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ABSTRACT. Inthis paper we investigate a set of structure conditions used in the existence theory
of differential equations. More specific, we find best constants for the corresponding inequalities
in the special case when the differential operator igth@place operator.

Key words and phrasegp-Poissonp-Laplace, Inequalities, Sharp constants, Structure conditions.

2000Mathematics Subject Classificat o86D20, 35A05, 35J60.

1. INTRODUCTION
When dealing with certain nonlinear boundary value problems of the kind
—div (A (z,Vu)) = fonQ C R",
{ ue Hy? (Q), 1< p< oo,

it is common to assume that the functidn: 2 x R" — R" satisfies suitable continuity and
monotonicity conditions in order to prove existence and uniqueness of solutions, see e.g. the
books [6], [9], [11] and[[12]. FoC} andC5 finite and positive constants, a popular set of such
structure conditions are the following:

A (z,6) — A2, &) < CF (|a] + &) 6 - &I,
(A(2,6) — A2,&) .6 — &) > Cs (|6 + &) 16 - &/,

where0 < o < min(1,p — 1) andmax (p,2) < 3 < oo. See for instance the articles [1]] [2],
[3], [4], [7], [B] and [1C], where these conditions (or related variants) are used in the theory of
homogenization. It is well known that the corresponding function

A(z,Vu) = |Vul"> Vu
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2 JOHAN BYSTROM

for thep-Poisson equation satisfies these conditions, see elg. [12], but the best possible constants
C7 andC5 are in general not known. In this article we prove that the best constarsad C;
for the inequalities

G P72 6 — &P 6| < Cr(l&] + &) 6 — &7,
(a2 & — 1626, 6 - &) > G (16| + &) |6 - &I,
are
Cy =max (1,2°77,(p—1)2°77) ,
Cy =min (2°77,(p — 1)2°77)

see Figuré¢ T]1.
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Figure 1.1: The constants; andCs plotted for different values of.

2. MAIN RESULTS

Let (-, -) denote the Euclidean scalar producti®hand letp be a real constant, < p < cc.
Moreover, we will assume tha§;| > || > 0, which poses no restriction due to symmetry
reasons. The main results of this paper are collected in the following two theorems:

Theorem 2.1.Let&;, & € R™ and assume that the constantatisfies
0<a<min(l,p—1).
Then it holds that

Hfi’p_z &1 — ’f2|p_2 52‘ < Cr(|&] + ‘52‘);0_1—& ISR
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with equality if and only if

(& ==&, forl <p <2,
Vfl,fg c Rn, forp = 2,
&1 = &, for2 < p <3anda =1,

51:k§2,1§k<00, forp:3,

L & = k& whenk — oo, for3 < p < oo.
The constant’; is sharp and given by
Cy =max (277, (p — 1) 2°77,1)..
Theorem 2.2.Let&;, & € R™ and assume that the constahsatisfies
max (p,2) < ff < 0.
Then it holds that
(JaP26 — 6P 26,6 — &) > Co (|a] + &) 16 - &),
with equality if and only if
&1 = &o, forl <p<2andg =2,
V&L, & € R, forp =2,
& = =&, for2 < p < .
The constant’; is sharp and given by
Cy =min (2*7, (p — 1) 2°77) .

3. SOME AUXILIARY LEMMAS
In this section we will prove the four inequalities
&P 28 = &l P8 <ala—&Pf ™, 1<p<2,
(a8 — 6P 6,6 — &) 2 e (Gl + Q) P la - &)*, 1<p<2,
1 & = el &| S el +1e)" 16 — &l 2<p <oo,
<|51’p_2 &1 — ’fz’p_z 2,81 — 52> > )& —&F, 2<p<o.

Note that, by symmetry, we can assume tlggat> 2| > 0. By putting
771=|§—1|7 Im| =1, 772:é—§|7 el =1,
y=(mm), —1<y<1, k=81>1

2] —
we see that the four inequalities above are in turn equivalent with

(3.1) 7 —mo| < er [k —meP T, 1< p<2,

(3.2) (K=t — i, by — o) > o (K + D72 ke — o, 1<p<2,
(3.3) !kp’lm—nﬂ < (k+1)p_2|k771—772\, 2 <p< oo,
(3.4) (KP~my =, k. — 1) > ca [k — maf”, 2 < p < o0,

Before proving these inequalities, we need one lemma.
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Lemma 3.1.Letk > 1 andp > 1. Then the function
hik)=@—p) (L=k7) +(p—1) (k= +")

satisfiesh (1) = 0. Whenk > 1, h (k) is positive and strictly increasing fore (1,2)U (3, o),
and negative and strictly decreasing fok (2, 3) . Moreover,h (k) = 0 forp =2 or p = 3.

Proof. We easily see thdt (1) = 0. Two differentiations yield
Wk)=@-1)((p-3)F?+1-(p—-2)k7),

W = - ) 0-2) -3 (1- 1),

with 7/ (1) = 0 andh” (1) = 0. Whenp € (1,2) U (3,00) , we have that” (k) > 0 for k > 1
which implies that’ (k) > 0 for £ > 1, which in turn implies that (k) > 0 for £ > 1. When
p € (2,3), asimilar reasoning gives that(k) < 0 andh (k) < 0 for k£ > 1. Finally, the lemma
is proved by observing that(k) = 0 forp = 2 orp = 3. OJ

Remark 3.2. The special casg = 2 is trivial, with equality ¢; = ¢ = 1) forall § € R™ in all
four inequalities|[(3]1) - (3]4). Hence this case will be omitted in all the proofs below.

Lemma 3.3. Letl < p < 2and¢, & € R™. Then
G728 — 1626 <ala — &P,
with equality if and only i, = —¢&,. The constant, = 2277 is sharp.

Proof. We want to prove[(3]1) fok > 1. By squaring and putting = (1, ) , we see that this
is equivalent with proving

R0 41— 2kl < & (K2 41— 2k)"
where—1 < v < 1. Now construct
LR 12kl (R 1) 4 2k (1 - )

filho) = (R2+1-2k7)""" (k=12 +2k(1—7)" "
Then
fi (k) < 0.
Moreover,
o, 2k(=m @ -1+ 2—p) (207 1=+ (= 1))
P 2+ 1= 2k ) <0

Hence we attain the maximum féy (k, v) (and thus also fot/ f, (k,~)) on the bordety = —1.
We therefore examine

kP41
k) = k,—1) = ————.
o (k) = Vi (k1) = s
We have
g (k) = — L (1 k%) <0
! (k4 1)? =

with equality if and only ift = 1. The smallest possible constantfor which inequality [(3.]L)
will always hold is the maximum value @f (k) , which is thus attained fok = 1. Hence

c1 =g (1) =227,
This constant is attained féar= 1 andy = —1, that is, wher¢; = —&,. O
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Lemma 3.4.Letl < p < 2and¢;, & € R™. Then
(JGP26 — &P 2 6,6 — &) > eo (J&] + 1&))P 2 6 — &,

with equality if and only i, = &. The constant, = (p — 1) 2277 is sharp.
Proof. We want to prove{ (3]2) fok > 1. By puttingy = (n:,7.) , we see that this is equivalent
with proving

41— (241D ky > (k+ 1) (B +1 - 2ky),
where—1 < v < 1. Now construct
RP+1— (kP2 + ) ky (=1 (k-1 4+ & +k)(1-7)

falkm) = (k+1P" 72 (k2 +1-2ky)  (h+ 1P ((k—1)°+2k(1—7))
Then
fQ (l{?, ’}/) > O
Moreover,
of2 k(1 —kP2) (K —1)

9

Y k)P (R A1 —2k7)°
with equality fork = 1. Hence we attain the minimum fo% (k,~) on the bordery = 1. We

therefore examine
0= falk )= — 1
e =rLED= ey
By Lemmd 3.1 we have that
(= B (=R 4 (p— 1) (k= k)
95 (k) = 2 p—1
(k=17 (k+1)
with equality if and only ifx = 1. The largest possible constantfor which inequality [(3.R)
always will hold is the minimum value af, (k) , which thus is attained fat = 1. Hence

>0

— Y

lim g (k) = li i (p—1)227

cp = lim = lim =(p— .

2T k=1 (k—1) (k4 1) b

This constant is attained far= 1 and~ = 1, that is, whert; = &. O

Lemma 3.5.Let2 < p < co and¢y, & € R™ Then
P& — 162 & < e (1] + 1) 16 — &l
with equality if and only if
& =&, for2 < p<3,
& = k& whenl < k< oo, forp =3,
&1 = k& whenk — oo, for3 < p < .
The constant, is sharp, where;, = (p —1)2*>Pfor2 < p < 3ande; = 1 for3 <p < .

Proof. We want to prove[ (3]3) fok > 1. By squaring and putting = (11, 7) , we see that this
is equivalent with proving

K200 41— 2kl < 2 (k4 1)°P7 (B2 41— 2ky),
where—1 < v < 1. Now construct
K201 4 ] — kPl (kP=' = 1)* + 2kP~1 (1 — )

f3 (k) = (k+ 127D (k2 41— 2ky)  (k+1)20D (k=1 +2k(1—7)
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Then

f3 (kafw < 00.

Moreover,
%_ 2k (kP=2 —1) (kP — 1) -0
M (k+ 12" (k2 41— 2ky)

with equality fork = 1. Hence we attain the maximum fés (k, v) (and thus also fot/ f5 (k, 7))
on the bordery = 1. We therefore examine

g3 (k) =V f3 <k> 1) =

Kt —1
(k—1)(k+1)*

First we note that
whenp = 3, implying thatc; = 1 with equality for all§; = k&, 1 < k < oo. Moreover, we
have that
oy~ B A=)+ (=) (k= k)
g5 (k) = 2 p—1 :
(k—1)"(k+1)

By Lemmd 3.1 it follows thag; (k) < 0 for 2 < p < 3 with equality if and only ift = 1. The
smallest possible constantfor which inequality [(3.B) will always hold is the maximum value
of g3 (k) , which thus is attained fak = 1. Hence

lim g5 (k) = I it
C1 = 11 = 11m
e ) = I T
This constant is attained far= 1 and~ = 1, that is, whert; = &.

Again using Lemma 3|1, we see that(k) > 0 for 3 < p < oo, with equality if and only
if & = 1. The smallest possible constantfor which inequality [(3.B) will always hold is the
maximum value ofy; (k) , which thus is attained whelh— oco. Hence

=(p—1)2>" for2 <p< 3.

kPt —1
c1 = lim k) = lim =1, for3 <p < .
This constant is attained whén— oo and~ = 1, that is, whert;, = k&, k — oc. OJ

Lemma 3.6. Let2 < p < oo and§y, & € R™. Then
(a2 =16l 76,6 = &) > e lé - &,
with equality if and only if; = —&,. The constant, = 2277 is sharp.

Proof. We want to prove[(3]4) fok > 1. By squaring and putting = (1, 7) , we see that this
is equivalent to proving

(K +1— (24 1) k)" > & (K +1-2ky)",
where—1 < < 1. Now construct
(" +1— (k% +1) k)’
(k2 +1—2ky)"
(= 1) (k= 1) + (R + k) (1—7))°
((k—1)*+2k(1—7)" |

f4 (k:vry) =

Then
fa(k,v) > 0.
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Moreover,
Ofy _ 2k (=2 AR +BR)AK) _
Oy (k2 +1 — 2ky)PH! ’

where
Aky=(K"=1)(k=1)+ (K" +k) (1—7),
B(k)=(k>-1) (K —1).

Hence we attain the minimum fgi (k, v) (and thus also fox/ f, (k,v)) on the bordety = —1.
We therefore examine

B — | |
o () = VFi (b =1) =

We have

oy (=D (R 1)
94 (k) - (k + 1)17 Z 07

with equality if and only ift = 1. The largest possible constantfor which inequality [(3.14)
will always hold is the minimum value af; (k) , which thus is attained fot = 1. Hence

Co = (4 (].) = 22—1)'
This constant is attained far= 1 andy = —1, that is, wher¢; = —&,. O

4. PROOF OF THE MAIN THEOREMS

Proof of Theorer 2]1Let 1 < p < 2. Then the conditio) < o < min(l,p—1) =p—1
implies thatp — 1 — « > 0. From Lemma 33 it follows that

||f1|p72 & — &P &| <l — EFTIT G - &l
<a (Gl +le) G - &,

with ¢, = 2277, and we have equality whefi = —&. Now let2 < p < co. Then( < o <
min (1,p — 1) = 1 implies thatl — « > 0. From Lemma 35 it follows that

Gl + o)™
(el + g

< a (el +le) G - &,

el 26 — 6P 6] < ol

with
a) ¢, = (p— 1) 2277 equality for{; = & whena = 1for 2 < p < 3,
b) ¢; = 1, equality for; = k& whenk — oo for 3 < p < oo.

The case = 2 is trivial and the casp = 3 has equality fo; = k&, 1 < k < oo, both
cases with constamt = 1. The theorem follows by taking these two inequalities togethér.

Proof of Theorer 2]2Let 1 < p < 2. Then the conditior2 = max (p,2) < 8 < oo implies
thats — 2 > 0. From Lemma 34 it follows that

(alP 26 — &l 6,6 — &) > ca (|&] + 1&)7 77 (6] + &) 2 6 — &I
> oo (|6] + &) 16 - &),
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with ¢c; = (p —1)2%7? and equality for§; = & whens = 2. Now let2 < p < oo. Then
p =max (p,2) < 3 < oo implies thats — p > 0. From Lemma 316 it follows that

<‘51’p_2 &1 — ’52’1)_2 2,81 — f2> >cy |6 — 52\])_5 &1 — 52|B
> o (] + &) & - &7,
with ¢, = 2277 and equality fot, = —&,. The case = 2 is trivial, with constant, = 1. The
theorem is proven by taking these two inequalities together. O
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