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Abstract

We show that the expectation of a class of functions of the sum of weighted
identically independent distributed positive random variables is Schur-concave
with respect to the weights. Furthermore, we optimise the expectation by
choosing extra-weights with a sum constraint. We show that under this opti-
misation the expectation becomes Schur-convex with respect to the weights.
Finally, we explain the connection to the ergodic capacity of some multiple-
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The Schur-convex function was introduced by I. Schur in 1923 &nd has
many important applications. Information theory/] is one active research
area in which inequalities were extensively used.was the beginning of in-
formation theory. One central value of interest is the channel capacity. Recently,
communication systems which transmit vectors instead of scalars have gained
attention. For the analysis of the capacity of those systems and for analyzing
the impact of correlation on the performance we use Majorization theory. The R ——
connection to information theory will be further outlined in Section Expectation of Weighted Sum of
The distribution of weighted sums of independent random variables was ~ Reaqn HeZeoes win
studied in the literature. Lek;,..., X, be independent and identically dis-
tributed (iid) random variables and let

Holger Boche and
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(1.1) F(ey, .o ent) = Pr(a Xy + -+ e, X, < ).

Title Page
By a result of Proschanlf], if the common density ofY,..., X, is sym- Contents
metric about zero and log-concave, then the functiors Schur-concave in
(¢1,...,c,). FOr nonsymmetric densities, analogous results are known only in 2 >»
several particular cases of Gamma distributicfjs [n [17], it was shown for < >
two (n = 2) iid standard exponential random variables, thas Schur-convex
ont < (¢ + ¢2) and Schur-concave dn> 3(c; + ¢,). Extensions and appli- Go Back
cations of the results inl}]] are given in P]. For discrete distributions, there Close
are Schur-convexity results for Bernoulli random variable$]nlpstead of the Quit

distribution in (L.1), we study the expectation of the weighted sum of random
variables. Page 3 of 32
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We define an arbitrary functiofi : R — R with f(z) > 0 forall z > 0.
Now, consider the following expectation
k=1
with independent identically distributed positiv@ndom variables, . . ., w,
according to some probability density functipw) : p(z) = 0 Yz < 0 and

itive numbersq, ... which are in reasing order, i. > >
positive nu be 31 > Hn c .a € decreas go der, B = H2 =2 On Schur-Convexity of
-+ > p, > 0 with the sum constraint Expectation of Weighted Sum of

n Random Variables with
k=1

Applications
The functionG' (1) with the parameterg(z) = log(1 + px) for p > 0 and with

(1.2) G(i) = Glps .o 1) = E

Holger Boche and
Eduard A. Jorswieck

exponentially distributed, . . . , w,, is very important for the analysis of some Title Page
wireless communication networks. The performance of some wireless systems
depends on the parameters . .., u,. Hence, we are interested in the impact Contents
of ui,...,u, on the functionG(u, ..., u,). Because of the sum constraint < b
in (1), and in order to compare different parameter géts= [u1, ..., u.] and
w? = [u?, ..., 12], we use the theory of majorization. Majorization induces a < d
partial order on the vectors' andy? that have the samig norm. Go Back
Our first result is that the functio@(p) is Schur-concave with respect to the p——
parameter vectqi = [y, . . ., it,], i.€. if u* majorizesu? thenG(u') is smaller
than or equal t@7(u?). Quit
A random variable is obviously positive, Pr(w; < 0) = 0. Those variables are called Page 4 of 32

positive throughout the paper.
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In order to improve the performance of wireless systems, adaptive power
control is applied. This leads mathematically to the following objective function

()

for fixed parameterg,, . .., i, and a sum constrait’,_, p, = P. We solve
the following optimisation problem

H(pnu) :H(plaapnuuh)ﬂ'n):]E

(1-3) [(,uu P) = I(Mh <oy Hn, P) = Inax H(ph N X L ;,Un) On Schur-Convexity of
Expectation of Weighted Sum of

n
Random Variables with
s.t. E pr=PFP and p, >0 1<k<n Applications
k=1
i L. . i . . Holger Boche and
for fixed pq, . .., pu,. The optimisation in1.3) is a convex programming prob- Eduard A. Jorswieck

lem which can be completely characterised using the Karush-Kuhn-Tucker (KKT)
conditions.

Using the optimality conditions froml(3), we characterise the impact of Title Page
the parameters,, . .., i, on the function/(x, P). Interestingly, the function Contents
I(p, P) is a Schur-convex function with respect to the parameter vecter <« NS
(141, - -, o), 1.€. if u* majorizesy? then(u', P) is larger thanl (2, P) for ) ,

arbitrary sum constrain®.
The remainder of this paper is organised as follows. In the next, Segtion Go Back
we introduce the notation and give definitions and formally state the problems.

Next, in SectiorB we prove thatz(u) is Schur-concave. The optimal solution of Close
a convex programming problem in Sectiéis then used to show thdt ., P) Quit
is Schur-convex for allP > 0. The connection and applications in wireless Page 5 of 32

communications are pointed out in Sectin
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First, we give the necessary definitions which will be used throughout the paper.

Definition 2.1. For two vectorsx, y € R"™ one says that the vectarmajorizes
the vectory and writes

m m n n
X~y if Zxkzzyk ,mzl,...,n—l. and Zxkzzyk On Schur-Convexity of
k=1 k=1 k=1 k=1

Expectation of Weighted Sum of
Random Variables with

The next definition describes a functiénwhich is applied to the vectoss Applications
andy with x > y:

Holger Boche and
Eduard A. Jorswieck

Definition 2.2. A real-valued function? defined on4d ¢ R" is said to be
Schur-convex o if

Title Page
x>y on A= &(x) > d(y).
Contents
Similarly, @ is said to be Schur-concave ohif « N
x>y on A= O(x) < d(y). < >
Remark 2.1. If the function®(x) on A is Schur-convex, the function®(x) is Go Back
Schur-concave odl.
Close
Example 2.1. Suppose that,y € R’} are positive real numbers and the func- _
tion ¢ is defined as the sum of the quadratic components of the vectors, i.e. Quit
dy(x) = >_p_, lzx[*. Then, it is easy to show that the functidn is Schur- Page 6 of 32

concave oRY, i.e. ifx >y = ®y(x) < Dy(y).
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The definition of Schur-convexity and Schur-concavity can be extended if
another function : R — R is applied to®(x). Assume thatb is Schur-
concave, if the functio® is monotonic increasing then the expressiq® (x))
is Schur-concave, too. If we take for example the functidn) = log(n) for
n € Ry and the function®, from the example above, we can state that the
composition of the two functiong(®,(x)) is Schur-concave oR’; . This result
can be generalised for all possible compositions of monotonic increasing as well
as decreasing functions, and Schur-convex as well as Schur-concave functions.

For further reading se€ []. On Schur-Convexity of
: . T ; : _ Expectation of Weighted Sum of
~ We will need the following lemma (see [, Theorem 3.A.4]) which is some e Vi e e T
times called Schur’s condition. It provides an approach for testing whether some Applications

vector valued function is Schur-convex or not. Holger Boche and

Eduard A. Jorswieck

Lemma2.1.LetZ C R be an openinterval and lgt: Z* — R be continuously
differentiable. Necessary and sufficient conditionsffao be Schur-convex on

1" are Title Page
f is symmetric onZ" Contents
and
oo (20N S0 o al 1< < P
’ 77\ Ox; Oxj) — =hy=n < 2
Sincef(x) is symmetric, Schur’s condition can be reducedlas jp. 57] Go Back
8f 8f Close
2.1 — L _ L ) >0. .
@1 o) (5= 55 20 Qui
Page 7 of 32

From Lemma2.1, it follows that f (x) is a Schur-concave function @r if f(x)
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is symmetric and

2.2) (01— ) (% - %) <0

Finally, we propose the concrete problem statements: At first, we are inter-

ested in the impact of the vectpron the functionG ().
This problem is solved in Sectidh

Problem 1. Is the functionG (p, . ..
i.e. withp! = [ul,... pllandp? = (13, ...

phom = G(u') < G(p?)?

, ln) I (1.2) a Schur-concave function,
, 112] it holds

Next, we need to solve the following optimisation problem in order to char-

acterise the impact of the vectpron the function/ (y, P).
We solve this problem in Sectich

Problem 2. Solve the following optimisation problem

(2.3) I(, ...

s, P) =max H(py, ..., Dn; 1y -« 5 fhn)

s.t.Zpk:P and pp, >0 1<k<n
k=1

for fixedpy, ..., pin.

Finally, we are interested in whether the function4r3 is Schur-convex or
Schur-concave with respect to the parameters. ., u,,. This leads to the last
Problem statement 3.

This problem is solved in Sectidn

On Schur-Convexity of
Expectation of Weighted Sum of
Random Variables with
Applications
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Problem 3. Is the function/ (u, P) in (2.3) a Schur-convex function, i.e. for all
P>0
pt = p® = I(u', P) < I1(p?, P)?

On Schur-Convexity of
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Applications
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In order to solve Problert, we consider first the functiofi(z) = log(1 + x).
This function naturally arises in the information theoretic analysis of communi-
cation systems![/]. That followed, we generalise the statement of the theorem

for all concave functiong(z). Therefore, Theoreri.1 can be seen as a corol-
lary of Theorens.2.

Theorem 3.1. The function

(3.1) Ci(p) = Ci(pa, - ptn) = E

log (1 - En: mw)]

k=1

with iid positive random variables, .
respect to the parameteys, . . ., .

.., w, IS a Schur-concave function with

Proof. We will show that Schur’s condition2(2) is fulfilled by the function
Cy(p) with o = [p1, ..., u,). The first derivative of” (1) with respect tgu,
andys, is given by

801 [ w1 :|
3.2 =—=E -
(3:2) M Op L+ i Hewy
801 [ Wa :|
3.3 = — = - :
(3:3) 2 Oty I+ Zk:1 MWy

Sincepy > o by definition, we have to show that

E |: w1, — Wy
Z + pwy + fowe

(3.4) } <0
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with z = 1+ 37 _, wy.. The expectation operator i8.¢) can be written as a
n-fold integral over the probability density functiopéw, ), ..., p(w,). In the
following, we show that for alt > 0

(3.5) / / g(wy, wa, 2)p(wr)p(wsy)dwidwy < 0
0 0
with g(wy,ws, 2) = % Rewrite the double integral ir8(5) as

(3.6) /OOO /Ooog(wl,wmZ)p(wl)p(w2)dw1dwz

N /:’ /“’1 (g(wr, we, 2) + g(wa, wy, 2)) p(wr)p(ws)dw: dw,

1=0 Jwo=0

because the random variabtesandw, are independent identically distributed.

In (3.6), we split the area of integration into the area in whigh> w, andw, >
wy and used the fact, thgtw;, ws, ) for w; > w, is the same ag(w,, wy, z)
for wy > w;. Now, the expression(wy, ws, z) + g(wsq, wy, z) can be written
forall z > 0 as

(w1 — wa) (pwa + powy — piwr — pows)

(z + pwy + pows) (2 + pws + powy)
(3.7) _ (w1 — w2)?(p2 — pia) '
(z + pwy + pows) (2 + pws + powy)

g(wi,wy, 2) + g(wa, wy, 2) =

From assumptiop, < p; and @.7) follows (3.5) and 3.4). O

On Schur-Convexity of
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Remark 3.1. Interestingly, Theorerf.1 holds for all probability density func-

tions which fulfillp(z) = 0 for almost everyr < 0. The main precondition

is that the random variables; and w, are independent and identically dis-
tributed. This allows the representation id.§).

Theorem3.1answers Probler only for a specific choice of functiofi(x).
We can generalise the statement of Theogehin the following way. However,
the most important, in practice is the case in whic¢h) = log(1 + x).

Theorem 3.2. The functionG(1) as defined inX.2) is Schur-concave with
respect tou if the random variablesu,, . . ., w, are positive identically inde-
pendent distributed and if the inner functigitx) is monotonic increasing and
concave.

Proof. Let us define the difference of the first derivativeg' 6} ", _, ruwy) with
respect tq.; andy, as

Awy, ws) = (

Since the functiory is monotonic increasing and concayé(x) < 0 andf’(z)
is monotonic decreasing, i.e.

f(@1) < f'(x2)

Note, thatw; > wy andu; > e anduyws + pwe > pwe + powy. Therefore,
it holds

Of Qe twwr) — OF (o, ukwk))
o) Oz .

forall z; > x4

(w1 —w2) (f’(ulwl + paws + Y pwy) = f(paws + pgwy + Y ,Uk:wk)) <0

k=3 k=3
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Using equationd.6), it follows

(3.8) /w°°0/

because the densities are positive. This verifies Schur’s conditiofh.®r ( [

A(wq, we) — A(wg, wy)) p(wy)p(wse)dwidwy < 0

The condition in Theorer3.2 can be easily checked. Consider for example
the function

(3.9) k(z) =

x
1+z

It is easily verified that the condition in Theore®® is fulfilled by (3.9). By
application of Theorer.2it has been shown that the functiéf(y.) defined as

L+ 375y Hwr

is Schur-concave with respect g, . .

K =B |

'Jlun'
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Next, we consider the optimisation problem 3 from Problem2. Here,

we restrict our attention to the cagér) = log(1 + x). The motivation for
this section is to find a characterisation of the optipalhich can be used to
characterise the impact of under the optimum strateqy on H (i, p). The
results of this section, mainly the KKT optimality conditions are used in the

next section to show thai (1, p) with the optimalp* () is Schur-convex. On Schur-Convexity of
. . . . . Expectation of Weighted Sum of
The objective function is given by Random Variables with
Applications
@ o) =2 o (143 oentea
k=1
and the optimisation problem reads Title Page
" Contents
(4.2) p*=argmaxCy(p,p) S.t Zpk =landp,>0 1<k <n.
1 <44 >»
The optimisation problem ind(2) is a convex optimisation problem. Therefore, < d
the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the Go Back
optimality of somep* [5]. The Lagrangian for the optimisation problem inZ) =
is given by ose
Quit

(4.3) L(Pp, A1,y A\, v) = Cao(p, ) +Z)\kpk+y <P_ Zpk> Page 14 of 32
k=1

k=1
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with the Lagrangian multiplier for the sum constraint and the Lagrangian
multipliers A4, . . ., A, for the positiveness qf, ..., p,. The first derivative of
(4.3) with respect tq, is given by

dL pawy ]
4.4 — =E o + AN —v.
(44) dp {1 + D h1 HEPEWE :
The KKT conditions are given by
MWy
E - V— A 1< <n,
L + D ko Nkpkwk] l
v=>0
e > 1<i<mn,
(4.5) P-> p=1
k=1
We define the following coefficients
nr 1 m
4.6 Qy, / . dt.
(4.6) H Lttpyu (1 + tugpr)?

=1,k

These coefficients inl(6) naturally arise in the first derivative of the Lagrangian
of (4.2) and directly correspond to the first KKT condition if.§) where we
have used the fact that

wq * _ n
E _ - w/ et ko1 Prikwr) gt |
[14'2;@:12%/%1%} { 'Jo
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Furthermore, we define the set of indices for which- 0, i.e.

4.7) I(p)=A{kell,...,nr]:p >0}

We have the following characterisation of the optimum p@int
Theorem 4.1. A necessary and sufficient condition for the optimality o$

{k1,ke € Z(p) = i, = i, and

k¢ Z(p) = ap < max ay}.
leZ(p)

(4.8)
This means that all indicelswhich obtainp, greater than zero have the same
Q; = MaXe1,.. |- FUrthermore, all othery; are less than or equal ta;.

Proof. We name the optimal poim, i.e. from @.2)

p=arg max C(p,p,p).

[Ip||[<Pp:>0

Lettheyy, ..., u,, be fixed. We define the parametrised point

p(r)=(1—-7)p+71p

with arbitraryp : ||p|| < P, p; > 0. The objective function is given by

(4.9) C(7r) =Elog (1 + pZﬁkukwk + p7 Z(pk — ﬁk)ukwk> .

=1 =1
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The first derivative of4.9) at the point- = 0 is given by

dCdir) » = ;(pk — Pr)ak(P)

with o (p) defined in §.6). It is easily shown that the second derivativetfr)
is always smaller than zero for d@ll< 7 < 1. Hence, it suffices to show that
the first derivative of”(7) at the pointr = 0 is less than or equal to zero, i.e.

nr

> (o — pr)aw(p) < 0.

k=1

We split the proof into two parts. In the first part, we will show that the condition
in (4.9) is sufficient. We assume that.g) is fulfilled. We can rewrite the first
derivative ofC'(7) at the pointr = 0 as

(4.10)

Q= i(ﬁk — Pr) ik (Pr)

nr

= > Drow(p) — Zpkak(ﬁ)
k=1
Z = Zplal

leZ(p)

(4.11) =

maX Cl/k

-----

But we have that

nr
- -
(p) < ;Pz pnax a(p)

.
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Therefore, it follows forQ) in (4.17)

> 5 by — — 0,
Q= panax () | Y P lz:;pz

o 1€Z(p)

i.e. @.10 is satisfied.
In order to show that conditior(8) is a necessary condition for the optimal-
ity of power allocationp, we study two cases and prove them by contradiction.

1. Assume ¢.9) is not true. Then we havelac Z(p) andk, € Z(p) with the
following properties:

max oy D = Ok (p
1<kny <p> o(P)

andoy,(p) < ag,(p). We setpy, = 1 andp;cp,... npjk, = 0. It follows that

nr

> (br — Br)ak(p) <0

=1
which is a contradiction.

2. Assume there is & : oy, > oy With kg & Z(p) andk € Z(p), then set
Do = 1 @ndosepi,.. nk, = 0. Then we have the contradiction

nr

Z(ﬁk — Pr)au, < 0.
k=1
This completes the proof of Theorefril O

On Schur-Convexity of
Expectation of Weighted Sum of
Random Variables with
Applications

Holger Boche and
Eduard A. Jorswieck

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 18 of 32

J. Ineq. Pure and Appl. Math. 5(2) Art. 46, 2004

httrn//itinarm vit odir ann


http://jipam.vu.edu.au/
mailto:
mailto:boche@hhi.de
mailto:
mailto:
mailto:jorswieck@hhi.de
http://jipam.vu.edu.au/

We use the results from the previous section to derive the Schur-convexity of
the functionl(u, P) for all P > 0. The representation of the,(p) in (4.6)

is necessary to show that the conditi%nz Zi—i is fulfilled forall 1 < [ <

n — 1. This condition is stronger than majorization, i.e. it follows tpat .

[11, Proposition 5.B.1]. Note that ,_,p, = > ,_, i = 1. The result is
summarised in the following theorem.

Theorem 5.1. For all P > 0, the function/(y, P) is a Schur-convex function On Schur-Convexity of
X Expectation of Weighted Sum of
with respect to the parameters, . . ., i,. Random Variables with
Applications

Proof. The proof is constructed in the following way: At first, we consider two F——
arbitrary parameter vectors8 andy? which satisfyu! = 2. Then we construct Eduard A. Jorswieck
all possible linear combinations @f andy?, i.e. u(0) = 6u? + (1 — O)u'.

Next, we study the parametrised functid((¢)) as a function of the linear

combination parametér. We show that the first derivative of the parametrised Tifle Page
capacity with respect t6 is less than or equal to zero for @ll< # < 1. This Contents
result holds for all.* andu?. As a result, we have shown that the functigp) pp b
is Schur-convex with respect o
With arbitrary ! andp? which satisfyu! = 12, define the vector 4 d
Go Back
(5.1) p(0) = 0 + (1 = 0)!
Close
forall0 < 6 < 1. The parameter vectar(d) in (5.1) has the following proper- Quit

ties which will be used throughout the proof.
Page 19 of 32
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e The parametrisation in5(1) is order preserving between the vectprs
andy?, i.e.

V0 <6y <0y <1:p’ = p(l) < p(0z) < p(6h) < p(0) = .

This directly follows from the definition of majorization. E.g. the first
inequality is obtained by

11(02) = 022 + (1 — Oa) " > Oopi® + (1 — Oo)pi* = pi*. ,
On Schur-Convexity of
Expectation of Weighted Sum of

e The parametrisation irb(1) is order preserving between the elements, i.e. Randt;m \I{ari?bles with
for ordered elements in' andy?, it follows that for the elements in(6), SRS
forall0 <0 <1, Holger Boche and

Eduard A. Jorswieck

VI<I<np—1:m(0) > p(0).

o o Title Page
This directly follows from the definition ing.1).
Contents
The optimum power allocation is given by(0), . . ., p,(#). The parametrised « >
objective functionH (1(6), p(#)) as a function of the parameteis then given
n Go Back
H(0) = Elog (1 +p Z Mk(g)pk(e)wk) Close
kzl Quit
(5.2) = Elog (1 +p > (i +0(f — ui))pk(e)wk) : Page 20 of 32
k=1
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The first derivative of%.2) with respect td is given by

5.3 O _p (T (12— 1P 0wy, + O (12 0k — 13))
. L+ (g + Q(Mk 113)) 0k (0)wy, .

db
Let us consider the second term ) first. Define

O(0) = (g + 00, — 7)) YE=1,...,n

Then we have

~ dpy(0) D (0)wy, - dp(0)
G4 D =g E<1+z’;_1¢k<9)pk(9)wk)—z an +(0)

k=1 k=1

In order to show thatH.4) is equal to zero, we define the indexfor which
holds

(5.5) dpk();&o Vi<k<m and dp(’;ée)zo k>m+ 1.
We split the sum ing.4) in two patrts, i.e.

5.6 0 0).

(5.6) kg 0 ak<>+k§“ i (0)

Foralll < k& < m we have from%.5) three cases:

e First case:p,,(f) > 0 and obviouslyp,(0) > 0,....,p,m-1(0) > 0. It
follows that

ar1(0) = az(0) = -+ = a(0)
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e Second case: There existsan> 0 such thap,,(¢) = 0 andp,,(6+¢) > 0
forall 0 < € < ¢,. Therefore, it holds

(5.7) a1(0+¢€) = =a,(l+e¢).
e Third case: There exists an > 0 such thap,,(¢) = 0 andp,,(0 —¢) > 0
forall 0 < € < ¢,. Therefore, it holds

(5.8) aj(0 —e) = =anu(0—e).

Next, we use the fact that jff andg are two continuous functions defined on
some closed interva, f,g : O — R. Then the set of pointsc O for which
f(t) = g(t) is either empty or closed.

Assume the case irb(7). The set of point® for which a;(0) = «4(0) is

closed. Hence, it holds

(5.9) ax(0) = lir% ar(f0+¢) = lir% a1(0 +€) = a1(0).

For the case ing.9), it holds
ap(f) = lim g (0 — €) = limay (0 — €) = ay(0).

e—0 e—0

The consequence frorh.Q) and ) is that all activet with p,, > 0 at pointd and
all £ which occur or vanish at this poifitfulfill «;(0) = as(0) = -+ = a,,(0).
Therefore, the first addend i6.6) is

m

dpr(0 " dpi(0
2 pdé>:a1(9>z pdé)zo‘

k=1 k=1
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The second addend iB.6) is obviously equal to zero. We obtain fdr.8)

@ . ) ( Zzzl(/ﬁi - /Lllc)pk:<9)wk )
dg L+ >0 (i + 0y, — ) pe(O)wi )

We are going to show that

n

(5.10) > (12— p)E Pi(0)wi )

= <0.
— (1 + 2k (B + 0, — 117))pi(0)wr

We define

_1 2
ar = My — Hg
!

S = E Q.
k=1

S, =0

So —

Therefore, it holds that, > 0 forall 1 < k < n. We can reformulate5(10)
and obtain

(511) 5 Sl<bl<9) — bl+1(9)) Z 0
with bl(@) & ( p,(@)wl )
Vo> e (i + 0y, — 1) )i (O)wre )
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The inequality in §.17) is fulfilled if
bi(0) > biia(0).
The termy, in (5) is related tay; from (4.8) by

n(0) = 29 o o).

1 (0)
As aresult, we obtain the sufficient condition for the monotony of the parametrised
function H(Q) On Schur-Convexity of
Expectation of ngghted S_um of

5.12) p0)  pral®) o e

u(0) — puga(9)

o Holger Boche and
As mentioned above this is a stronger condition than that the vpct@jorizes Eduard A. Jorswieck
the vectoru. From (.12 it follows thaty > p.
Finally, we show that the condition irb(12) is always fulfilled by the op- Title Page

timum p. In the following, we omit the indeX. The necessary and sufficient

condition for the optimap is that for activep, > 0 andp,;; > 0 it holds SIS
<44 44
o — 041 = O,
. < >
i.e.
> Hi+1 Go Back
5.13 / B —dt—/ e f(t)————dt =0
( ) 0 it )1 + ptiup 0 / )1 + Pt 1Pr1 Close
with Quit
=1l—— Page 24 of 32
1+ Ptukpk

k=1
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and
git) = (L+ ptpup) ™ (1 + ptppen) ™
From (.13 it follows that

/OOO e~ f(t)qut) (g — pur1 — (Ptpusapn) (pr — piga)) dt = 0.

This gives

[Tttt (B )=

Pi — Di+1 PHII4+1
and
— 1 o [e’e)
(5.14) ML Hi / et f () g (t)dt — / et f(t)g(t)tdt = 0.
Di = Pi+1 PRI+ Jo 0
Note the following facts about the functiori$t) andg;(t)

gt) >0 V0O<t<oo f(t)>0 VO<t<oo

dgcliit)go VO0<t< oo %(tt)go VO0<t< oo

By partial integration we obtain the following inequality

(5.15)

(5.16) / " a1 — et

= (f(t)gl(t)te_t)ooo — /OOO Mte—tdt > 0.

t=

dt
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From (.16 and the properties of(t) andg,(t) in (5.15 follows that

/0 T () at)d > / et () au(t)de.

0
Now we can lower bound the equality iB.(4) by

_ 1 o0 o0
0= H=tn | etswati - [t
P — Py P41 Jo 0
— 1
Pt — Pi+1 PHIII+1
From (.17 it follows that
= fupr 1

1>
Pi — Di+1 P14+

and further on

(5.18) i — a1 < (P — Prg1) prafisr -

From (6.18 we have

(L = ppusap) < pusa (1 — prupis)
and finally

(5.19) PII+1PL = PHIDIA1-

From (.19 follows the inequality in$.12). This result holds for all:' and 2
with Y7 pr = >0, ui = 1. As aresult/(p) is a Schur-convex function of
1. This completes the proof. m
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As mentioned in the introduction, the three problem statements have an ap-
plication in the analysis of the maximum amount of information which can
be transmitted over a wireless vector channel. Recently, the improvement of
the performance and capacity of wireless systems employing multiple transmit
and/or receive antennae was pointed oui i) p]. Three scenarios are practical
relevant: The case when the transmitter has no channel state information (CSI),  ©n Schur-Convexity of

. . . . . E tati f Weighted S f
the case in which the transmitter knows the correlation (covariance feedback), " Random Varmbles wifr

and the case where the transmitter has perfect CSI. These cases lead to three dif- Applications
ferent equations for the average mutual information. Using the results from this el B A
paper, we completely characterize the impact of correlation on the performance Eduard A. Jorswieck
of multiple antenna systems.
We say, that a channel is more correlated than another channel, if the vector Title Page
of ordered eigenvalues of the correlation matrix majorizes the other vector of
. . - . Contents
ordered eigenvalues. The average mutual information of a so called wireless
multiple-input single-output (MISO) system with- transmit antennae and one <44 >
receive antenna is given by p >
Uk Go Back
(6.1) Crocst (1, - p) = Elogy (14 p)
k=1 Close
with signal to noise ratio (SNR) and transmit antenna correlation matix QU
which has the eigenvalugs,, ..., u,, and iid standard exponential random Page 27 of 32

variablesw, ..., w,,. Inthis scenario it is assumed that the receiver has perfect
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channel state information (CSI) while the transmit antenna array has no CSI.
The transmission strategy that leads to the mutual informatiod. i i€ Gaus-

sian codebook with equal power allocation, i.e. the transmit covariance matrix
S = Exx!, with transmit vectors that is complex standard normal distributed
with covariance matris, is the normalised identity matrix, i.8. = %I.

The ergodic capacity in6(1) directly corresponds t6; in (3.1). Applying
Theorem3.1, the impact of correlation can be completely characterized. The
average mutual information is a Schur-concave function, i.e. correlation always
decreases the average mutual information. Seff an application of the re- On Schur-Convexity of

sults from Theoren3.1. If the transmitter has perfect CSl, the ergodic capacity ~ FxPeciation of elghited Sum of

is given by Applications
n Holger Boche and
Eduard A. Jorswieck
Cposi(fin; -, fin, p) = Elog, <1 + PZ Mkwk>
k=1
] o ) ] Title Page
This expression is a scaled version ©flj. Therefore, the same analysis can be
i Contents
applied.
If the transmit antenna array has partial CSl in terms of long-term statistics <« >
of the channel, i.e. the transmit correlation malRix, this can be used to adap- < >

tively change the transmission strategy according;to. ., i,,,.. The transmit
array performs adaptive power conttdl.) and it can be shown that the ergodic Go Back

capacity is given by the following optimisation problem Close

nT Quit
6.2 Cey yevos g, p) = max Elo 1+ wg | -
(6.2) csi(p [ngs P) IIPHZXl g2 p;pkﬂk k Page 28 of 32
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The expression for the ergodic capacity of the MISO system with partial CSI
in (6.2) directly corresponds t@s in (4.1). Finally, the impact of the transmit
correlation on the ergodic capacity i6.?) leads to Problerns, i.e. to the result

in Theorem5.1 In [10], Theorem4.1and5.1 have been applied. Interestingly,
the behavior of the ergodic capacity ifi.?) is the other way round: it is a
Schur-convex function with respect tg i.e. correlation increases the ergodic
capacity.
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After submission of this paper, we found that the cumulative distribution func-
tion (cdf) of the sum of weighted exponential random variableslin) (has

not the same clear behavior in terms of Schur-concavity like the functidh (

In [3], we proved that the cdf(z) = Pr[}_,_, mxwr < z] is Schur-convex

for all z < 1 and Schur-concave for all > 2. Furthermore, the behavior of
F(z) betweenl and2 is completely characterized: For< z < 2, there are

at most two global minima which are obtained for = ... = ux = % and
ki1 = ... = p, = 0 for a certaink. This result verifies the conjecture by
Telatar in [L5].
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