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1. Introduction

Let ©2 be a bounded domain &”, n > 2 and0 < K, K, < oo be two constants.
Then a mapping’ € W24, R"), (1 < ¢ < o) is said to be weakly K, K5)-

quasiregular, if/(z, f) > 0, a.e.Q2 and
(1.1) |Df(z)|" < Kyn™?J(x, f) + K, a.ex € Q

where|D f(x)| = supy,— |Df(x)h| is the operator norm of the matri® f (), the
differential of f at the pointc, andJ(x, f) is the Jacobian of. If ¢ > n, thenf is
called (K, Ks)-quasiregular. The wordieaklyin the definition means the Sobolev
integrable exponemntof f may be smaller than the dimensionin this case,/J(z, f)
need not be locally integrable.

The theory of quasiregular mappings is a central topic in modern analysis with
important connections to a variety of topics such as elliptic partial differential equa-
tions, complex dynamics, differential geometry and calculus of variations ee |
and the references therein).

Simon [7] established the Holder continuity estimate when he studie@thek’, )-
guasiconformal mappings between two surfaces of the Euclidean $pacg&his
estimate has important applications to elliptic partial differential equations with two
variables. In ], Gilbarg and Trudinger obtained arpriori C,.* estimate for quasi-
linear elliptic equations with two variables by using the Holder continuity method
established in the studying of plaf&’;, K,)-quasiregular mappings, and then es-
tablished the existence theorem of the Dirichlet boundary value problem. Because
of the importance of plangs, K,)-quasiregular mappings to the a priori estimates
in nonlinear partial differential equation theory, Zheng and Fajggneralized
(K1, Ky)-quasiregular mappings from plane to space in 1998 by using the outer dif-
ferential forms. Gaod] generalized the result o8] by obtaining the regularity
result of weakly( K1, K5)-quasiregular mappings.
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A remarkable feature fK;, K5)-quasiregular mappings is their self-improving
regularity. In 1957 1], Bojarski proved that for planatk, 0)-quasiregular map-
pings, there exists an exponere, K) > 2 such that(K;, 0)-quasiregular map-
pingsa priori in W2 belong tolW!* for everyp < p(2, K). In 1973, GehringJ]
extended the result te-dimensional K7, 0)-quasiconformal mappings (homeomor-
phic (K, 0)-quasiregular mappings) and proved the celebrated Gehring’s Lemma.
A bit later, Meyers and Elcra®] proved that Gehring’s idea can be further exploited
to treat quasiregular mappings and partial differential systems.

In this note, we give a new inequality foK;, K»)-quasiregular mappings, from
which one can derive self-improving regularity.

Theorem 1.1. There exist two numbergn, K) < n < p(n, K), such that for all
s with ¢(n, K) < s < p(n, K)), every mapping’ € W,_9(Q, R") such that .1)

holds belongs tdV,.°(Q, R™). Moreover, for each test function € C5°(Q2), we
have the Caccioppoli-type inequality

(1.2) 6D flls < Cs(n, Ky, K[| f @ Vs,

where® denotes the tensor product adtin, K7, K) is a constant depending on
n, Ky and K.

Remarkl. By (1.2) and applying the classical Poincaré inequality, one infers that
|Df]9 satisfies a weak reverse Holder’s inequality. Then Gehring’s lemma can be
applied to verify thel. 7+ integrability of| D f| with somes = 6(n, K) > 0. The ex-
ponent will eventually exceed by iterating the process, and the theorem is proved.
The detailed argument is i Theorem 17.3.1]. Therefore, we need only to prove
inequality (L.2).

In order to prove Theorem.1, we need the following lemm&] Theorem 7.8.2].

Weakly (K1, K»)-
Quasiregular Mappings

Yuxia Tong, Jiantao Gu and Ying Li

vol. 8, iss. 3, art. 91, 2007

Title Page
Contents
44 44
< >
Page 4 of 9
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Lemma 1.2. Let a distributionf = (f!, 2, ..., f*) € D'(R",R") have its differen-
tial Df in LP(R™,R™*"),1 < p < co. Then

] [ D5, pae] < 2m)

L
p

[ 1ps(@)pd.
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2. Proof of Theoreml1l.1

Proof. We may assume that is non-negative as otherwise we could consider
which has no effect on inequality. (1). We can therefore write

(2.1) (6D fP < Kin™?|¢Df|P~" det(¢Df) + Ka|¢D f|P~"

. . . Weakly (K1, K»)-
and introduce the auxiliary mapping T
(22) h = ¢f c VVl,p<11n7 Rn) ) Yuxia Tong, Jiantao Gu and Ying Li
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Hence

C,(n)Kyn"? _1
@n [ jowp <[ (paj+ipe ve) s e Ve
R™ 1—/\K1’I'Ln/2 1—% n
K.
+ 2 / |Dh — f @ V[P ™.
1— )\Kln”/Q 1— % " Weakly (K1, Ka)-
Quasiregular Mappings
We add| | f ® V¢|? to both sides of this equation, and after a little manipulation we Yuxia Tong, Jiantao Gu and Ying Li
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that is

(2.10)  |[|Dh] +|f @ Vel
< Cy(n, K[| @ Vol + Cp(n, Ky, Ko)|[| Dh| + |f @ V|

Then, in view of the simple fact thav D f| < |Dh| + |f ® V¢|, we obtain the
Caccioppoli-type estimate

10D fllp < Cp(n, Ky, Ks) || f @ V.

Of course, now we observe that this inequality holds witbplaced by for any s in
the rangey(n, K) < s < p(n, K), provided we knova priori that f € T,.*(Q, R™).
O
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