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ABSTRACT. On utilising an identity from[[5], some weighted Ostrowski type inequalities are
established.
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1. INTRODUCTION

In [5], the authors obtained the following generalisation of the weigMedtgomery iden-
tity:

@y sw= g [ e ([ o) soa

10 ,

w5 [ P
wheref : [a,b] — R is an absolutely continuous functiop,: [0,1] — R is a differentiable
function withp (0) = 0, ¢ (1) # 0 andw : [a,b] — [0, 00) is a probability density function
such that the weighel@eano kernel

w(fatUJ(S)dS>, a<t<un,

1.2 Py (z,t) = t
(1.2) (2,1) @(faw<s)d8>_(’0<1)’ r<t<hb,

is integrable for any: € [a, 0]
If ©(t) = ¢, then [1.1) reduces to the weighted Montgomery identity obtained bgrien

b b
(1.3) f(z) :/ w(t) f(t) dt+/ Py, (z,t) f'(t) dt,
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where the weighted Peano kerie] is

ftw(s)ds, a<t<uz,
(1.4) Py (x,t) =4 " ,
— [, w(s)ds, z<t<b.
Finally, the uniform distribution is used to provide the Montgomery identity [17, p. 565]:
1 b b
(15) f@ =y [ 1wdes [ Peoraa,

with

~+

= jf q<t<u,
=2 if z<t<b,

~ o
> Q

P (x,t) = {

that has been extensively used to obtain Ostrowski type results, see for instance the research
papers([3] -[[6],[[V] —[[16],[[19] —[20],[22] and the book [15].
In the same paper[5], on introducing the generaliSellySev functional,

o

Q

A8) T, w.1.9) = | Cw(@) ( [ w dt) f () (x) da

- Uabw(ﬂ:)w’ ([ wira) s was]
<[ [wee ([[wera)owal

the authors obtained the representation:

@7) T¢<w,f,g>=¢%m/abw<x>¢ ([ wira)
X Uab Py, (x,t) f' (1) dt} Uab Py, (x,t) g (t) dt} dx

and used it to obtain an upper bound for the absolute value é¥¢bgsev functional in the case
wheref’. ¢', ¢’ € Ly [a,b]. This bound can be stated as:

1
©? (1)

where H (z) := ff | Py, (z,t)| dt. The inequality ) provides a generalisation of a result
obtained by Pachpatte in [18].

The main aim of this paper is to obtain some weighted inequalities of the Ostrowski type by
providing various upper bounds for the deviationfdf:) , « € [a, b], from the integral mean

ﬁ/jw(t)@' </:w(s)ds)f(t)dt,

when f is absolutely continuous, of bounded variation or Lipschitzian on the intésyall.
Some particular cases of interest are also given.

b
(1.8) Ty (w, f,9)] < WWWHJMJWWm/ijﬁHW@d%
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2. OSTROWSKI TYPE INEQUALITIES

In order to state some Ostrowski type inequalities, we consider the Lebesgue norms

19110, 5,00 == €55 sup |g (¢)]
t€a 5]

and

g 7
o= | [ laoral] . re oo
provided that the integral and the supremum are finite.

Theorem 2.1.Lety : [0,1] — R be continuous o0, 1], differentiable on(0, 1) with the
property thaty (0) = 0 andy (1) # 0. If w : [a,b] — R, is a probability density function, then
forany f : [a,b] — R an absolutely continuous function, we have

@1)‘f@»—;%SZTw@nd(Lzu@wm)f@wﬂ

<[ so(/atw(S)dS)‘!f’(t)\dH/: o([weas)-ow|irwla

foranyz € [a,b].

If
o= [ ([was)|irona
and
H, (1) = / @(/atw(S)dS) —w(l)'|f’(t)|dt,

then

(o (o w () ds) ||y a0 15 N
2 m@ < 1PUe®d) 0, 1 Zfd?lji[é; 1

|l (s w0 () d8) |y 1 a1 S € Lo [0, ]
and

o (Jyw(s)ds) =@ (W], 100 1F w1
23 @ <d [P0w@ds) =@l 1y, Hr>1i+:=1

andf’ € L; [z, b];

{ e (Jw(s)ds) — ¢ (1)H[a:,b],1 1 b0 S € Loo [, 0]

foranyz € [a,b].
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Proof. Follows from the identity[(1]1) on observing that

(2.4 'f(x)—ﬁ/ﬂbw@)w'(/jw(s)ds)f(t)dt\

/j¢</atw(8)ds)f’(t)dt+/:{w(/@tw(S)dS>—w(l)}f’(t)dt‘
[o([uweas)raaf+ /:[so(/atms)ds)—so<1>]f'<t>dt\
<[ gp(/atw(s)ds)‘]f’(t)\dﬁ/: o([weas) —ow|irwla

for anyz € [a, ], and the first part of (2]1) is proved.
The bounds fron (2]2) anfl (2.3) follow by the Holder inequality. O

<

Remark 2.2. It is obvious that, the above theorem provides 9 possible upper bounds for the
absolute value of the deviation ¢f(=) from the integral mean,

s [wws ([weas) o

although they are not stated explicitly.

The above result, which provides an Ostrowski type inequality for the absolutely continuous
function f, can be extended to the larger class of functions of bounded variation as follows:

Theorem 2.3.Lety andw be as in Theorefn 2.1. 4f is continuous ofa, b] and f : [a,b] — R
is a function of bounded variation dn, b] , then:

(25) ]fm - ﬁ/jw(vﬁ) ¥ (/atw<s> ds) 7 ) dt'

< ﬁ” [tz{l};} @ (/:w(S)ds)‘ -\:/(f)

- s @(/atw(S)dS) —w(l)'\:/(f)]
R EAL VLD

o ([ew) =enlf Yo

where\/’ (f) denotes the total variation gf on [a, b] .

Proof. We recall that, if : [«, 5] — R is continuous otle, 3] andv : [a, 3] — R is of bounded
variation, then the Riemann-Stieltjes integfglp (t) dv (t) exists and

8 B
26) [ rea|< s porV .

t€[a,f] o
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Since the functionsy ([ w (s)ds) ande ([ w (s)ds) — ¢ (1) are continuous offe, z] and
[z, b], respectively, the Riemann-Stieltjes integrals

/az@(/:w@)ds) df (t) and /: [(p (/atw(s)ds) _90(1)} i ()

exist and
@.7) ‘/;@(/:w@ds) ()] < s o([uas) -\:/(f),
while
eo |f b oy (s )~ )] (t)]
< s o[ wt9as) -0 -\i/(f)-

Integrating by parts in the Riemann-Stieltjes integral, we have

2.9 /90(/ (5)ds ) df (0
(i)
= s ([ i) -

e10) [ [o([weras)-e >}df<>
(et - el ([ 0e) -
o ([ weas) - (U}f(rc)—/xw(t)w’(/a ()ds) £ (0t

If we add [2.9) and[(2.10) we deduce the following identity of the Montgomery type for the
Riemann-Stieltjes integral which is of interest in itself:

i [ewre ([ weas) s

L[]
oo ([ s

(2.11) f(x) =

foranyz € [a,b)].
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Now, by (2.11) and (2]7) 4 (2.8) we obtain the estimate:

s [woe ([ wew) o

<t /;go(/;msws) df(t)‘ﬂtﬁ / & (/:w<s>ds) - o) df(t)‘
<ozl ([ o) Vo

1
+ ——— - sup
¥ (1) te(z,b]

so(/:ms)ds)—so(l)'-\/(f), vefah

T

which provides the first inequality if (2.5).
The last part of (2]5) is obvious. O

The following particular case is of interest for applications.

Corollary 2.4. Assume thaff, o, w are as in Theoremh 2.3. In addition, ¢ is monotonic
nondecreasing ofv, 1], then

@1 |rw-—p [woe ([ wes) rod
g elhvid). \:/(f) n :1 - el vt ds)] . \:/(f)
<[ w<fa;w1<;>ds>_%]\(‘:/(f),
I:]roof. Follows by Theorer 2|3 on observing thatfis monotonic nondecreasing ¢ b]
then:
e (Lron)= oo ([oma)=e ([ vom)
and
Jup |2 (/:w(S) d8> - ¢(1)‘ =S {w(l) —¢ (/:w(S) dS)]

— o= int o ([ wis)as)
e =¢ ([ utas).
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Corollary 2.5. With the assumptions of Theorgm|2.3 anfl'if= sup;q,1) [’ (¢)| < oo, then
we have the bounds:

(2.13) 'f(:v) - ﬁ/ﬂbwm ¥ (/atw<s> ) £ 0 dt'

]_ t T b b
SW’KLEEZ / w(s)ds ‘\a/<f>+t§gm /t w(s) ds ~\x/<f)]

K t b b
SmmaX{;g;] / w (s) ds e /t w(s)ds}\a/(f).

Remark 2.6. If w (s) > 0for s € [a, b], then from [2.1B) we get
b t
(2.14) ‘f(;c)_L/ w(t) ¢ (/ w(s)ds)f(t)dt'

v (1)
e T b b
s% /aw(s)ds'\a/(f”/xw(s)ds'\x/(f)]
§% :%/abw(s)ds—ké /axw(s)ds—/:w(s)ds} \b/(f)

a

The following result, that provides an Ostrowski type inequality £erLipschitzian func-
tions, can be stated as well.

Theorem 2.7. Lety andw be as in Theorefn 2.1. 4 is continuous ora, b] and f : [a,b] — R
is an L; —Lipschitzian function offu, =] and L,—Lipschitzian onx, b] , with = € [a, b] , then

(2.15) 1@ - [woe ([ wes) o
(e
v i [ ([wias) ~ o) d]

oo Iy [ o ([0
(s valu]

(1)
Proof. We recall that, ifp : [a, 3] — R is L—Lipschitzian andv is Riemann integrable, then
the Riemann-Stieltjes integrjf f(t)du(t) exists and

dt

dt

(2.16) /jp(t) v (t)’ < L/j ip (1) dt.

Now, if we apply the above property to the integrals
T t b t
[o([oeas)ae ad [ o [wwa)-ew|ao.
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then we can state that

(2.17) /j(p (/atw(s)ds) df(t)' < Ll-/j - (/atw(s)ds>‘dt
and
@i’ [ b {so ( / " (s) ds) - w(l)] 4 (t)'

§L2-/: gp(/atw(s)ds) —¢(1)‘dt.

By making use of the identity (2.11), by (2]17) apd (2.18) we deduce the first part of (2.15).
The last part is obvious. O

The following particular case is of interest as well.

Corollary 2.8. With the assumptions of Theorm|2.7 anH'if= sup,¢ o,y |’ ()| < oo, then

(2.19) \f@c)—L/abw@)so'(/:w(sms)f(t)dt\

v (1)
%{L1~/j /atw(s)ds dt+L2-/: /tbw(s)ds dt]
/atw(s)ds dt—l—/xb /tbw(s)ds dt].

(
K xT
— Ly, L
oy et B2 [/
Remark 2.9. If w : [a,b] — R is a nonnegative weight, thefjw (s) ds,j;bw (s)ds > 0 for
eacht € [a,b] and since
—/ w (t)dt

[([ e ([ woe)-
—:c/:w(t)dt—/:tw(t)dt—/j(:c—t)w(t)dt

/: (/tbw(s)ds> dt =t (/tbw(s)ds> b

+/xbw(t)dt

:—:c/:w(t)dtJr/:tw(t)dt:/:(t—:c)w(t)dt,

then we get, from( (2.19), the following result:

(2.20) ‘f(:':) - [ "w ity (/ () &) £0 dt]

{Ll./j(x—t)w(t)dHLQ-/:(t—x)w(t)dt]

IA

—_

IN

and
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3. SOME EXAMPLES

The inequality [(2.12) is a source of numerous particular inequalities that can be obtained
by specifying the functiorp : [0,1] — R which is continuous, differentiable and monotonic
nondecreasing witk» (0) = 0.

For instance, if we choose(t) = t*, « > 0, then we get the inequality:

(3.) ‘f(x)—a/abw(t) (/atw(S)ds>a_1f(t)dt

<([weras) 0+ = ([wea)] V)

b

< B+‘(/jw(s)ds)a—%u \V (),

a

for anyx € [a, b] provided thatf is of bounded variation ofw, b] , w (s) > 0 for anys € |a, b|
and the involved integrals exist.

Another simple example can be given by choosing) = In (¢ + 1) . In this situation, we
obtain the inequality:

(3.2)

F(t)dt

- In ([T w(s)ds+1 .\7(f)+ 1_ln(fawwh(132)ds+1)

\/ ()

In ([T w(s)ds+1 1 ’

U )_1 ] AVAGR
for anyz € [a, b] provided thatf is of bounded variation ofu, b] , w (s) > 0 for anys € [a, 0]
and the involved integrals exist.

Finally, by choosing the functiop () = exp(¢) — 1, we obtain, from the inequality (2.12),
the following result as well:

‘f(l‘)_ eil/abw(t)exp (/:w(s)ds>f(t)dt’

exp ([Tw(s)ds) —1 \" e—exp ([Tw(s)ds) "

< SR BB R () POy
1 lexp([fw(s)ds)—1 1 ’

3[5* 1 ‘5]‘\{“)7

foranyx € [a, b], providedf is of bounded variation ofx, b] and the involved integrals exist.
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