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ABSTRACT. In this note, as a complement of an open problem by F. Qi in the pSewefal
integral inequalities,). Inequal. Pure Appl. MatHL (2002), no. 2, Art. 54http://jipam.
vu.edu.au/article.php?sid=113 . RGMIA Res. Rep. Coll.2 (1999), no. 7, Art. 9,
1039-1042http://rgmia.vu.edu.au/v2n7.html ], a similar problem is posed and an
affirmative answer to it is established.
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The following problem was posed by F. Qi in his papér [6]:

Problem 1. Under what conditions does the inequality

&) / @) > ( / b f(x)dx)tl

hold fort > 1?

This problem has attracted much attention from some mathematicians [5]. Its meanings of
probability and statistics is found in/[2]. See alsb [1, 13, 4] and the references therein.
Similar to Probleni [1, we propose the following

Problem 2. Under what conditions does the inequality

@) / @) < ( / bf(x)dx)l_t

hold fort < 1?

Before giving an affirmative answer to Problgn 2, we establish the following
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Proposition 1. Let f and g be nonnegative functions with< m < f(z)/g(z) < M < oo on
[a,b]. Thenforp > 1andg > 1 with | + 1 = 1 we have

1

1 1 b 1 1
lg(0))de < M m™# / @) g()]Fdr,

S

3) / @)

and then

1

@) / @) o)) de < M~ (/ bf(w)dwf (/ bg(x)da:) y

Proof. From Holder’s inequality, we obtain

©) [ @i < (/ bf(az)dx)’l’ (/ bg(z)d:c); |
that is, ' ' '
©® [ U@kl (/ b[f(sc)ﬁ[f(x)ﬁdx) (/ b[g(x)ﬁ[g(x)ﬁdx) "

that is

) [ @ aitar < amed [ 1))

Hence, the inequality [3) is proved.
The inequality[(#) follows from substituting the following

©) / U@ lo)de < (/ bf(a:)dx)‘l’ (/ bg(x)dx);

into (8), which can be obtained by Holder’s inequality. O

Q=

Now we are in a position to give an affirmative answer to Profplem 2 as follows.
Proposition 2. For a given positive integep > 2, if 0 < m < f(x) < M on [a,b] with
M < m(pfl)z/ (b — a)?, then

11

(10) / Fla)bde < ( / bf(m)dm) y

Proof. Puttingg(z) = 1 into (4) yields

-

1

a1 [iwpar < i ([ sww)

1 2

whereK = Mp%(b— a)%/mo_z)) :
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FromM < m®—1) /(b — a)P, we conclude thak’ < 1. Thus the inequality] (10) is proved.
U

Remark 3. Now we discuss a simple case of "equality" in Proposifibn 2. If we make the
substitutionf(z) = M = m andb — a = 1 with p = 2, then the equality ir{ (30) holds.

In order to illustrate a possible practical use of Proposition 2, we shall give in the following
two simple examples in which we can apply inequality] (10).

Example 1. Let f(x) = 82% on[1/2, 1] with M = 8 andm = 2. Takingp = 2, we see that the
conditions of Proposition| 2 are fulfilled and straightforward computation yields

1 1 3
/ (8x2)1/2 dr = §\/5 < (/ 8x2dx> = ﬂ )
1/2 4 1/2 V3

Example 2. Let f(z) = e®on[1,2] with M = ¢? andm = e.
Takingp = 3, all the conditions of Propositidr] 2 are satisfied and direct calculation produces

2
2 2 3
/ ()P dr =3 (2® — e/?) = 1.65 < (/ eg”d:c) = (=)’ ~ 278,
1 1
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