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1. Introduction, Definitions and Results

Let f(z) be a nonconstant meromorphic function in the complex pand/e shall

use the standard notations in Nevanlinna’s value distribution theory of meromorphic
functions such a%'(r, f), N(r, f), andm(r, f) (see, e.g.,q]). In this paper, we use
Niy(r,1/(f — a)) to denote the counting function afpoints of f with multiplici-

ties less than or equal fg and N (r, 1/(f — a)) the counting function ofi-points

of f with multiplicities greater than or equal o We also useV,,(r,1/(f — a))
and N (r,1/(f — a)) to denote the corresponding reduced counting functions, re-
spectively (seed]). The notationS(r, f) is defined to be any quantity satisfying
S(r, f) =o(T(r, f)) asr — oo possibly outside a set ofof finite linear measure.

Let f(z) andg(z) be two nonconstant meromorphic functions arime a complex
number. If the zeros of — a andg — a have the same zeros counting multiplicities
(ignoring multiplicities), then we say thdtandg share the value CM (IM).

Let So(f = a = g) be the set of all common zeros @fz) — a andg(z) — a
ignoring multiplicities,Sg(f = a = g) be the set of all common zeros ffz) — a
andg(z) — a with the same multiplicities. Denote by, (r, f = a = g), Ng(r, f =
a = g) the reduced counting functions ¢fandg corresponding to the sef(f =
a=g)andSg(f = a = g), respectively. If

1 _ 1
N
f—a>+ <n9—a

then we say thaf andg sharea IM*. If

_ 1 — 1
N |7, + N |(r,
f—a g—a

then we say thaf andg sharea CM*.

) —QN()(T,‘]C:CLZQ) :S(T,f)—i—S(T,g),

) —2NE<T,f:a:g) :S(’I“,f)—}—S(T,g),
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Let k be a positive integer or infinity. We denote By, (a, f) the set ofu-points
of f with multiplicities less than or equal to(ignoring multiplicities).
In 1988, Tohge 3] proved the following result.

Theorem A ([3]). Let f andg be two nonconstant meromorphic functions shafting
1,00 CM, andf’, ¢’ share 0 CM. Therf and g satisfy one of the following relations:

(i) /=g,
(i) fg=1,
(i) (f =Dy -D=1,
(iv) f+g=1,
(V) f=cy,
i) f—1=c(g — 1),
(vi)) [(c =D f + (¢ = 1)g = = —¢,
wherec (# 0, 1) is a constant.

In the same paper, Tohg8][suggested the following problents it possible to
weaken the restriction of CM sharing in Theorém

In 2000, Al-Khaladi fi] — [5] dealt with this problem and proved the following
theorems, which are improvements of Theorém

Theorem B ([4]). Let f and g be two nonconstant meromorphic functions sharing
0, 1, 00 CM, andf’, ¢’ share 0 IM. Then the conclusions of Theoramstill hold.

Theorem C ([9]). Let f andg be two nonconstant meromorphic functions shafing
oo CM, andf’, ¢’ share 0 IM. IfE},) (1, f) = Ey)(1, g), wherek is a positive integer
or infinity, then the conclusions of Theore‘mtlll hold.
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Now we explain the notion of weighted sharing as introducedjir-[ 7].

Definition 1.1 ([6] — [7]). Let £ be a nonnegative integer or infinity. Fare C
U {oc}, we denote by (a, f) the set of alla-points of f where ana-point of
multiplicity m is countedn times ifm < k andk + 1 times ifm > k. If Ex(a, f) =
Ex(a,g), we say thaff, g share the value with weightk.

The definition implies that iff, g share a value with weightk thenz, is a zero
of f —a with multiplicity m (< k) if and only if it is a zero ofy — a with multiplicity
m (< k) andz, is a zero off — a with multiplicity m (> k) if and only if it is a zero
of g — a with multiplicity n (> k) wherem is not necessarily equal ta

We write f, g share(a, k) to mean thatf, g share the value with weight .
Clearly if f, g share(a, k) then f, g share(a, p) for all integersp, 0 < p < k. Also
we note thatf, g share a value IM or CM if and only if f, g share(a, 0) or (a, o)
respectively.

In particular, if f, g share a value IM* or CM*, then we say thaf, ¢ share
(a,0)* or (a,00)* respectively (seed]).

Definition 1.2 ([8]). Fora € C {oc}, we put

. f
opla, f) =1-— 11?:801.@ W

wherep is a positive number.

In 2005, the present author et@] pnd Lahiri [9] also improved Theorem and
obtained the following results, respectively.

Theorem D ([8]). Let f and g be two nonconstant meromorphic functions sharing
(0,1), (1,00), (00, 00), and f’, ¢" share(0,0)*. If §2(0, f) > 1/2, then the conclu-
sions of Theorem still hold.
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Theorem E ([9]). Let f and g be two nonconstant meromorphic functions sharing
(0,1), (1,m), and (o0, k), wherek, m are positive integers or infinities satisfying
(m—1)(km—1) > (14+m)%. If E1)(0, ) € Ex(0,¢")andE1)(0, ¢') C Ew(0, ),
then the conclusions of Theorefstill hold.

In this paper, we shall prove the following theorems, which improve and supple-
ment the above theorems.

Theorem 1.3.Let f andg be two nonconstant meromorphic functions shatimg & ),
(az, ko), and(as, k3), where{a;, as, as} = {0,1,00}, andk; (j = 1,2, 3) are posi-

tive integers satisfying
(11) klkgkg > ki 4+ ko + /{73 + 2.

If E1)(0, f') € Ex)(0,¢) and E1y(0,¢') € Ew,)(0, f'), thenf and g satisfy one of
the following relations:

(i) f=g.

(i) fg=1,
(i) (f —1(g—1)=1,
(iv) f+g=1,

(V) f=cy,
(Vi) f —1=c(g — 1),

Vi) [(e=1Df+1][(c=1)g—=—c,
wherec (# 0, 1) is a constant.

From Theorem..3 we immediately deduce the following corollary.
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Corollary 1.4. Let f and g be two nonconstant meromorphic functions sharing
(Cll, k?l), (ag, k?g), and (CL37 k‘g), Where{al, a2, a3} = {O, 1, OO}, andk’j (] =1,2, 3)
are positive integers satisfying one of the following relations:

(I) kl Z ]-) k2 2 3! andk?) 2 4!
(ll) ki > 2, ky > 2, andk’g >3,
(@ii) k1 > 1, ky > 2,andks > 6.

If E1)(0, f') € Ex)(0,¢") and E1)(0,¢") C E)(0, f/), thenf and g satisfy one
of the following relations:

(i) f=y,
(i) fg=1,
(i) (f —1)(g—1)=1,
(iv) f+g=1,
(V) f=cg,
(Vi) f—1=c(g — 1),
(i) [(c = Df +1[(c—1)g—d=—c,
wherec (# 0, 1) is a constant.

Theorem 1.5.Let f andg be two nonconstant meromorphic functions shafimg % ),

(ag, ko), and(as, k3), where{ay, as, a3} = {0,1,00}, andk; (j = 1,2, 3) are posi-
tive integers satisfyingl.1). If

(1.2) Ny (7“, fi) A (r, gl> < O+ o()T(r), (rel),
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where0 < A < 1/3, T(r) = max{T'(r, f),T(r,g)}, and I is a set of infinite
linear measure, therf and g satisfy one of the following relations: (ixg, (ii)
fo=1, (i) (f = V(g — D=L, (W)f + g=1, (f=cg, (Vi)f — 1=c(g — 1), (vii)
[(c—=1)f +1][(c—1)g — c]= — ¢, wherec (# 0, 1) is a constant.

By Theoreml.5, we instantly derive the following corollary.

Corollary 1.6. Let f and g be two nonconstant meromorphic functions sharing Unisiy of Meromorphic Functions
(al, kl), (CLQ, kg), and (CL3, kg), Where{al, a2, a3} = {0, 1, OO}, andk'j (j =1,2, 3)

N . . N . . Jun-Fan Chen and Wei-Chuan Lin
are positive integers satisfying one of the following relations: .
vol. 8, iss. 4, art. 111, 2007
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The following example shows that any onelgf(j = 1,2, 3) in Theoreml.3,
Corollary 1.4, Theoreml.5and Corollaryl.6 cannot be equal to 0.

Examplel.1l Let f = (e — 1)"2andg = (e* — 1)~!. Thenf andg share(0, o),
(1,00), (00,0), andf’, ¢’ share(0, c0). However,f andg do not satisfy any one of
the relations given in Theorefn3, Corollary1.4, Theoreml.5and Corollaryl.6.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([LQ)). Let f andg be two nonconstant meromorphic functions sharing
(0,0), (1,0), and(o0, 0). Then

T(r,f) <3T(r,g)+S(r, f),  T(r,g) <3T(r, f) +5(r,9),

S(r, f) = 5(r.g) :==5(r).

Proof. Note thatf andg shareg(0, 0), (1,0), and(co, 0). By the second fundamental
theorem, we can easily obtain the conclusion of Lemimia O

The second lemma is due to Y], which plays an important role in the proof.

Lemma 2.2 ([L1]). Let f andg be two distinct nonconstant meromorphic functions
sharing(ay, k1), (az, k2), and(as, k3), where{a;, az, as} = {0,1, 00}, andk; (j =
1,2, 3) are positive integers satisfying.1). Then

1 — — 1
N(2 (T7?> +N(2<T7f) +N(2 (T7ﬁ> = S(T)7
the same identity holds far.

Lemma 2.3.Let f andg be two nonconstant meromorphic functions shafimgk; ),
(a2, ka), and(as, k3), where{a;, as, as} = {0,1,00}, andk; (j = 1,2, 3) are posi-
tive integers satisfying! . 1). If

(2.2) o=
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2.2) g—i=2

then

Y (7", é) —N(ra) =N ('r, %) — N(r, 8) = S(r).

Proof. If « or 3 is a constant, then the result is obvious. Next we supposexthat
and are nonconstant. Singeandg share(a,, k1), (aq, ko), and(as, k3), by (2.1),
(2.2), and Lemm&.2 we have

¥ (r2) < We(ng ) + Netnf) = S0

N(r,a) < N (r, %) + No(r,9) = S(r),

1. 1 —
N(r,=)<N — N =
(r5) < N (r 527 ) + Falr) = 50),
— — 1 —
N9 < N (125 ) + Foalr ) = 50,
which completes the proof of the lemma. O

Lemma 2.4.Let f andg be two distinct nonconstant meromorphic functions sharing
(al, k‘l), (CLQ, k‘g), and (CL3, ]Cg), Where{al, a2, CL3} = {0, 1, OO}, and I{Ij (] =1,2, 3)
are positive integers satisfyin@.1). If f is not a fractional linear transformation of

g, then
No(ng) =50 Ne(nl) st
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Proof. Without loss of generality, we assume that= 0, a; = 1, andaz = co. Let
«a and be given by(2.1) and(2.2). From(2.1) and(2.2), we have

23) f-1—2
(2.4) g= %

Sincef is not a fractional linear transformation gfwe know thaty, 5, anda are
nonconstant. Let

of BB
af +ao'f o Ja+ ()8
Then we havé: # 0, 1. Note that

N (r, %) - (r, é) + N(r, ),

N (r, %) =N (7‘%) + N(r, ).

From this and Lemma.3, we get

(2.5) h =

(2.6) T (r, %) =T (r, %) = 5(r),
and so
(2.7) T(r,h) = S(r).
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By (2.3), we get
(1—p) = h(1 - ap)

(2.8) f—h= e )
Let
(2.9) Fi=(f—h)(1—ap)=(1-5)—h(l - af).

From(2.5) and(2.9), we have

(2.10) % _ % A ozﬁPZ +af — BF/B
_ Y By
- 77 [50-0-4]

If 3/(h—1)/8 — k' = 0, then from this and2.10), we get

(2.11) h=cp+1,

and soF'/F — '/ =0, i.e.,

(2.12) F=ep,

wherec;, ¢, are nonzero constants. By.7), (2.11), and(2.12), we have
T(r,F)=T(r,5) = S(r).

From this,(2.7), and(2.9), we get

T(r,a) = S(r),
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and sol'(r, f) = S(r), which is impossible. Therefor&(h — 1)/3 — i/ # 0. By
(2.10), we have

1 _ F/F-p)8
219 T—h " BG-D
From(2.6), (2.7), and(2.13), we get

(2.14) m <r, ﬁ) <m (r, %) +8(r) = S(r).

SinceF”’/F andf’ /3 have only simple poles, it follows again frofn.6), (2.7), and
(2.13) that

e (r757) <2 (n =) + 50

< 2T (r, glh=1) h') +S(r)
g
<2T (7", %) + 2T (r,h) +2T(r, h") + S(r)
< 5(r),
ie.,
(2.15) N (r, 7 i h) = S(r).
By (2.2) and(2.4), we have
ﬂ =1- ﬁa
g—1
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g_’ _ o(1—af)+ (a—1)(af +dP)
g a(l = pB)(1—ap) '

Therefore

gg—f)  (A-=08)(af +aF)—ap(l— aﬁ)
(2.16) g 1) Bl —ap)

From(2.5) and(2.8), we get

(17) (/- h>< ﬁ/) (1= B)(0f +o'8) = af'(1 —af)

s af(1l —ap)
By (2.16) and(2.17), we have

glg—f) _ ﬁ’

Let N (r 1/¢') denote the counting function corresponding to multiple zerag of
that are not zeros af andg — 1. Then from(2.15) and(2.18), we get

NéQ (7«’ ;) < N (7“, fih> + S(r) < S(r).

From this and Lemma.2, we have
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Similarly, we can prove

N <r, fl) _ 5,

which also completes the proof of Lemma. ]

Lemma 2.5.Let f andg be two nonconstant meromorphic functions shafing % ),
(ag, ko), and (as, ks), where{a, az, a3} = {0,1, 00}, andk; (j = 1,2, 3) are pos-
itive integers satisfyingl.1). If f is a fractional linear transformation of, then f
and g satisfy one of the following relations:
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If f = g, then the relation (i) holds. Next we assume tfiat g and discuss the
following cases.

Case 1 If none of O, 1, andx are Picard’s exceptional values ¢fand g, then
f = g, which contradicts the assumption.

Case 2 If0and 1 are all Picard’s exceptional valuesfaindg, thenf = ag+ 6 =
a(g + (/a), wherea (# 0), 8 are constants. Sincg# 0, it follows thats/a = 0
or—1.

Subcase 2.11f g = 0, thenf = ag,i.e.,,f —1 = a(g — 1/a). Sincef # 1, it
follows thata = 1 and sof = ¢. This is a contradiction.

Subcase 2.2 If §/a = —1,thenf = ag—a,i.e.,,f—1=a(g— (a+1)/a). Since
f # 1, itfollows thata = —1. Thusf = —g + 1, which implies the relation (iv).
Case 3 If 1 and oo are all Picard’s exceptional values ¢fand g, then f =
Ag/(Cg+ D), whereA (# 0), D (# 0) are constants.

Subcase 3.1 If C' =0, thenf = ag,i.e.,f —1=a(g —1/a), wherea (# 0) is a
constant. Sincg¢ # 1 andg # 1, oo, it follows thata = 1 and sof = ¢. Thisis a
contradiction.

Subcase 3.2 If C # 0, thenf = ag/(g—1),i.e,f—1=((a—1)g+1)/(g—1),
wherea (# 0) is a constant. Sincg¢ # 1 andg # 1, oo, it follows thata = 1 and
sof —1=1/(g—1). This is the relation (iii).

Case 4 If 0 andcc are all Picard’s exceptional values pfindg, thenf = (Ag +
B)/(Cg+ D), whereA+ B=C+ D.

Subcase 4.11f A = 0, thenf = B/(Cg + D), whereB (# 0), C (# 0) are
constants. Sincé¢ # oo andg # 0, oo, it follows thatD = 0. Thusfg = 1 because
f andg share(1, k5). This is the relation (ii).

Subcase 4.2 If A # 0andC = 0, thenf = ag+ 3, wherea (# 0), 3 are constants.
Sincef # 0 andg # 0, oo, it follows thats = 0. Thusf = g because andg share
(1, k2). This is a contradiction.
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Subcase 4.31f A # 0 andC # 0, then it follows thatB = D = 0 because
f # 0,00 andg # 0, co. Thusf = constant, which contradicts the assumption.
Case 5 If 0 is Picard’s exceptional value gf andg but 1 andoo are not, then it
follows thatC' = 0 becausef andg share(oo, k3). Thusf = ag + 3, wherea
(# 0), ¢ are constants such that- 5 = 1.
Subcase 5.1 If § = 0, then it follows thaty = 1 and sof = ¢. This is a contradic-
tion.
Subcase 5.2 If 3 # 0, then it follows that? = 1 — « and sof = ag+ 1 — «, where
a (#0,1) is a constant. This is the relation (vi).
Case 6 If 1 is Picard’s exceptional value gf andg but O andoo are not, then it
follows thatC' = 0 becausef andg share(oo, k3). Sincef andg share(0, k), it
follows that B = 0 and sof = ag, wherea (# 0) is a constant. Iiv = 1, then
f = g, which is a contradiction. Thug = ag, wherea (# 0, 1) is a constant. This
is the relation (v).
Case 7 If o is Picard’s exceptional value gfandg but O and 1 are not, then it
follows thatB = 0 andA = C' + D becauseg andg share(0, k1) and(1, k»). Thus
f=Ag/(Cg+ D), whereA (# 0), D (# 0) are constants.
Subcase 7.1 If C' = 0, then it follows thatd = D becausef andg share(1, k»).
Thusf = g, which is a contradiction.
Subcase 7.2 If C' # 0, then it follows thatf = ag/(g + ) anda = 1 + 3, where
a (#0,1), gare constants. Thuys= ag/(g+a—1),i.e,fg—(1—a)f—ag =0,
which implies the relation (vii).

This completes the proof of Lemn2ab. O

Unicity of Meromorphic Functions
Jun-Fan Chen and Wei-Chuan Lin
vol. 8, iss. 4, art. 111, 2007

Title Page
Contents
44 44
< >
Page 18 of 28
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

3. Proofs of the Theorems

Proof of Theoreni.3. Without loss of generality, we assume that= 0, a; = 1,
andas = oco. Otherwise, a fractional linear transformation will do. lkeaind 3 be
given by(2.1) and(2.2).

Suppose now thaf is not a fractional linear transformation of Then from
LemmaZ2.4, we have

(3.1) N(g (r, %) = S(r), N(g (r, ;) = S(r).

By (2.1), we get

o_9g r
a g f
ie.,
32) Cr=tyor
g

Let z, be a simple zero of’ that is not a zero of andg. Then it follows that, is
a simple zero off’ becausé?y(0,g") € E.(0, f). Again from(3.2), we deduce
thatz, is a zero oi’/a. On the other hand, the process of proving Lenimashows

that / /
T (r,%) =T (r,%) = S(r).

From this,(3.1), and Lemm&.2, we have

— 1 — 1 1
(33) N (7’, —/) = N(2 (7’, —/) + Nl) <T, —,)
g 9 g
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Similarly, we can prove

(3.4) N (r, %) = S(r).

Let f/l 2f/ ! 2 /
g g
A== —-——=—)—-=—-—=]).
' (f f) (g g)
If A; =0, then by integration we obtain
1 c

— = -+ d’

I g
i.e., g

f=c+@,

wherec (# 0), d are constants. Thugis a fractional linear transformation gf
which contradicts the assumption. Hente # 0.

Since f andg share(0, k), it follows that a simple zero of is a simple zero of
g and conversely. Lef, be a simple zero of andg. Then in some neighborhood of
20, We getA; = (z — z9)7(z), wherey is analytic atzy. Thus by(3.3), (3.4), and
LemmaZ.2, we get

1 1
o (e2)<x(-d)

< N(r,Ay) +5(r)

Unicity of Meromorphic Functions
Jun-Fan Chen and Wei-Chuan Lin

vol. 8, iss. 4, art. 111, 2007

Title Page
Contents
44 44
< >
Page 20 of 28
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

< S(r),
and so
(3.5) N(r l>—N <rl)+N (r l)—S(T)
. ’f 1) ’f (2 7f .
Let 1 li ! /
Ao (£ 2N (90 29
T\ -1 g g-1)°
and f// 1
g
Ag =2 — 2,
TP g
In the same manner as the above, we can obtain
— 1
(3.6) N (ﬂﬁ) = S(r),
and
(3.7) N(r, f)=5(r).

From(3.5), (3.6), (3.7), and the second fundamental theorem, we have

T(r f) < N (7’, %) LN )+ N (r, ﬁ) +S(r) < S(r),
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which is a contradiction. Thereforéis a fractional linear transformation gf Again
from LemmaZ2.5, we obtain the conclusion of Theoreis. [

Proof of Theoreni.5. Likewise, we can assume that = 0, a, = 1, andas = oo.
Suppose now that is not a fractional linear transformation @f
Let

T(r,f), for rel,

(3.8) T(r)=

T(r,g), for rel,
where
(3.9) I=1UL.

Note that! is a set of infinite linear measure (f, o). We can see by3.9) thatl;

is a set of infinite linear measure @, co) or I, is a set of infinite linear measure
of (0,00). Without loss of generality, we assume tHatis a set of infinite linear
measure of0, co). Then by(3.8), we have

(3.10) T(r) = T(r, ).

Let A;, Ay, andA; be defined as in Theorein3. Similar to the proof of3.5),
(3.6), and(3.7) in Theoreml.3, we easily get

(3.11) N <r, %) = Ny (r, %) + N (7‘, %)
< Ny (r, %) + Ny <r, ;) + S(r),
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and

— — 1 1
@13) N f) = Nofrf) + Nl /) < N (r ) + 8 () + 50
From(1.2), (3.10), (3.11), (3.12), (3.13), and the second fundamental theorem, we
have forr € I
1

T(r,f)< N (r, ?) + N, f)+ N (r, ﬁ) +S(r)

s 1) 3 )]
<3\ +o(1)T(r, ),

which is impossible sincé < A < 1/3. Thereforef is a fractional linear transfor-
mation ofg. Again from Lemma?.5, we obtain the conclusion of Theorelt. [
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4. Final Remarks
Clearly, if k; (7 = 1,2, 3) are positive integers satisfyir{g.1), then
kiki>1 (j#4,5,i=1,2,3).

Theorem 4.1.Let f andg be two nonconstant meromorphic functions shatimg & ),
(ag, ko), and(as, co), where{ay, as, a3} = {0,1, 00}, andk; andk, are positive in-
tegers satisfying:

(4.2) kiky > 1.

If E1)(0, f') € Ex)(0,¢') and E1y(0,¢') € Ew,)(0, f'), thenf and g satisfy one of
the following relations:

(i) f=g.
(i) fg=1,
(i) (f —1(g—1=1,
(iv) f+g=1,
(V) f=cg,
(Vi) f—1=c(g - 1),
(vii) [(c=1)f +1][(c = 1)g - =—c,

wherec (# 0, 1) is a constant.
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Theorem 4.2.Let f andg be two nonconstant meromorphic functions shatimg %),

(ag,00), and(as, o0), where{ay, as, a3} = {0, 1, 00}, andk is an integer satisfying:

(4.2) k> 1.

If E1)(0, f') € Ex)(0,4¢') and E1y(0,¢') € Ew,)(0, f'), thenf and g satisfy one of
the following relations:

() f=g.
(i) fg=1,
(ii) (f =1)(g - D=1,
(iv) f+g=1,
(V) f=cg,
(Vi) f—1=c(g - 1),
(vii) [(c =D f +1][(c = 1)g — = —¢,
wherec (# 0, 1) is a constant.

Theorem 4.3.Let f andg be two nonconstant meromorphic functions shatimg &, ),
(a9, k2), and(as, 00), where{ay, as, a3} = {0, 1, 00}, andk, andk, are positive in-

tegers satisfying4.1). If (1.2) holds, thenf and g satisfy one of the following
relations:

(i) f=g,
(i) fg=1,
(i) (f =Dy - D=1,
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(iv) f+g=1,
(V) f=cy,
(vi) f - 1=c(g - 1),
(Vi) [(c = 1)f +1][(c—1)g — = —¢,
wherec (# 0, 1) is a constant.

Theorem 4.4.Let f andg be two nonconstant meromorphic functions shatimg %),
(az,00), and(ag, 00), where{a,, as, a3} = {0, 1, 00}, andk is an integer satisfying
(4.2). If (1.2) holds, thenf and g satisfy one of the following relations:

(i) f=g.
(i) fg=1,
(i) (f —1)(g—-1)=1,
(iv) f+ g=1,
(V) f=cy,
(Vi) f—1=c(g - 1),
(vil) [(c—1)f +1l(c— g — = —c,
wherec (# 0, 1) is a constant.

Proofs of Theoremé.1and4.3. Without loss of generality, we assume that< k..
Then by(4.1) we see that; > 1 andk, > 2. Note that if f andg share(q, k) then
f andg share(a, p) for all integersp, 0 < p < k. Sincef andg share(ay, k1),
(ag, k2), and(as, 00), it follows that f andg share(a,, 1), (as,2), and(as, 6). Thus

form Corollariesl.4 and 1.6 we immediately obtain the conclusions of Theorems

4.1and4.3respectively. ]
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Proofs of Theorems$.2and4.4. Note that if f andg share(as, k), (ag, ), (a3, 00),
andk > 1, then we know thaf andg share(a,, 1), (aq,2), and(as, 6). Thus from

Corollaries1.4 and 1.6 we instantly get the conclusions of Theorema and4.4
respectively. ]
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