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ABSTRACT. Let E be a complex Banach space andAéthe subspace aF. In this paper we
characterize the best approximant4oc E from M and we prove the uniqueness, in terms of
a new concept of derivative. Using this result we establish a new characterization of tide best-
approximation taA € C; (trace class) fromd/. Then, we apply these results to characterize the
operators which are orthogonal in the sense of Birkhoff.
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1. INTRODUCTION

Let £ be a complex Banach space and Lkébe subspace af. We first define orthogonality
in £. We say thab € F is orthogonal ta: € F if for all complex \ there holds

(1.1) la+ Ab[| = la| .

This definition has a natural geometric interpretation. Nantely, if and only if the complex
line {a + Xb | A € C} is disjoint with the open balk (0, ||a]|), i.e., if and only if this complex
line is a tangent line td< (0, ||a||). Note that ifb is orthogonal ta:, thena need not be orthog-
onal tob. If E is a Hilbert space, then from (1.1) follows, b) = 0, i.e, orthogonality in the
usual sense. Next we define the best approximart to £ from M. For eachA € F there

exists aB € M such that

JA—B||<|[A—C|  forall C e M.
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2 SALAH MECHERI

SuchB (if they exist) are called best approximants4drom ). Let B(H) denote the algebra
of all bounded linear operators on a complex separable and infinite dimensional Hilbert space
H and letT’ € B(H) be compact, and let (X ) > so(X) > --- > 0 denote the singular values

of T, i.e., the eigenvalues ¢T'| = (T*T)% arranged in their decreasing order. The operator
is said to belong to the Schattprelasses”, (1 < p < o0) if

171, = [Z si(T)"

=1

P

= [tr(T)]r <00, 1<p< oo,

wheretr denotes the trace functional. HenGeis the trace clasg}, is the Hilbert -Schmidt
class, and’,, corresponds to the class of compact operators with

1Tl = 5:(T) = sup | Tf]|
Ifl=1

denoting the usual operator norm. For the general theory of the Schattasses the reader is
referred to[[10]. Recall that the norjp|| of the B—spacél/ is said to be Gateaux differentiable
at non-zero elementse V if

|z +ty| — [|=||
R>¢t—0 t

= ReD:}:(y)a

forall y € V. HereR denotes the set of all reald¢ denotes the real part, ariél, is the unique
support functional (in the dual spat€) such that| D, || = 1 andD,(z) = ||z||. The Gateaux
differentiability of the norm at: implies thatz is a smooth point of the sphere of radius|. It

is well known (see [4] and the references therein) that ferp < oo, C, is a uniformly convex
Banach space. Therefore every non-Zére C, is a smooth point and in this case the support
functional of T is given by

TP UX*
p—1
11,

9

forall X € C,, wherel' = U |T| is the polar decomposition @f. In this section we characterize

the best approximant tel € F from M and we prove the uniqueness, in terms of a new
concept of derivative. Using these results we establish a new characterization of th@ best-
approximation tod € C; from M in all Banach spaces without care of smoothness. Further, we
apply these results to characterize the operators which are orthogonal in the sense of Birkhoff.
It is very interesting to point out that these results has been dohe amdC(K) (see [9/5])

but, at least to our knowledge, it has not been given, till nowCfeclasses.

To approach the concept of an approximant consider a set of mathematical objects (complex
numbers, matrices or linear operator, say) each of which is, in some sense, “nice”, i.e. has
some nice property? (being real or self-adjoint, say): and ldt be some given, not nice,
mathematical object: then & best approximant ofd is a nice mathematical object that is
“nearest” toA. Equivalently, a best approximant minimizes the distance between the set of nice
mathematical objects and the given, not nice object.

Of course, the terms “mathematical object”, “nice”, “nearest”, vary from context to con-
text. For a concrete example, let the set of mathematical objects be the complex numbers, let
“nice”=real and let the distance be measure(d b)y the modulus, then the real approximant of the

z+z

complex numbet is the real part of itRe z = ~=~. Thus for all real:

|z —Rez| < |z — x|
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RELATION BETWEEN BESTAPPROXIMANT AND ORTHOGONALITY 3

2. PRELIMINARIES

From the Clarckson-McCarthy inequalities it follows that the dual sjggce C, is strictly
convex. From this we can derive that every non zero point’jnis a smooth point of the
corresponding sphere. So we can check what is the unique support funétianal

However, if the dual space is not strictly convex, there are many points which are not smooth.
For instance, it happens if;, C, and B(H). The concept ofp— Gateaux derivative will
be used in order to substitute the usual concept of Gateaux derivative at points which are not
smooth inB(H). The concepts of Gateaux derivative and Gateaux derivative have also
been used in Global minimizing problems, see for instance,[[7],[[8], [6] and references therein.

Definition 2.1. Let (X, ||-||) be an arbitrary Banach spagey € X, ¢ € [0,2n7), andF' : X —
R. We define theo-Gateaux derivative of” at a vectorr € X, iny € X andy direction by

F te"y) — F
D, F(x;y) = lim (x4 te”y) (x)

t—0t t

We recall (se€ [3]) that the functian— D, ,.(y) is subadditive,

(2.1) Dy o(y) <yl

The functionf(, ,)(t) = ||z + te*?y| is convex,D,, ,(y) is the right derivative of the function
f=) at the point 0 and taking into account the fact that the funcfigr, is convexD,, . (y)
always exists.

The previous simple construction allows us to characterize the Bestpproximation to
A € C, from M in all Banach spaces without care of smoothness

Note that whenp = 0 the p-Gateaux derivative of" at x in directiony coincides with the
usual Gateaux derivative @f atx in a directiony given by

DF(z;y) = lim Flaz+ty) = F(:z:)
t—0t t
According to the notation given inl[3] we will denofe, F'(x; y) for F(z) = ||z|| by D, .(y)

and for the same function we write,.(y) for DF(z;vy).
The following result has been proved by Keckiclin [3].

Theorem 2.1. The vectoy is orthogonal tar in the sense of Birkhoff if and only if
(2.2) inf D, ,(y) > 0.
%)

Now we recall the following theorem proved in [3].
Theorem 2.2.Let X, Y € C,(H). Then, there holds
Dx(Y) = Re {tx(U"Y)} + QY P, ,
whereX = U | X| is the polar decomposition of, P = P, x, Q = Qe x+ @re projections.

The following corollary establishes a characterization of ghe Gateaux derivative of the
norm inC;-classes.

Corollary 2.3. Let X, Y € C,(H). Then, there holds
Dy x(Y) =Re{e“tx(U"Y)} + |QY P, ,

for all p, whereX = U |X]| is the polar decomposition of, P = Py x, @ = Qyerx+ are
projections.
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3. MAIN RESULTS

The following Theoreni 3]1 has been proved|in [5]; for the convenience of the reader we
present it and its proof below.

Theorem 3.1.Let E be a Banach spacé/ a linear subspace of, andA € E\ M. Then the
following assertions are equivalent:

(1) B is a best approximant td from M;
(2) forall Y € M, A — B is orthogonal toY’;

3)
(3.1) igf Dya_p(Y)>0, forallY e M
Proof. The equivalence between (2) and (3) follows from Thedrerh 2.1. So we prove the equiv-
alence between (1) and (3). Assume tBat a best approximant td from M, i.e.,
|A—D| >||A—B|, forall De M.
Lety € [0,27],¢t > 0, andY € M. TakingD = B — te**Y in the last inequality gives
|A =B +te?Y|| > ||[A- B,

and so .
— wp — —
|A—B+te tYII 1A= Bl S .
Thus, by lettingg — 0" and taking the infinimum ovep we obtain

inf D, 4_p(Y) >0, forall Y e M.
]

Conversely, assume that (B.1) is satisfied. et 0 and letY € M. From the fact that the

functiont r— 1A=+ YIZIAZBl js nondecreasing oft), +oc) we have

IIA—B+Y1|—||A—B|| > D

oa-p(Y), forallt>0 Y e M.

Using (3.1) we get
|[A-B+Y| —||A—B|
t
Therefore, by taking = 1 andY = B+ D, with D € M (since)M is a linear subspace) we get

|IA—D| >|[A—B| forall De M.

This ensures thaB is a best approximant td from M and the proof is complete. O

>0, forallt>0,Y € M.

Remark 3.2. It is very obvious in Theorer 3.1 that (1) is equivalent to (2)(from the defini-
tion of the orthogonality and the best approximant). Rather, it is more important to prove the
equivalence between (1) and (3). The same remark applies for Thgorem 3.3.

Using Corollary 2.B and the previous theorem, we prove the following characterizations of
best approximants ié;-Classes.

Theorem 3.3.Let M be a subspace @f,(H) and A € C,(H) \ M. Then the following asser-
tions are equivalent:

(1) Bis abestC,(H )-approximant to4 from M :
(71) forall Y € M, A — B is orthogonal toY;
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(i)
(3.2) QY Plle, > [tr(UY)], forall Y € M,

where A — B = U |A — Bj is the polar decomposition ol — B, P = Pier(a—p);
Q@ = Qrer(a—p)- are projections.

Proof. The equivalence betweéiy) and(iii) follows from Corollary 1 in[3]. We have only to
prove the equivalence betweén and(:ii). Assume thai3 is a bestC; (H)-approximant taA
from M. Then by the previous theorem we have

inf D, 4_p(Y) >0, forall Y e M,
©

which ensures by Corollafy 2.3

inf Re {e tr(U*Y } + |QY P, > 0, forall Y € M,

%
whereA — B = U |A — B| is the polar decomposition of — B andP = Piera—p), @ =
Qxer(4—B)+ OF €quivalently

|QY P||., > —infRe {e¥ tr(U*Y)} .
%)

By choosing the most suitablewe get
QY Pllo, > [tr(U*Y], forall Y € M.
Conversely, assume that (B.2) is satisfied. k& arbitrary and” € M. By (3.3) we have

o

= ‘tr(U*Y‘ > —Re (tr(U*Y) ,
with Y = ¢#Y € M. Hence,
QY Pllo, > —Re (e®tr(UY),
forY € M andally € [0,27] and so
inf [1QY Pl|¢, + Re (e tr(U*Y)] > 0,

forY € M and ally € [0, 27]. Thus Theorer 3]1 and Corollgry .3 complete the proof[J

Now we are going to prove the uniqueness of the best approximant. First we need to prove
the following proposition. It has its own interest and it will be the key in our proof of the next
theorem.

Proposition 3.4. Let £ be a Banach spacé/ a subspace of, andA € £\ M. Assume that
B is a best approximant td from M. Set

vi=1inf{D, a_p(Y); p € [0,2n];Y € M, |Y| = 1}.
Theny € [0,1] and forallY € M,
(3.3) WY = B[ <[[A-Y]| - [|A-BJ.
Furthermore, ify’ > ~, then there exist§’ € M for which
YIC =Bl >|A=-C|—[A-B].
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Proof. Since B is a best approximant td from M, then by Theorerh 3|1 we have > 0.
The fact thaty < 1 follows from the properties of the-Gateaux derivative recalled in the
Preliminaries. Fory = 0 the inequality[(3.B) is satisfied becauBds a best approximant td
from M. Assume now thay > 0. By the definition ofy we have forp = 0

Dy a—p(=Y)>~|Y], forall Y € MY #0.
Therefore, for alt > 0 we have
|A—B—-tY| —||A— B
t
forallY € M,Y # 0, which is equivalent to

Y < [[A=B—tY| —||A - BJ|,
forallY € M,Y # 0. SinceM is a linear subspace we get
VY =Bl < [A-Y| —[[A- B,

for Y belonging to a small ball with center &, Y # 0. Since forY” = 0 we gety = 0 and so
the inequality[(3.]4) is satisfied. Hence

YWY =B| <||A-Y]|—||A—-BJ, foralY e M.
Assume now that’ > ~, i.e.,

v >inf{D,s_p(Y); p€[0,27;Y € M, ||Y] =1}.
Then there existg, € [0, 27], D € M such that|D|| = 1 and

. A—B—teiSDOD _ A—B
YD > Dy a_p(—D) = lim | |~ 1A Bl

t—0t t

=Y,

Consequently, for somg small enough we have
|A— B —tee'*D|| — |A— B]
to ’

YD >
and so
YltD|| > [|A = B = toe™” D] — |A - B]|.
SetC = B + tye™¥°D € M. Thus
YIC =Bl > |A-C|l - A= BJ|.
This completes the proof. O

Theorem 3.5. Let M be a subspace df,(H) and A € C;(H) \ M. LetB be a best,(H)-
approximant taA from M satisfying

(3.4) QY Plle, > |tr(U*Y)|, forall Y € M,Y # 0,

whereA—B = U |A — B|is the polar decomposition of— 5B, P = Piex(a-p), @ = Qker(a—B)*
are projections. Them is the unique best, (H)-approximant taA from M.

Proof. Assume that (3]4) is satisfied. There exists 0 such that
(3.5) |QY Plle, > a > [tr(UY)], forall Y € M,Y # 0.
Let o be arbitrary in0, 27] andY” € M and putY” = €Y. Then

a>[tr(UY)| > —Re (tr(U*?)) = —Re (e" tr(U*Y)).
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Taking the infinimum orp over |0, 27] yields
a > inf [— Re (e tr(U*Y))] .
%}
This inequality and (3]5) give
|QY P|l¢, > inf [~ Re (¢" tr(U*Y))],
[

which is equivalent to

inf [|QY P|le, + Re (e” tr(U*Y))] >0, forall Y € M,Y #0.

[
Now, by Corollary 2.B and the definition gfwe gety > 0. Therefore, by the previous theorem
we have

Y =B|| <||[A-Y]| —||A-B]|, forallY e M.

Assume that” is another best, ( H)-approximant tad from M such that’' # B. Then

WC =B <[[A-C|-||[A=-B[| < ||[A-B|| - [[A-B| =0.

This ensures thgtC' — B|| = 0, which contradicts” # B. ThusB is the unique best, (H)-
approximant to4 from M. O
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