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ABSTRACT. Inthis paper we prove some uniqueness theorems of meromorphic functions which
improve a result of Tohge and answer a question given by him. Furthermore, an example shows
that the conditions of our results are sharp.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f(z) be a nonconstant meromorphic function in the complex pan&/e shall use the
standard notations in Nevanlinna’s value distribution theory of meromorphic functions such
asT(r, f), N(r, f), andm(r, f) (see, e.g.[]1]). In this paper, we usé(r,1/(f — a)) to
denote the counting function efpoints of f with multiplicities less than or equal tb, and
Nw(r,1/(f — a)) the counting function ofi-points of f with multiplicities greater than or
equal tok. We also useV,(r,1/(f — a)) andN(r, 1/(f — a)) to denote the corresponding
reduced counting functions, respectively (see [2]). The notafionf) is defined to be any
quantity satisfyingS(r, f) = o(T'(r, f)) asr — oo possibly outside a set of of finite linear
measure.
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Let f(z) andg(z) be two nonconstant meromorphic functions arge a complex number. If
the zeros off —a andg — a have the same zeros counting multiplicities (ignoring multiplicities),
then we say thaf andg share the value CM (IM).

Let So(f = a = g) be the set of all common zeros ¢fz) — a andg(z) — a ignoring
multiplicities, Sg(f = a = g) be the set of all common zeros ¢fz) — a andg(z) — a with
the same multiplicities. Denote by(r, f = a = g), Ng(r, f = a = g) the reduced counting
functions of f andg corresponding to the sef§(f = a = ¢g) andSg(f = a = g), respectively.

N (n )+ (r ) - 2ol =a=g) = S0 ) + ().

then we say thaf andg sharea IM*. If

N<T’fia> +N(r’gia> —2Ng(r,f=a=g)=S(r,f)+S(r,9),

then we say that andg sharea CM*.

Let k£ be a positive integer or infinity. We denote @)(a, f) the set ofa-points of f with
multiplicities less than or equal to(ignoring multiplicities).

In 1988, Tohge [3] proved the following result.

Theorem A ([3]). Let f andg be two nonconstant meromorphic functions shafing, co CM,
and f’, ¢’ share 0 CM. Therf and g satisfy one of the following relations:

(i) =g,
(i) fo=1,

(i) (f =g - D=1,

(iv) [+ g=1,

(V) f=cy,

(Vi) f —1=c(g - 1),

(vii) [(c=1)f +1[(c—1)g—d=—c

wherec (# 0, 1) is a constant.

In the same paper, Tohge [3] suggested the following problerit:possible to weaken the
restriction of CM sharing in Theoref] A?

In 2000, Al-Khaladi [4] — [%] dealt with this problem and proved the following theorems,
which are improvements of Theorém A.

Theorem B([4]). Let f andg be two nonconstant meromorphic functions shafing, co CM,
and f’, ¢’ share 0 IM. Then the conclusions of Theofgm A still hold.

Theorem C ([S]). Let f and g be two nonconstant meromorphic functions shafngo CM,
andf’, ¢’ share O IM. IfE, (1, f) = Ew (1, g), wherek is a positive integer or infinity, then the
conclusions of Theorejr] A still hold.

Now we explain the notion of weighted sharing as introducedlin [6] — [7].

Definition 1.1 ([6] — [7]). Let & be a nonnegative integer or infinity. Ferc C | {cc0}, we
denote byFy(a, f) the set of alki-points of f where am-point of multiplicity m is countedn
times ifm < k andk + 1timesifm > k. If Ex(a, f) = Ex(a, g), we say thatf, g share the
valuea with weightk.

The definition implies that iff, g share a value with weightk thenz, is a zero off — a
with multiplicity m (< k) if and only if it is a zero ofy — a with multiplicity m (< k) andz, is
a zero off — a with multiplicity m (> k) if and only if it is a zero ofy — a with multiplicity n
(> k) wherem is not necessarily equal ta
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We write f, g share(a, k) to mean thayf, g share the value with weightk. Clearly if f, g
share(a, k) then f, g share(a, p) for all integersp, 0 < p < k. Also we note thaff, g share a
valuea IM or CM if and only if f, g share(a, 0) or (a, o) respectively.

In particular, if f, g share a value IM* or CM*, then we say thaf, g share(a, 0)* or (a, c0)*
respectively (see [8]).

Definition 1.2 ([8]). Fora € C|J {0}, we put

5(p(a, f) =1- hm sup W7

wherep is a positive number.

In 2005, the present author etcl [8] and Latiifi [9] also improved Thepriem A and obtained the
following results, respectively.

Theorem D ([8]). Let f and g be two nonconstant meromorphic functions sharifigl),
(1,00), (00,00), and f’, ¢’ share(0,0)*. If §2(0, f) > 1/2, then the conclusions of Theo-
rem[A still hold.

Theorem E([9]). Let f andg be two nonconstant meromorphic functions shafing ), (1, m),
and (oo, k), wherek, m are positive integers or infinities satisfyifig.—1)(km—1) > (1+m)>.

If £1)(0, f') € Esy(0,¢") and £1y(0, ¢') € E(0, f'), then the conclusions of Theor@n A still
hold.

In this paper, we shall prove the following theorems, which improve and supplement the
above theorems.

Theorem 1.1.Let f andg be two nonconstant meromorphic functions shafimgk; ), (az, k2),
and(as, k), where{ay, as, a3} = {0, 1,00}, andk; (j = 1, 2, 3) are positive integers satisfying

(11) /{?1]{32]{33 > ki + ko + ]{33 + 2.

If E1)(0, f') € Ew)(0,¢") andE1(0, ¢') C E+(0, '), thenf andg satisfy one of the following
relations:
() /=g,
W fo=1,
(i) (f—1)(g—1)=1,
(iv) f+g=1,
(V) f=cy,
(Vi) f—1=c(g—1),
(i) [(c=1)f+1][(c—1)g — c]=—¢,
wherec (# 0, 1) is a constant.

From Theorem 1|1, we immediately deduce the following corollary.

Corollary 1.2. Let f andg be two nonconstant meromorphic functions shatimgk, ), (as, k2),
and(as, k3), where{a,, a2, a3} = {0, 1,00}, andk; (j = 1,2, 3) are positive integers satisfying
one of the following relations:
(|) ]{71 > 1, k’Q > 3, andk'3 > 4,

(||) kl > 2, ]CQ > 2, andkg > 3,

(|||) ki >1,ky > 2, andkg > 6.

If E1)(0, ") € E)(0,¢") and E1)(0,¢") C Ew)(0, f'), then f and g satisfy one of the
following relations:

J. Inequal. Pure and Appl. Math8(4) (2007), Art. 111, 13 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 JUN-FAN CHEN AND WEI-CHUAN LIN

(i) f=g,
(i) fg9=1,
(i) (f —1(g—1)=1,
(V) f+ g=1,
(V) f=cy,
(Vi) f —1=c(g—1),
(vii) [(c=1)f +1][(c=1)g —]=—c,

wherec (# 0, 1) is a constant.

Theorem 1.3.Let f andg be two nonconstant meromorphic functions shafimgk; ), (az, k2),
and(as, k), where{ay, as, a3} = {0, 1,00}, andk; (j = 1, 2, 3) are positive integers satisfying

@D i
(1.2) Ny ( f,> + Ny (gi) < Ot o()T(), (rel),

where0 < A < 1/3, T'(r) = max{T'(r, f),T(r,g)}, and is a set of infinite linear measure,
then f and ¢ satisfy one of the following relations: (i¥g, (i) fg=1, (i) (f — 1)(¢ — 1)=1,
(iv)f + g=1, (V)f=cg, (Vi)f — 1=c(g — 1), (vii) [(¢c — 1)f + 1][(c — 1)g — ¢]= — ¢, wherec
(#£0,1) is a constant.

By Theorenj 1.B, we instantly derive the following corollary.

Corollary 1.4. Let f andg be two nonconstant meromorphic functions shatimgk, ), (as, k2),
and(as, k), where{ay, as, a3} = {0, 1,00}, andk; (j = 1, 2, 3) are positive integers satisfying
one of the following relations:
(|) ki >1,ky >3, andk'3 >4,
(||) ]{71 > 2, k’Q > 2, andk’g > 3,
(|||) ki >1,ky > 2, andl{fg > 6.
If holds, thenf and g satisfy one of the following relations:
(i) =g,
(i) fg=1,
(i) (f—1)(g—1)=1,
(iv) f+ g=1,
(V) f=cy,
(Vi) f—1=c(g 1),
Vi) [(c=1)f +1[(c— g —d=—o,
wherec (# 0, 1) is a constant.

The following example shows that any oneigf(j = 1,2, 3) in Theorenj 1.1, Corollary 1.2,
Theorenj 1.8 and Corollafy 1.4 cannot be equal to O.

Example 1.1.Let f = (¢ —1)"? andg = (¢ — 1)~'. Thenf andg share(0, o), (1, c0),
(00,0), andf’, ¢’ share(0, co). However,f andg do not satisfy any one of the relations given
in Theorenj 1.1, Corollary 1.2, Theor¢m|1.3 and Corollary 1.4.

2. LEMMAS
In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([10]). Let f and g be two nonconstant meromorphic functions shar{ig)),
(1,0), and (oo, 0). Then

T(r,f) <3T(r,g) +5(r, f),  T(r,g) <3T(r, f) + 5(r,9),
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S(r, f)=5S(r,g) := S(r).

Proof. Note thatf andg share(0,0), (1,0), and(co, 0). By the second fundamental theorem,
we can easily obtain the conclusion of Lemimg 2.1. O

The second lemma is due to Yi[11], which plays an important role in the proof.

Lemma 2.2([11]). Let f and g be two distinct nonconstant meromorphic functions sharing
(a1, k1), (az, ka), and(as, k3), where{a;, as, a3} = {0,1, 00}, andk; (j = 1,2, 3) are positive
integers satisfying1.1)). Then

No (n 7 ) + Nalrf) 4 N (r 2y ) = 50),

the same identity holds far.

Lemma 2.3. Let f and g be two nonconstant meromorphic functions shafimg &, ), (az, k2),
and(as, k3), where{a,, a2, a3} = {0,1, 00}, andk; (j = 1, 2, 3) are positive integers satisfying

@), It

(2.1) a= %
2.2) p==1,

g—1
then

«

— 1 — — 1 —
N (r, —) =N(r,a)=N <r, B) = N(r,3) = S(r).
Proof. If o« or § is a constant, then the result is obvious. Next we supposentlaaid 7 are
nonconstant. Sincgandg share(ay, k1), (as, k2), and(as, k3), by (2.1)), (2.2)), and Lemma 2]2
we have
«

N <r, l) < N (r, é) +Ne(r, f) = S(r),

N(ra) < N ( ;) + Na(r,g) = S(),

1 _ 1 _
N(r, B) < Ng (7”; ﬁ) + No(r,g) = S(r),
_ — 1 —
N(T,ﬁ)SN(g(T, _1)+N(2(7’,f)—5(7"),
which completes the proof of the lemma. O

Lemma 2.4. Let f and g be two distinct nonconstant meromorphic functions shafingk ),
(a2, ka), and(as, k3), where{a,, as, a3} = {0,1,00}, andk; (j = 1,2, 3) are positive integers
satisfying(1.1)). If f is not a fractional linear transformation af, then

_ 1 — 1
N (r, ?) = S(r), N (r,;) = S(r).
Proof. Without loss of generality, we assume that= 0, a; = 1, andas = co. Leta andj be
given by (2.1) and(2.2)). From(2.1)) and({2.2)), we have
1-p

(2.3) = m>
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(1- P

1—af
Sincef is not a fractional linear transformation gfwe know thaty, 3, andag are nonconstant.
Let

(2.5) h =

(2.4) 9=

oF B
afl +a'B  oJa+ ()8

Then we havé: # 0, 1. Note that

1
(0%
3)o(s) e
N|r,—|=N|r,—= |+ N(73).
("3 HES(
From this and Lemmja 2.3, we get

o = T é/ =5(r
(2.6) T(na)__T(,ﬁ) S(r),
and so
(2.7) T(r,h) = S(r).
By (2.3), we get
_(1=p)—h(1—ap)
(2.8) f—h= - ,
Let
(2.9) Fo=(f—h)(1—af)=(1-B)—h(1—ap).

From (2.5) and(2.9)), we have

(2.10) %—%: =0 _h(l_o‘@“‘ﬁ —BF/B _ fih {%(h—l)—h’} |
If 3'(h —1)/B — k' =0, then from this and2.10)), we get

(2.11) h=cf+1,

andsof’/F — (3'/p =0, i.e.,

(2.12) F = cyf3,

wherecy, ¢, are nonzero constants. §9.7), (2.11)), and(2.12), we have
T(r,F)=T(r,3) = S(r).
From this,(2.7)), and(2.9)), we get
T(r,a) = 5(r),
and sol'(r, f) = S(r), which is impossible. Thereforé(h — 1)/3 — 1’ # 0. By (2.10), we
have

1 F/F -5/

19 F—h  Bh-D/5-
From (2.6), (2.7), and(2.13), we get
F/
(2.14) m (r, 7 i h) <m (r, F) + S(r) = S(r).
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SinceF’/F andf'/3 have only simple poles, it follows again frof2.6)), (2.7)), and (2.13) that

Ne ( ﬁ) =2 ( O h’) +5tr)

< 2T (r, 6l(hﬁ_ b _ h’) + S(r)

<2T <r, %/) + 2T (r,h) + 2T (r,h') + S(r)

< S5(r),
i.e.,

1
(2.15) Ne (r, = h) = S(r).
By and(2.4), we have
9=F 14
g—1 ’
¢ _ a(1=af)+(a—1)(af +af)
9 a(l = p)(1 —ap) ’
Therefore
J9—f) _ (1=0)(af +a'b) —af(l - ap)

(219 o) )
From (2.5) and(2.8)), we get

LB _ (A =B)(af +of) — af(1 - af)
(@40 r-n(5+5)- a3~ af)
By and(2.17), we have

glg—1) ( ﬁ’)

(2.18) rrED) =(f—=h) 3

Let NéQ(r, 1/¢") denote the counting function corresponding to multiple zergg thfat are not
zeros ofg andg — 1. Then from(2.15)) and(2.18)), we get

Similarly, we can prove

e ) =50
which also completes the proof of Lemna|2.4. O
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Lemma 2.5. Let f and g be two nonconstant meromorphic functions shafiag &), (as, k2),
and(as, k), where{ay, as, a3} = {0, 1, 00}, andk; (j = 1, 2, 3) are positive integers satisfying
(1.1). If f is a fractional linear transformation of, then f and g satisfy one of the following
relations:

() f=g,
(i) fg=1,
(i) (f =19 —-1)=1,
(iv) [+ g=1,
(V) f=cg,
(i) f —1=c(g—1),
(i) [(c=1)f+1][(c—1)g — c]=—¢,
wherec (# 0, 1) is a constant.

Proof. Without loss of generality, we assume that= 0, a; = 1, andas; = oco. Sincef is a
fractional linear transformation @f, we can suppose that
Ag+ B
/= Cg+ D’
whereA, B, C, D are constants such thdath — BC # 0.

If f = g, then the relation (i) holds. Next we assume tfigt g and discuss the following
cases.

Case 1 If none of 0, 1, andx are Picard’s exceptional values pfandg, thenf = g, which
contradicts the assumption.

Case 2 If0and 1 are all Picard’s exceptional valuesfaindg, thenf = ag+4 = a(g+05/a),
wherea (# 0), # are constants. Singé# 0, it follows that3/« = 0 or —1.

Subcase 2.1 1If 5 =0, thenf = ag,i.e.,f —1 = a(g — 1/a). Sincef # 1, it follows that
a =1 and sof = ¢. This is a contradiction.

Subcase 2.2 If 3/a = —1,thenf = ag — a,i.e.,f —1=a(g — (a«+1)/a). Sincef # 1, it
follows thata = —1. Thusf = —g + 1, which implies the relation (iv).

Case 3 If 1 and oo are all Picard’s exceptional values ffandg, thenf = Ag/(Cg + D),
whereA (£ 0), D (3 0) are constants.

Subcase 3.11If C =0, thenf = ag,i.e.,f —1 = a(g — 1/a), wherea (# 0) is a constant.
Sincef # 1 andg # 1, oo, it follows thata = 1 and sof = g. This is a contradiction.
Subcase 3.21If C' # 0, thenf = ag/(g —1),i.e.,f—1=((a—1)g+1)/(g — 1), wherea
(# 0) is a constant. Sincg # 1 andg # 1, oo, it follows thatae = 1and sof —1=1/(g —1).
This is the relation (iii).

Case 4 If0andoo are all Picard’s exceptional values péndg, thenf = (Ag+B)/(Cg+D),
whereA+ B =C+ D.

Subcase 4.1 If A =0, thenf = B/(Cg+ D), whereB (# 0), C (# 0) are constants. Since
f # oo andg # 0, oo, it follows thatD = 0. Thusfg = 1 becausef andg share(1, k,). This
is the relation (ii).

Subcase 4.2 1f A # 0 andC = 0, thenf = ag + (3, wherea (# 0), § are constants. Since
f # 0andg # 0, oo, it follows that3 = 0. Thusf = g becausef andg share(1, k»). Thisis a
contradiction.

Subcase 4.31f A # 0 andC # 0, then it follows thatB = D = 0 becausef # 0,00 and
g # 0,00. Thusf = constant, which contradicts the assumption.

Case 5 If 0 is Picard’s exceptional value gf andg but 1 andoc are not, then it follows that
C' = 0 becausef andg share(oo, k3). Thusf = ag + 3, wherea (#£ 0), 3 are constants such
thata + 5 = 1.
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Subcase 5.1 If 3 = 0, then it follows thatx = 1 and sof = g. This is a contradiction.
Subcase 5.2 If 5 # 0, then it follows that3 = 1 — « and sof = ag+ 1 — «, wherea (# 0, 1)
is a constant. This is the relation (vi).
Case 6 If 1 is Picard’s exceptional value gf andg but 0 andoo are not, then it follows that
C' = 0 becausef andg share(oc, k3). Sincef andg share(0, k1), it follows that B = 0 and
sof = ag, wherea (# 0) is a constant. Ifv = 1, thenf = g, which is a contradiction. Thus
f = ag, wherea (# 0,1) is a constant. This is the relation (v).
Case 7 If oo is Picard’s exceptional value gfandg but O and 1 are not, then it follows that
B =0andA = C + D becausef andg share(0, k;) and(1, k2). Thusf = Ag/(Cg + D),
whereA (£ 0), D (3 0) are constants.
Subcase 7.1 If C' = 0, then it follows thatd = D becauseg andg share(1, k). Thusf = g,
which is a contradiction.
Subcase 7.2 If C' # 0, then it follows thatf = ag/(g + §) anda = 1 + 3, wherea (# 0, 1),
g are constants. Thué= ag/(g+a —1),i.e.,fg— (1 — a)f — ag = 0, which implies the
relation (vii).

This completes the proof of Lemra P.5. O

3. PROOFS OF THE THEOREMS

Proof of Theorer I}1Without loss of generality, we assume that= 0, a; = 1, anda; = cc.
Otherwise, a fractional linear transformation will do. leand 5 be given by(2.1)) and (2.2]).

Suppose now that is not a fractional linear transformation @f Then from Lemma 2|4, we
have

(3.2) N (r, %) = S(r), N (r, ;) = S(r).
By (2.1, we get

“_9
_ a g f
l.e.,
32) Cr=tg-r
g

Let 2, be a simple zero of that is not a zero of andg. Then it follows that, is a simple zero
of f" becausd’;(0,9") C E)(0, f). Again from 1) we deduce that, is a zero ofo/ /.
On the other hand, the process of proving Lemima 2.4 shows that

P () (. 2) 50

From this,(3.1)), and Lemma 2]2, we have

— 1 — 1 1
(33) N (’f’, —/) = N(Q (T‘, —/) + Nl) (7", —/)
9 9 9
1

Similarly, we can prove

(3.4) N (r, i,) = S(r).
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Let
fl/ 2f/ g// 2g/
A= (L2 ) (L 22
' (f f> (d 9)

If Ay =0, then by integration we obtain

_:__|_d7
f g
i.e.,
g
/= c+dg’

wherec (# 0), d are constants. Thugis a fractional linear transformation ¢f which contra-
dicts the assumption. Hencg # 0.

Since f and g share(0, k), it follows that a simple zero of is a simple zero ofy and
conversely. Lety be a simple zero of andg. Then in some neighborhood of, we get

Ay = (2 — 29)7(z), wherey is analytic atz,. Thus by(3.3), (3.4), and Lemma 2]2, we get

1 1
(e2) = ()

and so

—( 1 1\ 1
(35) N (T, ?) = Nl) (7", ?) + N(2 (T, ?> = S(T)

Let

f/l 2fl ) (g// 2g/ )

Ay == — — | = - ,
? (f f=1 g g-1
and
f// gll
Ay = — — .
T g

In the same manner as the above, we can obtain

— 1
(3.6) N (7‘, ﬁ) = S(r),
and
(3.7) N(r, f) = 5(r).

From (3.5)), (3.6), (3.7)), and the second fundamental theorem, we have

— /1 — ~ 1
T(Tuf) S N <T)?) +N(Taf>+N <Taﬁ) +S(T) S S(T>,
which is a contradiction. Thereforgis a fractional linear transformation gf Again from
Lemmd 2.5, we obtain the conclusion of Theofem 1.1. O
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Proof of Theorer 1]3Likewise, we can assume that = 0, a; = 1, andas = co. Suppose
now thatf is not a fractional linear transformation gf

Let
T(r, f), for rel,
(3.8) T(r)=
T(r,g), for rel,,
where
(3.9) I=1LUL.

Note that/ is a set of infinite linear measure (f, o). We can see by3.9) that; is a set of
infinite linear measure di, co) or I, is a set of infinite linear measure (@f, co). Without loss
of generality, we assume thatis a set of infinite linear measure @f, co). Then by(3.8)), we
have

(3.10) T(r)y="T(r, f).

Let Ay, A, andA; be defined as in Theoregm 1.1. Similar to the proof®f)), (3.6), and
(3.7) in Theorenj 1], we easily get

(3.11) N (r, %) = Ny (r, %) + Ng (r, %)
< Ny (T, %) + Ny (r, é) + S(r),

— 1 1 1
+

and
(3.13) N(T, )= Nu(r, f) +N(2(r, ) < Ny ( f’) + Ny ( 7gl/> + S(r).

From (1.2)), (3.10), (3.11), (3.12), (3.13), and the second fundamental theorem, we have for
rel

T(r. f) §N<r,%) +N(r,f)+ﬁ< T ! 1) +S(r)

<[ (5 5) + 3 (1 )] + 50
<3A+o()T(r, f),
which is impossible sincé < A < 1/3. Thereforef is a fractional linear transformation of
Again from Lemma 25, we obtain the conclusion of Theofer 1.3. O
4. FINAL REMARKS
Clearly, ifk; (j = 1,2, 3) are positive integers satisfyir{d.1)), then
kiki >1 (§#4,5,i=1,2,3).
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Theorem 4.1.Let f andg be two nonconstant meromorphic functions shafimgk; ), (az, k2),
and(as, 00), where{ay, a2, a3} = {0, 1, 00}, andk; andk, are positive integers satisfying

(4.2) kiky > 1.

If £1)(0, ) C Ew)(0,¢") andE1(0, ¢') C Ew,)(0, f/), thenf andg satisfy one of the following
relations:

() f=g,
(i) fo=1,
(i) (f =g - D=1,
(iv) [+ g=1,
(V) f=cg,
(Vi) f—1=c(g - 1),
(vii) [(c=1)f +1[(c =g —d=—c,
wherec (# 0, 1) is a constant.

Theorem 4.2.Let f andg be two nonconstant meromorphic functions shafing k), (az, o),
and(as, c0), where{ay, as, a3} = {0, 1, 00}, andk is an integer satisfying

(4.2) k>

If E1)(0, f') € Ew)(0,¢") andE1(0, ¢') C E+(0, f'), thenf andg satisfy one of the following
relations:

(i) f=g,
(i) fg=1,

(i) (f =g - D=1,

(iv) f+g=1,

(V) f=cg,

(Vi) f —1=c(g—1),

(vil) [(c—1)f +1[(c—1)g—d=—c,

wherec (# 0, 1) is a constant.

Theorem 4.3.Let f andg be two nonconstant meromorphic functions shafimgk; ), (az, k2),
and (asz, o), where{a,as,a3} = {0,1,00}, and k; and k, are positive integers satisfying
(4.1). If (1.2) holds, thenf and g satisfy one of the following relations:

() f=y,
(i) fg=1,
(i) (f—1)(g—-1)=1,
(iv) [+ g=1,
(V) f=cg,
(Vi) f—1=c(g—1),
(i) [(c =1 f +1][(c = Dg = = —¢,
wherec (# 0, 1) is a constant.

Theorem 4.4.Let f andg be two nonconstant meromorphic functions shafing k), (as, ),
and(as, c0), where{ay, as, a3} = {0, 1, 0o}, andk is an integer satisfying?.2). If holds,
then f and g satisfy one of the following relations:

(i) f=g,

(i) fg=1,

(iii) (f—1)(g— D=1,

(iv) f+g=1,

(V) f=cy,
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i) f—1=c(g—1),
(vil) [(c—1)f +1[(c— g — ==,
wherec (# 0, 1) is a constant.

Proofs of Theoren]s 4.1 and #.8/ithout loss of generality, we assume that< k.. Then by
we see that; > 1 andk, > 2. Note that if f andg share(a, k) then f andg share(a, p)
for all integersp, 0 < p < k. Sincef andg share(ay, k1), (as, k2), and(ag, 00), it follows that
f andg share(a;, 1), (as,2), and(as,6). Thus form Corollaries 1]2 arid 1.4 we immediately
obtain the conclusions of Theorems|4.1 4.3 respectively. O

Proofs of Theoren|s 4.2 and #.KMote that if f andg shareg(a,, k), (a2, 00), (a3, 00), andk > 1,
then we know thaf andg share(as, 1), (as, 2), and(as, 6). Thus from Corollariefs 1]2 a@ 4
we instantly get the conclusions of Theorgmg 4.2[and 4.4 respectively.
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