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On utilising an identity from %], some weighted Ostrowski type inequalities
are established.
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1. Introduction

In [5], the authors obtained the following generalisation of the weightedtgomery
identity:

@y s [ e ([ wes) soa
+ ﬁ /ab Py, (z,t) f(t)dt,

where f : [a,b] — R is an absolutely continuous function, : [0,1] — R is a
differentiable function withp (0) = 0, ¢ (1) # 0 andw : [a,b] — [0,00) is a
probability density function such that the weigheeano kernel

t
o[ w(s)ds), a<t<uz,
1.2) Py, (x,t) = < . )
@(faw(s)ds) —¢(1), z<t<b,

is integrable for any: € [a, ] .
If v (t) = t,then (L.1) reduces to the weighted Montgomery identity obtained by
Pearic in [21]:

b b
(13) f@) = [wOswds [ Pworo
where the weighted Peano kerrig] is
(1.4) Py (2,1) == { ) u;@ woestEn
— [, w(s)ds, x<t<b.

Weighted Ostrowski Inequality
N.S. Barnett and S.S. Dragomir
vol. 8, iss. 4, art. 96, 2007

Title Page
Contents
44 44
< >
Page 3 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Finally, the uniform distribution is used to provide the Montgomery idenfif p.
565]:

1 b b
(15) f@) =y [ s [ Panr o
with . .
P t) = ﬁ if a <t=< Z, Weighted Ostrowski Inequality
(xa ) = ﬁ if » <t < b, N.S. Barnett and S.S. Dragomir

. . . i vol. 8, iss. 4, art. 96, 2007
that has been extensively used to obtain Ostrowski type results, see for instance the

research paperS]- [6], [7] - [16], [19] - [20], [22] and the book 15].

In the same papeb], on introducing the generalisétebySev functional, Title Page
b z Contents
(1.6) T,(w,f,9) ::/ w (z) ¢’ (/ w (t) dt) f(z)g(x)dx « >
1‘1 b ‘ T
—W[/w(x)cp’(/ w(t)dt)f(x)d:v] h g
¥ a a , i Page 4 of 21
< [wwe ([ woa)swal, T
the authors obtained the representation: AUl T
Close
1 b ) T
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and used it to obtain an upper bound for the absolute value @ebgéev functional
in the case wher¢’, ¢', ¢’ € L |a,b] . This bound can be stated as:

1
©? (1)

whereH (z) := f;’ | Py, (z,t)| dt. The inequality {.8) provides a generalisation of
a result obtained by Pachpatte it8].
The main aim of this paper is to obtain some weighted inequalities of the Os-
trowski type by providing various upper bounds for the deviatiofi @f) , = € [a, b],
from the integral mean

ﬁ/@bw(tw (/atw(s)ds)f(t)dt,

whenf is absolutely continuous, of bounded variation or Lipschitzian on the interval
la, b]. Some particular cases of interest are also given.

b
A8 [T £l < S 1919 1] [ 0 (0) B2 ) d

Weighted Ostrowski Inequality
N.S. Barnett and S.S. Dragomir
vol. 8, iss. 4, art. 96, 2007

Title Page
Contents
44 44
< >
Page 5 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

2. Ostrowski Type Inequalities

In order to state some Ostrowski type inequalities, we consider the Lebesgue norms

191lfa. 1,00 = €55 sup |g (t)]
t€la,f]

and

8 7
Iolsyei= | [ ot ar| e oo
provided that the integral and the supremum are finite.

Theorem 2.1.Lety : [0,1] — R be continuous o1y, 1], differentiable on(0, 1)
with the property thatp (0) = 0 andy (1) # 0. If w : [a,b] — R, is a probability
density function, then for any : [a,b] — R an absolutely continuous function, we

have
f(w)—ﬁ/abw(t)w’ (/atw(S)ds)f(t)dt‘

< ['fe([ wea) o [ so(/atw(S)dS)—w(l)‘!f’(t)\dt
foranyx € [a, b] .
Hy () ::/am

.
Hy () = / b

(2.1)

o([weas)irwra

([ w9 - o] 01

and
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then

(22) Hi(x) <

and

(23)  Hy(x)

IN

\

foranyz € [a,b].

Proof. Follows from the identity {.1) on observing that

( ng (fa w (S) dS) H[a,x],oo ”f,”[a,x},l ’

HSO (fa w (S> ds) H[a,mLp Hf/H[a,Z],q

\ H‘P (fa w (s) ds) H[a,x],l ||fl||[a7q;],oo

(yw(s)ds) = o W]y 17w
(;w(s)ds) = o D]y 15 e

o (f,w(s)ds) = (I)H[x,b],l 11 61,00

ifp>1,%+§:1
andf' € L, [a,x];

if f' € L la,x];

ifr>1,%—|—%:1
and f’ € Ly [z,b];

if ' € Lo [, 0]

(2.4) ]f(x) - ﬁ/ﬂbww ¥ (/atw<s> ds) 0 dt'
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<

xX
</

¢(Ltw<s>ds)\|f'<t>\dt+Lb

/;so</atw<s>ds) f’(t)dt+/: v (/:w<s>ds) - (1) f’(t)dt‘
/axgp(/atw(s)ds) f’(t)dt’Jr

[ o ([ weras) o] o

o([weas) —ow|ir @la

for anyx € [a, b], and the first part of4.1) is proved.
The bounds from4.2) and @.3) follow by the Holder inequality.

Remarkl. It is obvious that, the above theorem provides 9 possible upper bounds

for the absolute value of the deviation pfx) from the integral mean,

1
o (

—D/abwu)so’ ([ was) s

although they are not stated explicitly.

The above result, which provides an Ostrowski type inequality for the absolutely
continuous functiory, can be extended to the larger class of functions of bounded

variation as follows:

Theorem 2.2. Let » andw be as in Theoremd.1. If w is continuous ona, b] and

f : [a,b] — R is a function of bounded variation dn, b| , then:

(2.5)

1

‘f(l’)—m/abw(t)s@’ (/atw(S)ds>f(t)dt’

]
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o[ wera) -\:/(f)
go(/atms)ds) ~o() -\i/(f)]
< st o ([ v

w(/atw(S)dS) —so(l)‘}-\i/(f%

where\/’ (f) denotes the total variation gf on [a, b] .

Proof. We recall that, ifp : [, 3] — R is continuous or, 8] andv : [a, 5] — R is
of bounded variation, then the Riemann-Stieltjes integfqdr (t) dv (t) exists and

1
< —— | sup
2 ( 1) [te [a,z]

+ sup
te(z,b|

Y

sup
te(z,b]

(2.6)

8 B
[ roa]< s oy o.

t€[a,f]

Since the functiong ([ w (s)ds) ande ([ w (s)ds) — ¢ (1) are continuous on
la, z] and[x, b], respectively, the Riemann-Stieltjes integrals

/arcp(/:w(S)ds)df(t) and /xb[<p(/:w(s)d8)_(’0(1)}@(@)

exist and
[o([vea)an]< s lo([wwe)| V.

a

(2.7)
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while

(2.8)

/: [90 (/atw<s>ds) —w(l)] df(t)’

o([woeas)-sm]-Va.

T

< sup
te[z,b]

Integrating by parts in the Riemann-Stieltjes integral, we have

eo [ o[ wea)aw
=10 ([weas)| - [rwafe([weoa)]
1@ ([ weras) - [woe ([ weas) roa
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—/:w(t)cp' (/atw(s)ds)f(t)dt.

If we add €.9) and ¢.10 we deduce the following identity of the Montgomery type
for the Riemann-Stieltjes integral which is of interest in itself:

(2.11) f(x)zﬁ/:w(t)w’ (/:w<s>ds)f<t>dt
+ﬁ/jgp</atw(s)ds)df(t)
s [ e ([ woas) o] e,
foranyz € [a,b].
Now, by (2.11) and @.7) — (2.8) we obtain the estimate:
1@ -t (e ([ o) rod
e ([oeas)ara)s | [ o ([uwa)-sw]aw
o([weras)|- Vi

e (1)
1

w(/atw(S)dS) —w(l)'-\b/m,

T

IN

IN

—_— . Sup
¥ (1) te€la,x]

1
+ —— - sup
2 (1> te(xz,b]
which provides the first inequality ir2(5).
The last part of£.5) is obvious. O
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The following particular case is of interest for applications.

Corollary 2.3. Assume thaf, ¢, w are as in Theorerd.2. In addition, ifp is mono-

tonic nondecreasing off), 1] , then

(2.12)

UL RN

< |1y
|2

a

)
o (fyw(s)ds) 1
v (1) 2

‘f(x)—ﬁ/abw@)w’ (/:w(S)ds>f(t>dt

Proof. Follows by Theoren?.2 on observing that, if» is monotonic nondecreasing

on|a,b], then:

([

sup
te€(a,z]
and
t
sup (¢ </ w(s)ds) —gp(l)‘ = sup
te[xz,b] a
=

tefz,b

(1) — inf

te[z,b]

= s o ([ weras) = ([Twees)

][wnw(étw(s)ds)}
e

—e - ( [Cwas),
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Corollary 2.4. With the assumptions of Theorémand if K := sup,¢ g1 ¢’ ()| <
oo, then we have the bounds:

(2.13) ‘f(x)—ﬁ/abw(t)s@’ (/atw(S)ds)f(t)dt'

1 ! i b
<cm [ fwe v | [fwa W]
K t ' ’
< mmax {tz}ﬁ] /a w(s)ds ’til[ﬁ] /t w(s)ds }\a/(f)

Remark. If w(s) > 0for s € [a, b] , then from £.13 we get

@1 |- [ ([vea)ron

b

|- V.

a

g% :%/abms)dw% /jw(s)ds—/:w(s)ds

The following result, that provides an Ostrowski type inequalitylfeiLipschitzian
functions, can be stated as well.

Theorem 2.5. Let ¢ andw be as in Theorem.1. If w is continuous orja, b] and
f : [a,b] — R is an L;—Lipschitzian function orja, z| and L,—Lipschitzian on
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[z,b], with z € [a,b], then

@19 |- [ ([uei) s

AS)

([ o) -vofo]

Proof. We recall that, ifp : [, 5] — R is L—Lipschitzian andv is Riemann inte-
grable, then the Riemann-Stieltjes integfcglf (t) du (t) exists and

(2.16) /jp(t) v (t)‘ < L/j ip (1) dt.

Now, if we apply the above property to the integrals

/;90</atw(s)ds) df (t) and /: [gp </atw(t)ds> —¢(1)] df (1),

then we can state that
t
@ (/ w (s) ds>

[o([vwas)aw <n. [

(2.17) dt
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and

(2.18)

/: {«p (/atw<s>ds) —¢<1>} df(t)'
<t o([weas)-ew

dt.

By making use of the identity?(11), by (2.17) and ¢.19 we deduce the first part of

(2.19.

The last part is obvious. ]

The following particular case is of interest as well.

Corollary 2.6. With the assumptions of Theorémvand if K := sup,¢ g1 ¢’ ()| <
oo, then

(2.19) 1f<x> - i/jw(t) / (/:ms) ds) 10 dt‘

¢ (1) o
/atw(s)ds dt+L2~/w /tw(s)ds

sl d
/atw(s)ds dt—l—/: b

g%max{Ll,Lz} U w(s)ds dt].

t
Remark3. If w : [a,b] — R is a nonnegative weight, theﬁjw (s)ds, ftbw (s)ds >
0 for eacht € [a, b] and since
— / w (t)dt

[ ([ e ([ 0s)-

:a:/:w(t)dt—/jtw(t)dt:/:(x—t)w(t)dt

IN

—_
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and

[ (frerm)a-e (f o)

:—x/:w(t)dtjt/mbtw(t)dt:/:(?f—l")w(t)dta

then we get, from4.19), the following result:

r@ - [woe ([ o) rod

(2.20)

K

= ¢ (1)

= e (1)

{Ll~/ax(;z:—t)w(t)dt+L2‘/:(t—x)w(t)dtl
max{Ll,Lg}/ab|t—x|w(t) dt.
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3. Some Examples

The inequality £.12) is a source of numerous particular inequalities that can be ob-
tained by specifying the functiop : [0, 1] — R which is continuous, differentiable

and monotonic nondecreasing with{0) = 0.
For instance, if we choose(t) = t*, « > 0, then we get the inequality:

f(w)—a/abw(t) (/:w(S)dS)a_lf(t)dt
< (/;w(s)dS)a-\i/(fH ([ wea) ] ~\:/(f>
<[] ([ wea) 3]\

} V),
for anyz € [a, b] provided thatf is of bounded variation ofa, b] , w (s) > 0 for any
s € [a, b] and the involved integrals exist.

Another simple example can be given by choosing) = In(¢+1). In this
situation, we obtain the inequality:
w (1)

L
f(x)—m/a [fw(s)ds +1

- In ([ wh(;) ds+1) \7 )+ In ([’ wu(;) ds +1)

< |1y
=2

(3.1)

(3.2)

£t dt|

b
-\ ()

a

In (["w(s)ds +1) l] V)

In2 2
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foranyx € [a, b] provided thatf is of bounded variation ofa, b] , w (s) > 0 for any
s € [a, b] and the involved integrals exist.

Finally, by choosing the functiop (¢) = exp(t) — 1, we obtain, from the inequal-
ity (2.12), the following result as well:

‘f(x)_ eil/abw(t)exp </atw(8)ds)f(t)dt‘

exp(faw(s)ds)—l‘\/<f)+e—exp(faw(s)ds) \/

e—1 e—1
< 1+
— |2

for anyx € [a,b], provided f is of bounded variation ofu,b] and the involved
integrals exist.

(f)

exp ([Tw(s)ds)—1 1
e—1 2
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