Back

of R, where two (or more) of the matrice”) (z*) are singular. An example
is pointb in Figure6. We suspect that all infeasible boundary point$/fare Closs
approximated by the WF algorithm in this way. Quit
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We studied the boundary of the region of weighted analytic cemeéfasr linear
matrix inequality constraints. This is important because many interior point
methods in semidefinite programming are based on weighted analytic centers.
We gave many examples that illustrated the topological properti@¥.oiVe
showed that the region of weighted analytic centers is not necessarily convex in
R", for all » > 1. We also showed thatw’ is not open ifg < n, andWV is not
necessarily open if > n. . . ) L ) The Boundary of Weighted
We extended the notion of repelling paths and repelling limits from linear Analytic Centers for Linear
programming to semidefinite programming . We gave a characterization of the Matrix Inequalities
boundary points o¥V and introduced the new concept of the framé/vf We Shafiu Jibrin and James W. Swift
show that feasible boundary points)df are frame points ofV. We developed
the WF algorithm, which can compute eithét or the boundary oV in terms

; o o Title Page
of repelling limits, based on a modification of Newton’s method.

There are many directions that our present work can be extended. To avoid CaiEs
the problem of unbounded derivatives at the boundarRpmwe can choose <« >
positive weights/; and solve p >

q
(6.1) 3y VA9 (z)| = 0fori = 1,2,...,n. Go Back
j=1 Close
If Newton’s method converges to a solution, and if the solution iR jrthen it Quit
is in WW. We have had success in preliminary investigations with this method, Page 42 of 49
but Newton’s method does not always converge, or it converges to an infeasible
pOIﬂt J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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The infeasible boundary points 8 can be computed using a modification
of Lagrange multipliers. For example a point on tidoundary component of
‘R can be found by solving the + 1 equations in the + 1 variables\, x:

[A®(2)] =0,

AW)
AV[A® (5 |+Z%V‘ (x‘:o,

- |AU) ()]
e The Boundary of Weighted
. . . . Analytic Centers for Linear
where the weightsy; are chosen randomly for # b. Spurious solutions to Matrix Inequalities

this system abound. One must check that 0 and thatz is indeed on thé"
boundary component 6t.
Preliminary investigations show that points near the intersection of two bound-

Shafiu Jibrin and James W. Swift

aries are rarely found by this method. This problem is alleviated if we combine Title Page
the Lagrange multiplier method with the polynomial method described in sys- Contents
tem (6.1). Choose an integérat random, and choose the-1 weightsy;, j # b
at random and solve « dd
< >
[A® ()] =0
Go Back
AVIAD @) + 3 1,V AD (@)|= 0 Close
J#b Quit
for then + 1 variables\ andx. As before, Newton’s method does not always Page 43 of 49
converge, and it sometimes converges to points that are not on the boundary of
R. J. Ineq. Pure and Appl. Math. 5(1) Art. 14, 2004
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The definition of weighted analytic center led to the conceptpasitive
linear dependencandpositive convex hullAnother way that this work can be
extended is to explore different definitions of the weighted analytic center (for
example, replacing; > 0 with w; > 0).
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Algorithm to plot points inW (¢ = 1) or Frame and boundary points &y
(n>1)

Input: Any feasible pointz* of ¢ LMIs in R™, number of points to plox,
stoping conditions for Newton’s meth@dL andmaxIts, and a parameter =
lorp>1.
Repeat
If 4 > 1 andq > n, choose a random sétC {1,2,...,q} of sizen
Choose; numbers:; randomly and independently frot(0, 1)
Setw; = —log(u;) (See Lemma.4.)
If x> 1andg > n, setw; = pxw; forall j € J
Setry = 2%, num = 0andk =0
Repeat
ComputeH ,(zx) andV ¢, ()
Solve the linear systerfi,(zx)s = —V ¢, (z) for the Newton step
If x;, + s is infeasible,
Calculates > 0 such thate;, + os € 9W, using Corollarys.2
Seth = 0.50
Else seth = 1
Updater,, . :=zr + hs; k:=k+1
Until v/sTs < TOL or k > maxIts
If V/sTs < TOL plot z;, ~ 25 (1)
Setnum = num + 1
uUntil num =N
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