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ABSTRACT. Let H be a partitioned tridiagonal Hermitian matrix. We characterized the possible
inertias of H by a system of linear inequalities involving the orders of the blocks, the inertia of
the diagonal blocks and the ranks the lower and upper subdiagonal blocks. From the main result
can be derived some propositions on inertia sets of some symmetric sign pattern matrices.
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1. PRELIMINARIES

Define theinertia of ann x n Hermitian matrixH as the tripleln(H) = (7, v,¢), wherer,
v andd = n — w — v are respectively the number of positive, negative, and zero eigenvalues.
Whenn is given, we can specifin(H), by giving justr andv, as(m, v, *).

In the last decades the characterization of the inertias of Hermitian matrices with prescribed
2 x 2 and3 x 3 block decompositions has been extensively investigated. In the first case, after
the papers [18] and [2] in 1981, Cain and Marques de Sa established the following result.

Theorem 1.1([3]). Let us consider nonnegative integersr;, v; such thatr; + v; < n;, for
i=1,2,andlet0 < r < R < min {ny, ny}. Then the following conditions are equivalent:

() Fori = 1,2, there exist; x n; Hermitian matricesd; and ann; x ny, matrix X such
thatIn(H;) = (m;, vi, %), r < rankX < R and

H X
(1.1) H= {X* i, }

has inertia(r, v, *).

ISSN (electronic): 1443-5756

(© 2004 Victoria University. All rights reserved.

This work was supported by CMUC (Centro de Matematica da Universidade Coimbra).
The author would like to thank to the unknown referee for his/her suggestions.

161-03


http://jipam.vu.edu.au/
mailto:cmf@mat.uc.pt
http://www.ams.org/msc/

2 C.M. DA FONSECA

() Letk € {1,2}. LetW, be any fixed Hermitian matrix of ordey, and inertia(my, v, *).
() holds with H;, = Wy

(1) LetW be any fixeth; x ny, matrix withr < rankW < R. (I) holds withX = .

(IV) For k = 1,2, let Wy, be any fixech), x n;, Hermitian matrix with inertia(y, vy, ). (1)

hOIdS W|thH1 == W11 andH2 == WQQ.

(V) The following inequalities hold:

™ Z max{m,ﬂg,r — V1, T — V9, T + Ty — R},
v Z maX{V17V27T — T, T — T, 1 + Vo — R}7
s S min{m +7TQ,7T1 +n2,7T1 +7T2 +R},
v < min{ny + ve,v; + no, 1 + 15+ R},
T — v < T+ T,
v—m < v+ 1o,
TH+vrv>m v+ T+ — R,
™+ v S min{n1+n2,7r1+V1+n2+R,n1+7T2+1/2+R}.

In this important theorem we can see how much influence thefphaifl, of complementary
submatrices and the off-diagonal blogkhave on the inertia off. In particular, ifH; = Hy, =
0in (1.1), then the inertias off are characterized by the s, &, n — 2k) | k = rank X }.

Haynsworth,[[15], established several links connecting the inertia tripte with the inertia
triples of certain principal submatrices &f. In 1992, Cain and Marques de Sal([3]) extended
the methods given by Haynsworth and Ostrowskilin [16], for estimating and computing the
inertia of certain skew-triangular block matrices. Later this result was improvéd!in [11], which
can have the following block tridiagonal version.

Theorem 1.2. Let us consider nonnegative integersr;, v; such thatr; + v; < n;, fori =
1,2,3,andlet0 < r;;+1 < R; ;11 < min{n;,n;11}, fori = 1,2. Then the following conditions
are equivalent:
() Fori =1,2,3, andj = 1,2, there exist; x n; Hermitian matricesid; andn; x n,;
matriceSXjJH such thaﬂn(Hz) = (7Ti7 Vi, *), Tjj+1 < rankXMH < Rj,j-i—l and

H X5 0
H == XTQ H2 X23
0 X3 Hs

has inertia(, v, *).
() Letk € {1,2,3}. LetWy, be any fixedw; x n, Hermitian matrix with inertia(my, v, *).
() Letk € {1,2}. LetW}, .+, be any fixedhy, x ny1 matrix withry, ;. < rankWy, ;1 <
Rk,k—i—l- (l) holds WitthJg_;,_l = Wk,k+1-
(IV) For k = 1,2,3 let Wy, be any fixedw, x n;, Hermitian matrix with inertia(my, vy, *).
(I) holds W|thH1 = Wi, Hy = Wye andH3 = Whss.
(V) Let(i,j,k) = (1,2,3) 0r (2,3,1). LetWy, be any fixech;, x n; Hermitian matrix with
inertia (g, vy, *) and letW;; be any fixedh; x n; matrix withr;; < rank W;; < R;;.
(1) holds with H;, = Wy, and X;; = W;.
(V1) The following inequalities hold:
T > max { Ty, T2 — V2, T23 — V2,
T + 123 — Vo — Rig, M1 + ro3 — V3, M3 + 112 — V1,
T3 + 112 — Vo — Ro3, ™ + Mo — Ryg, ™1 + 73,

Ty + T3 — Rog, m1 + T + T3 — Riag — Rog }
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v > max{ vy, 19 — Mo, Tog — Mo,
Vi + T93 — My — R12,V1 + 1ro3 — T3,
V3 + 119 — T, V3 + 1o — T2 _R237
V14 vy — Rig, 11 + V3, Vs + V3 — Rog,
v+ ve+v3— Rig— Ry }

m <min{ ny + m + ng, ™ + 7T + T3 + Rio + Ros,

T + 7o +ng + Rig, ™1 + no + 3,11 + 7o + 75+ Rog }
v <min{ ny + vy + ng, v1 + Vo + v3 + Ri2 + Ros,

v+ vy +ng + Rig, v +ng +v3,m1 + 15+ 13+ Rog |,

T4+v >max{m + vy + 7o+ vy — Rig, Mo + 1o + T3 + 15 — Rag,
T+ 11 + Ty + vy + T3 + 13 — Rig — Ros,
T+ v+ 2193 — T — V2 — Ry,
Ty + V3 + 2r9g — Mg — vy — Ro3 }
T+ v <min{ ny + ng + ng, ™+ v1 + 1y + 1z + R,
ny + my + o + ng + Rio + Rog,ny + 1o + m3 + /3 + Ras,
T+ V1 + o+ Vo + N3 + 2R1p + Ras,
T+ v+ ne + 73+ vz + Rig + Ras,
ny + Ty + vy + T3 + v + Rig 4+ 2Ro3 |

7 —v <min{ m + m + 73,
T+ T+ 73— v+ Rig,m + Mo+ 73 —v3+ Ros } o,
v—m <min{ v + v+ vs,
v+ Vo413 —m 4 Rig, vy + 1o+ 15 — T35+ Rosg } .
Recently, Cohen and Dancis [5, 6/ 7, 8] studied the classification of the ranks and inertias of
Hermitian completion for some partially specified block band Hermitian matrix, also known as

abordered matrixin terms of some linear inequalities involving inertias and ranks of specified
submatrices. Several consequences have been also considered.

2. INERTIA OF A HERMITIAN TRIDIAGONAL BLOCK MATRIX

With a routine induction argument, based on the partitions developed in the proofs of the
Theorem 2.1 of [4] or Theorem 3.1 of [11], after an analogous elimination process of redundant
inequalities is possible to generalize the Theoferm 1.2 to any tridiagonal block decomposition.
Clearly Theorem 1]2 gives = 3. (The casex = 2 is given by the Theoren 1.1.)

Let us consider the set. = {m;, r;;41 — v, -1 — v; | 0 = 1,...,p} and, byrv—duality,

Ve = {Vi, Tiiy1 — mi, 1o —m | i =1,...,p}. Denote byl¢ the complementary of and by
I, (or J,.) asubsetofl,...,p} of non-consecutive elements.
Theorem 2.1. Let us assume that
n>0,m>0,1,>20, m;+v,<n;, fori=1,...,p,
and
0< Tii+1 < Ri,i-i-l < min {ni,niﬂ}, for i = 1,...,p—1.
Then the following conditions are equivalent:
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() Fori € {1,...,p},andj € {1,...,p—1}, there exish; x n; Hermitian matriced4; and
nj X Njq1 matriceSXj,jH such thaﬂn(HZ) = (7'['1'7 Vi, *), Tji+1 < ranka,jH < Rj,j-H

and
[ Hy Xio |
X7y Hy Xog
(2.1) Tp: X§3
T Xp-1p
L X;—l,p HP i

has inertia(r, v, *).

() LetI be any subset ofl,...,p} andJ be any subset of non-consecutive elements of
{1,...,p— 1}, such thatj,; + 1 ¢ I, foranyj € J. LetW,,; be any fixed, x ny
Hermitian matrix with inertia(, v, *), for k € I, and letl; ; 1, be any fixedh; xn;.4
matrix withr; ;. < rank W; ;11 < R;;11, for j € J. (l) holds withH;, = W}, and
Xjgrr = Wijer.

(1) The following inequalities hold:

(2.2) wzmax{Zm—ZRij\Ic{l,-..,p}} :
1

IxI
(2.3) I/ZmaX{ZV*—ZRZ‘j’]C{l,...,p}} :
I IxI
(2.4) 7 < min Zni—l—Zm—i— Z Rij| In.C{1,....,p} p ,
Ine I’r?c IT?CXIEC
(2.5) v < min Zni—i—Zm—i— Z Rij | I,. C{1,....,p} ¢ ,
Ine I’r?c I’r?cXI'r?c
p—1
(26) T+ v Z maX{Zr@Hl, {Z(?T—FV)* —ZRU | I C {1,,p}}} s
=1 1 IxI
(2.7) 7r—|—1/§min{ ni‘l‘Z(?Ti—f—Vi+Rz’,z'+1+Rz‘—1,z‘> |IC{1a-~-7P}} ;
1 ¢
p
(28) W—ngin Zﬂ'i—F Z Rij+ZVi_ZVi|[nchnc7é® s
=1 I,,?CXISC Inc JIne

(2.9) v —7m < min im—k Z Rij—i-Zm—ZmUmﬂJnc#@
i=1

IECXI,?C Inc Jnc

In fact, suppose the result is true fy defined in[(2.1L). Foff},,, we may set

H 0 5 I 0
Hp+1:|: ’6“ 0] where Hp+1:|: 0 } :

Vp+1

This allows us to partitiod,;, as
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[ Hi Xio
Xy Hy Xos
X
Tpi1 = * Xp-1p )
X, ., H, Y Z
Y+ H,, 0
z* 0 0

whereX, .1 = [ Y Z |. Consider now the nonsingular matridésandV such that

0 I,
UZV—{O 0}.

ThenT,, is conjunctive to

[ Hl X12 i
Xiy Hy Xos
X33
- 0 Xp-1p
0 0 0 0 0 I |,
X0, 0 H, Xppi1 00
0 X, H, 0
0 0
I 0 0 0
and, therefore, is conjunctive to the direct sum
= ~ 0 I
Tp @ p+1 EB [ IS :| 9
where
i Hl X12 i
Xy Hy Xo3
Tp - X;?;
. K
L X;—Lp HP_XP,PJral-i-lX;,p-i-l A

We orJIy have to apply now the induction hypotheseg tdaking in acc~ount~the vqriatiqn of the
rank X1, which is estimated in the Claim dfl[3]. The set of inertiaghf— X, 1, H, 1 X,
is characterized by the Corollary 2.2 bf [11].

Remark 2.2. We point out that in the first two inequalities of the Theoien) 2.1, the indices of
ri;'s in the summation are always disjoint. By conventi®,, 1, Ro1, 7pp+1 — Vp, o1 — V1,
Tppt1—Tp @ndrg ; —my are zero. Also, the produétx [ is defined as the s¢ti, j) |i < j € I}.
Notice that some of the inequalities will be redundant. For example, in thepcasgor 3 the

first summation in[(2]6) is redundant. Also, we may tdkein (2.8) and[(2.p) as a maximal set
of non-consecutive elements{n, ..., p}.
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If we make all the main diagonal blocks equal to zero in the last theorem, then we have the
following proposition:

Corollary 2.3. Let us assume that; > 0,fori =1,...,pand
0 <71 < Riiy1 <min{n;,n;1}, i=1,...,p—1.

Then the following conditions are equivalent:
() Forj =1,...,p—1,there exist; xn,, matricesX; ;; suchthat; ;. ; <rankX;; ; <

R; ;41 and
[0 Xy i
Xy 0 Xy
T = X33
' Xp-1p
I Xp1p 0

has inertia(, v, *).

(Il) LetJ be any subset of non-consecutive elemenf{d of. ., p — 1}. LetWW; ;,, be any
fixedn; x n;;; matrix withr; ;11 < rankW; ;11 < R, 44, for j € J. (1) holds with
X1 =Wjjn.

() The following inequalities hold:

ﬂ:VZmax{ZTi,iH|[ncC{17--~,p—1}}

ZEITLC

and

7= v < min Zni+ Z Rij | In. C {1,...,p}

i€Inc (i7j)EIchIgC

We can find a general characterization of the set of inertias of a Hermitian matrix in [1]. In
fact, given am; x n; Hermitian matrixH; with inertia INH;) = (m;,v;,6;), fori = 1,--- 'm,
Cain characterized in terms of the v;, 6; the range of I0H ), whereH varies over all
Hermitian matrices which have a block decompositidn=(X;;); j=1,... ., in Which X;; is
n; X N anqu» = H;.

3. AN APPLICATION TO SYMMETRIC SIGN PATTERN MATRICES

Several authors have been studied properties of matrices based on combinatorial and quali-
tative information such as the signs of the entries (cf._[9/ 10, 13, 14]). A matrix whose entries
are from the se{+, —, 0} is called asign pattern matrixor simply, apatterr). For eachn x n
patternA, there is a natural class of real matrices whose entries have the signs indicated by
i.e., thesign pattern classf a patternA is defined by

Q(A) ={B |signB = A}.

We say the patterrl requires unique inertiaand issign nonsingularnf every real matrix in
Q®(A) has the same inertia and is nonsingular, respectively. We shall be interested on symmetric
matrices.
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Example 3.1([14]). Let us consider the pattern

+ 0
0 +
~ -
+ +|0 -

Since the inertia of the diagonal blocks are alw&ys), 0) and (0, 2,0), respectively, and the
rank of the off-diagonal block varies betweemnd2, according to the Theoremn 1.2 (also [3,
cf. Theorem 2.1])7 = v = 2 and, thereforeA requires a unique inertia and is nonsingular.

+ +
+ +
0

A:

As an immediate consequence of the Corolfary 2.3, we have the following result:

Proposition 3.1([13]). For then x n symmetric tridiagonal pattern

[0 +
+ 0 +
AOZ 4o, ’
L+
+ 0 |

(a) if n is even, them, is sign nonsingular andin(A,) =
(b) if n is odd, thend, is sign singular andn(4,) = (%1, 251, 1).
We observe that the result above is still true when the sign of any nonzero ent+. i$He
same observation can be made for the off-diagonals of the patterns in the propositions below.

Notice also that Propositign 3.1 is true if the even diagonal entries are possibly nonzero.
Let | x| denotes the greater integer less or equal to the real number

Proposition 3.2. If

[+ +
+ + =+
A+ — :l:
. x
- :i: —"_ -
is ann x n symmetric tridiagonal pattern, theim( A, ) has the form
n n
_ < k< |= — — <k<|=].

(n hkn%o_k_Lz, or (n—k,k 1J%1_k_{ﬂ

Proof. From the Theorern 21, #fa(Ay) = (7, v, %), thenn — 1 < 7+ v < nand0 < v <
[5]-

The diagonal entrieg;; anda;; are said ilmscending positiongheni < j.

We may state now a generalization which includes some resultsiof [13, 14].

O

Proposition 3.3. For the symmetric tridiagonal pattern
[« 4+

+ x +
A* — 4+ .t 7

where each diagonal entry {5 + or —,
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(a) if nis even, them, is sign nonsingular if and only if neither twpg nor two — diagonal

entries inA, are in odd-even ascending positions, respectively. In this basé,) =
n’ n’ 0

(b) I(f2n ?s o)dd, thenA, is sign nonsingular if and only if there is at least ofteor one —
diagonal entry is in an odd position, but ngtand — in odd positions at same time, and
neither three+ nor three— diagonal entries are in odd-even-odd ascending positions,
respectively. In this case(A4,) = (2, 251 0) or In(A,) = (251, 2, 0),

(c) if n is odd and neither- nor — diagonal entries are in odd positions, theln requires
the unique inertia( %5+, 254, 1).

Proof. Remind that ifA is in the sign pattern class df, andIn(A) = (7, v, d), then0 < ¢ < 1.
Also, according to[(2]2) andl (2.3), sinég; 1 = ;41 = 1,fori =1,...,n — 1, the minima
values ofr andv are obtained in maximal sets of nonconsecutive elements of

Suppose that is even. If there are twe- in odd-even ascending positions, ther m such
thatm < n/2 andv > n/2, i.e., A, does not require unique inertia and is not sign nonsingular.
Otherwise, without loss of generality, suppose that the first nonzero main diagonal element in
an odd(2:+1)—position is a+ (if the main diagonal is zero, the result follows from Proposition

[3.1). Then

(3.1) T2>Tig—Vi+ -+ To192 — Voim1 +Toip1 =1+ 1,

(3.2) V> — T+ o192 — Toim1 + T2igp1,2i42 — Moiq2 =0+ 1.

If the element in(2i + 3)—position is a+, — or 0, then we add to the right side df (8.1)
Toirs = 1, T9i432i44 — Voira = 1 @NA7o;139;14 — 943 = 1, respectively, and to right side of

(B-2 raiv32i4a — Toiga = 1, vaip3 = 1 @NA79i4 32144 — T2is = 1, respectively. Following this

procedure we get, v > n/2,i.e.,In(4,) = (5, %,0).

If n is odd, suppose the first diagonal entryisThen, by|[(2.R),

T2>2m +rey—Vs+ -+ 10— Vn,

(n 1)/2. On the other hand, by (2.3), > (n — 1)/2. Thereforeln(A4,) =

upp now: is odd and neithe# nor — diagonal entries are in odd positions. From the

Theore , makind = {1,3,5,...,n — 2} in (2.4) and |n E) we get,v < =% and
= {2, ,n—1}in @2.2) and in[(2] u) we get, v > =1, ThenA, requires the unique

mertla( : Tl, 1) O
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