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ABSTRACT. We study subharmonic functions in the unit ball Bf', with either a Bloch—type
growth or a growth described through integral conditions involving some involutions of the ball.
Considering mappings — gu between sets of functions with a prescribed growth, we study
how the choice of these sets is related to the growth of the fungtion
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1. INTRODUCTION

This paper is devoted to functiomswhich are defined in the unit balky of RY (relative
to the Euclidean norni|), whose growth is described by the above boundednesB oof
z — (1 —|z|*)*v(z) for some parameter. The functionv may denote merely. or some
integral involvingu and involutions®, (precise definitions and notations will be detailed in
Sectior| 2). In the first (resp. second) casés said to belong to the sét (resp.)). Given a
function g defined onBy, we try to obtain links between the growth @fand information on
such mappings as

Y= A&,

U — gu.
This work is motivated by the situation known in the case of holomorphic functfoinsthe
unit disk D of C. Such a function is said to belong to the Bloch spagef

[1£1l, = 1 (O)] +sup(1 - =) f/(2)] < +o0.

It is said to belong to the spadeM/ O A, if

11 Boason, = |F(O)[% + sup /D (1= 2222 | ()AL~ [ga(2)]?) dA(2) < +o00

a€D

1—az

with dA(z) the normalized area measure elemenfbandy,(z) = 2==.
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2 R. SUPPER

Givenh a holomorphic function o, the operatot}, : f +— I,(f) defined by:

(L())(z) = / WO F(QdC VeeD

was studied for instance inl[7] where it was proved that BMOA, — B, is bounded (with
respect to the above norms) if and onlyi By_ .1 (@assumingl < p < A).

Since|f’|* is subharmonic in the unit ball @&?2, the question naturally arose whether some
similar phenomena occur for subharmonic function8mpfor N > 2.

2. NOTATIONS AND MAIN RESULTS

Let By = {x € RY : |z| < 1} with N € N, N > 2 and|-| the Euclidean norm ifR".
Givena € By, let®, : By — By denote the involution defined by:

a— Py(z) — /1 [a2Q.(x) Vx € B

Pa() = 1—(x,a) N

where N
(x,a) :ij aj, P,(x) = Moz, Q.(x) =2 — P,(x)

 af?

forallz = (21, 29,...,25) € RY anda = (ay,ay,...,ay) € RY, with P,(z) = 0if a = 0.
We refer to [4, pp. 25-26] and][1, p. 115] for the main properties of the dmafinitially
defined in the unit ball of"). For instance, we will make use of the relation:
1—1al*) (1 — |z

(1= (z,a))?

In the following,«, 3, v and\ are given real numbers, with> 0.

L= [0y (a) = ¢

Definition 2.1. Let X, denote the set of all functions: By — [—o0, +oco[ satisfying:
My, (u) := sup (1 — |2[*)*u(z) < +oo.

r€BN
Let V. 5, denote the set of all measurable functiansBy — [—oo, +o0[ satisfying:
Mya}m(u) = sup (1 — ]a\z)a/ (1-— \x!Q)ﬂ u(z) (1 — |@y(7)]?) dz < +o0.

By

a€BN

The subseSX ), (resp. Y, 3,) gathers allu € X (resp. v € Y, 3,) Which moreover are
subharmonic and non—-negative. The suli&8d ., s, gathers alk, € SY,, 5, which moreover
are radial.

Remark 1. WhenA < 0 (resp.ac + 3 < —N ora < —v), the setSX, (resp.S8Y, z~) merely
reduces to the single functian= 0 (see Propositiorfs 8.2, 6.3 gnd|6.4).

In Propositior] 3.1 and Corollafy 3.2, we will establish thé&d . 5, C SX 454y and that
there exists a consta6t > 0 such that

MX,\+a+ﬁ+N (gu) < C Mx,(9) Mya,ﬂm (u)

forallu € SY, 3, and allg € X with My, (g) > 0. We will next study whether some kind of
a “converse” holds and obtain the following:

Theorem 2.1.Given\ € R andg : By — [0, +oo[ @ subharmonic function satisfying:
3C" >0 MXAJWJ”@JFN(QU) < ' Myaﬁﬁ(u) Yu € Syawgﬁ,
theng € XH% in each of the six cases gathered in the following T@ 2.1.
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| case| o | 3 | 5 |
() a:%_kﬁ 5>—% v > max(a, —1 — [3)
| e=ger] gm0 AT
(it a=t -y Bz—y N oy < 8L
(iv) a=1 £>0 N>
W a=1+5-7 B>-1| H<y<p+iP
v a="52 B>-} v > 12

Table 2.1: Six situations where Theo 2.1 showsgtmlongs to the set’,

N—1.
+ 5

Theorem 2.2.Given)\ € R andg a subharmonic function defined @y, satisfying:
3C" >0 My, .. sn(gu) < C” My, , (u) Vu € RSV a8,

H N+1 N-—1
Ny provided thaiv > 0, 3 > — 5=, v > =,

theng < SX 5

Aa+

3. SOME PRELIMINARIES
Notation 3.1. Givena € By andR €]0, 1], let B(a, R,) = {x € By : | —a| < R,} with
1—|al?
1+ Rla|’
Proposition 3.1. There exists & > 0 depending only oWV, £, ~, such that:
My, sy (u) <C My, , (u) Yu € SVa s
Proof. Let someR €]0, 1] be fixed in the following. Since > 0, we obtain for any: € By:

My, ()2 (1= o) [ (1= o) o) (L~ [@u(o)) do

By

R,=R

> (1-[a?)” / o () ) (1 = )Py

It follows from Lemma 1 of[[6] that
B(a,R,) C E(a,R) ={z € By : |®,(z)| < R},
hence:
@D My, @z (-RY AP [ (P ) d
7’ B(a,Rq)
asy > 0. From Lemmas 1 and 5 af][5], it is known that
1-R _1—|zf
<
1+ R~ 1—|a|?

<2 Vx € Bla, R,).
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LetCs = (%)5 if 3>0andCs; =2°if 8 < 0. Hence
My, , () > c¢<1——f%ﬂw<1-—|aP>a+ﬂt/;(}%)u<x>dx.

The volume ofB(a, R,) is aN (R;[ with oy = QTEV//Q) the area of the unit spher®y in RV

(seell2, p. 29]) andk, > 1+R (1 — |al?). The subharmonicity of now provides:
My, . (1) = Coll = B (1= Jaf2) u(a) o, Fe
> Cy 7 % (1 = [af?)* N u(a).
U
Corollary 3.2. Letg € X, with Mx, (g) > 0. Then:
My soioin (gu) < C Ma, (9) My, ;. (u)  Vu € SVap,y
where the constartt’ stems from Propositign 3.1.
Proof. Sinceu > 0, we have for any € By:
(1 = Ja) et N g(z) u(a) < Ma,(9) (1 = [2)* ()
< M, (g) Mx, 5 ()
because of/x, (g) > 0. O

Lemma 3.3. Givena € By and R €0, 1], the following holds for any € B(a, R,):

1 1 1—(z,a) 14 2R]|a 1 1—(z,a) I+ R
=< < L < <2 and - < - <2 :
2 “1+Rla = 1—]a ~ 1+R|q| 15 T[22 1-R

Proof. Clearly (x,a) = (a + y,a) = |a* + (y,a) with |y| < R,. From the Cauchy-Schwarz
inequality, it follows that-R, |a| < (y,a) < R, |a|. Hence:

1— |af?

+ Rla| —

1—|af?

1—|a*-R —_—
af” = Rlaly L+ Rldl

<1—{(x,a) <1—|a]*+ R|a|
The term on the left equals

2 R|a| _
o) (1= ) = (= )

andl + R|a| < 2. The term on the right equals

R la|
1—la®) 1+ —2—
( |a|)< 1+R|a|)’

with £~ 1. Now

1+Rla|
1—(z,a) 1—(z,a)1—|af?
I—1|z)2  1—|a]2 1—|z[?

and the last inequalities follow from Lemmas 1 and 5.6f [5]. O
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Lemma3.4.LetH = {(s,t) € R*: ¢t >0,s*+t* <1}andP > —-1,Q > —1,T > —1.
Then
0 if P isodd;

P10 (1 — s =) dsdt = Pt ol 041
//H P52 0(%57 )R+ if P iseven.

Proof. With polar coordinates = r cos 6, t = r sin 6, this integral turns intd; I, with

1 ™
I = / PR (1 — )T rdr and [, = / (cos)F (sin 6)< db.
0 0

Keeping in mind the various expressions for the Beta function [(sSee [3, pp. 67-68]):

Blx,y) = / el (1 - e de

L) T(y)

w/2
=2 cos0)** 1 (sin®)® 1 dp =
| costy= sine) o

(with z > 0 andy > 0), the change of variable = r? leads to:

1
Ilz—/ W (1—w)’ dw
2 Jo

1 _(P+Q I(H9 +1) I(T+1)
=-B L,T+1) = .
2 ( ;T ) 2T (B2 + T +2)

WhenP is odd,; = 0 becauseos(m — 6) = — cos(6). However, wherP is even:

w/2
5:2/‘(wwf@m@Qw
0

:B(P+1 Q+1) I (& +)( )‘

2 72 I (52 +1)

O

Lemma 3. 5 GivenA > 0 anda € By, letu and f, denote the functions defined @hy by
u() = gpmyr and fo() = q—izx Vo € By. They are both subharmonic fy.

Remark 2. w is radial, but notf,.

Proof. For u, the result of Lemmp 3|5 has already been proved in Proposition 1 of [5]. For any
j€{1,2,...,N}, we now compute:

Ofa —A-1 & fa 2 —A-2
(@) = A~ ) and ) = ) A (A (1 (),
so that:
lal2 A(A+1)

(1—<x,a>)A+2 20 VZL’GBN.

(Afa)(@) =

Remark 3. Given A > 0, A’ > 0, the functionf,, defined onBy by

1
fo(z) = (1= (z,a) (1= [2) ¥

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 118, 20 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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is subharmonic too. The computation

@R 2 fle) (2 - ZEEL) 0

is left to the reader.

Proposition 3.6. Given N € N, N > 3, (s,t,b;,b2) € R* such that|sb;| + [tbs] < 1 and
P >0, let

w (sin 9)N =3 df
Ip(s,t,b1,b9) = ’
P(87 s V1, 2) /0 (1 — Sbl — tbQ COS 0)P

Then
N 2k
5 I'(j+2k+ P) - (thy
Ip(s,t,br,bo) = 2 ZZ NI (brs) | ==
iR I (552 + k) 2
Proof. As
t by cosf t by
1
‘1—8()1 _’1—81)1 <5h

the following development is valid:

N sin )N =3 df
[P<37t7 b17b2) :/ ( ) P
0 (1 —sby)P (1 o)

1—sb;
['(n+ P) t by nom N—3 "
1—sb1 PZ W T(P <1—sbl) /0(sm0) (cos0)" db.

The last integral vanishes whens odd. Whem is even ¢ = 2k), then

/2 _
2/0 (sin 0)Y 3 (cos 0)** d = B (%,k—i— %)
_TEE) Dk )
P53 +4)
IS ety
D (2 + k) 22k g

by [3, p. 40]. Hence:

(st by = LIV TORER)_ (th)
3 Uy 01, 02 T(P) keNF(¥+k) 22k [l (1 — sby)2k+P"

The result follows from the expansion

I'(2k+ P) _Zr(j+2k+P)
(1 — sby)2k+P - 41

(bl S)j.

jeN
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4. PROOF OF THEOREM [2.]
The cases), (ii), (iii), (iv), (v) and(vi) of Theorenj 2.1 will be proved separately at the end

of this section.
Theorem 4.1.GivenA > 0, P > 0,7 > —1andN € N(N > 2)suchthatl < A+ P <

N+ 1+ 2T, let
(1—1]z[*)"
1 b) = d B be B
werd) = || T e e e Dy
andr a number satisfying both52 < r < Pand0 < 7 < 4££. Then
K
[A,P,T(a,b) < ez VGEBN,VZDGBN

(1 —la?)"277(1 = [b]*)7

where the constank” is independent af andb.

Example 4.1.1f P > A andr = £, then

K
IA,P,T(C%b)SW VCLGBN,\V/bGBN,

with

o xa IN(T+1) (P-A
_ 9A+P-1 =5
K=2 T T(P) F( 5 )
Example 4.2.1f P < A andr = 0, then
K

[A,P,T(aa b) < (1|—A+p Ya € By,Vb € By,
— |al?)

with

o, na (T +1) A—P
K =247 T .
T ( 2 )

Proof. Up to a unitary transform, we assume= (|al,0,0,...,0) andb = (b1, b2,0,...,0).

Proof of Theoren 4|1 in the casg > 3. Polar coordinates iiR" provide the formulas:
x1 = r cosbty with r = |z|, xo = r sin#; cos b, (the formulas forzs, ...,z are available in
p. 15]) where)y, 0s,. .., On_» €]0, [ andfy_; €]0, 2x[. The volume elementz becomes
rN=1dr do™N) wheredo®™) denotes the area element §g, with

do™) = (sin 6,)N"2(sin )V ~2db; dby do N2
(seell9, p. 15] for full details). Her@, €]0, 7| since N > 3. In the following, we will write

s =r cosf; andt = r sin 0y, thus(x, b) = sb1 + t by cos B, and

VO rN=1(sin0))N =2 Ip(s,t,b1,b
(4.1) IApTab—aNg// é_‘;’)) p(s,by Q)drdél

with Ip(s,t, b1, by) defined in the previous proposition. From [2, p. 29] we notice that

N —2 _
on_sT (T) VT = o’

The expansion

1 — M (|a|3)€

(1—lals)4 = ['(A)
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leads to:

N1 ' )

2773 L(j+2k+P)C(+A) (b 2

Lnpr(at) = posm Y LR S 00 (2 Jal e
P oo FIHAT(S +F) 2

where

Jk]g—/ /s”et% r2) T N1 (sin 0,)V 2 dr d6,

:// Sj+f t2k+N72(1 - 82 . t2>TdS dt
H
with H as in Lemma 3]4. Now, ;, = 0 unless;j + ¢ = 2h (h € N). Thus:

Iy PT( b)

Z Z [(j+2k+P)T(2h—j+ A)T (h+3) (T +1) (by)? (b_z)% |af*"

) KUjl(2h — 0D (k+h+ 5 +T+1) 2

Taking [3, p. 40] into account:

(lch )EN2 j=0

N
T2

T(T +1) 3 i(Zh)!B(j+2k+P,2h—j+A)

4.2) 1 o
(4.2) Iapr(ab)= T(P)T(A) 22h+2k 1 1 51 (20 — j)!

(k,h)ENZ j=0
I'ek+ P +2h+A) . ,
% ( + j\/_ + ) bjl bgk ’a|2h7]'
T(k+h+5+T+1)
Let
P+A-1
I — 2 F(T + 1) N;l

L(P)r(A4)
The duplication formula

VrT(22) = 2271 T(2)T (z + %)
(seell3, p. 45]) is applied withz = 2k + P + 2h + A. Now
F(k+h+¥) <T <k+h+g+T+1>

sincel increases ofl, +oo[ and

A+P+1 N
1§k+h+%§k+h+§+T+L
This leads to:
]APT(a7b>
2R B(j+2k+ P.2h —j+ A)T (k+h+25E) o o0 o
<L ) Z R K1 (2h — §)! 16y lal™
(k,h)EN2 j=0

(k+h+4t2) &0 () . .
=L 2/ 2k —— 7 W la* 7 B(j +2k+ P,2h — j + A).
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The last sum turns into:

2h ; .
(2h)(! b |a|2;L I /1 git2hP—1 (1- 5)2h—j+A—1 de
2 ian-r

Jj=0

1 2h 2h)! bl J 1 — a 2h—j Pt L
:/o (Z( - ﬁ><z[f(l—j§!”” )f“ (1=

j=0

1
- / by + lal (1— € €+P1 (1 — A de.
0

Hence the majorant dfy p1(a, b) becomes:

h—+k A+P
Z 625 < ( + h'—i_ 2 )[bl g + |CL| (1 o 5)]2]1) é—P—l (1 _ S)A_l d§
heN ’

0 keN

_L/
0 keN

according to the expansion

A+P
k442

1 -9 de

k_I_A-i-P (by €)% 1
(e on)

IN(@) Lh+0C) .,
Toxe 2w ¥

heN

with | X| < 1 whenC > 0 (see[8, p. 53]). Her& = [b; £ + |a| (1 — £)]? belongs td — 1, 1]
sinceb; and|a| do and¢ € [0, 1]. The same expansion now applies with

B A+ P B (by €)*
e NS (RS
since|X| < 1, as
0(8) == (b2 &)* + (b1 €+ al (1 =€)
= [b* & + Jal* (1 = £)* + 26(1 — €) by |a
<[P E% + Jal® (1 = €)% +26(1 = &)[b] |al
= [£1b] + la (1 = &) < 1.
Hence
]A’p’T(CL, b)
<if 1 r(4%) €1 - e
- 5 £)2 # _ _ 2 #
' (- e ) T (bl 1= 9P
T (A+ P) /1 (-9t de
2 o (1= [bae+lal(1-€)2 - ()7
Now

1—6(6) >1—[€[b]+|a| (1=¢)]?
>1—[E[b] + (1 =€)
=&(1—[o))[2 — &1 —[b])]
> £(1—|b]*)
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since
2= —=[pP] =1+ b)) =1 =@ —1p)) =0
Similarly,
1—=4(6) > (1= &1 —al).
Thus

1 1
<

AtP

= A+P
[1=6©)" 7 (1= — a5 (1 — b))
sincer > 0 and4£2 — 7 > 0. Finally:
L-T(445) Arp
L pir(a.b) < e / €FT (1 - gy g
(1—al)™ — [b[)7
This integral converges sinde— 7 > 0 and
A+P A-P
A+T1— T +7>0.
2 2
Now the result follows with
A+ P A-P A-—P
KzL-F( JQF )B(P—T, 5 +T):LF(P—T)F( 5 +T).
Proof of Theorer 4]1 in the cagé = 3. Here
VI r? (sinfy) Jp(s,t,by,b
Lipr(a,b) = / / 18”1’ 1|) )P(S 1) 4 g,
—|a

where
dBs

J (S7t7 bla b2) - /0 (1 — Sbl _ tbg COSHQ)P - QIP(Sata b17 b2)
with Ip(s,t,by,be) @sin PropositioG, withv' = 3. Hencel, pr(a, b) has the same expres-
sion as in Formulg (4}1), withV = 3, sinces; = 2. Thus the proof ends in the same manner as
that above in the cas¥ > 3.

Proof of Theorerh 4]1 in the cagé = 2. Now z; = s = r cosf andazy, =t = r sin 6:

I4pr(a,b)

/2”/ (1—7)Trdrdo
]_—|CL| A 1—Sb1—tb2)
r P
= Sy (o Ry ek (o e
B2 yeN

IT(A) n!T'(P) (1 — sby)n*P

Cin \n T ; |
- Z (£+A) o] (bQ) F(J +@+ P) (b1) / st (1 — s — )T dsdt.
(£,n,5)EN3 ¢! F(A) n! F(P) ,]' 5

The last integral vanishes whens odd or¢ + j odd. Otherwiser{ = 2k and? + j = 2h), it
equals

D(h 4 )T (k4 2) DT+ 1)
T(k+h+T+2)

2/ s (1 — s — )T dsdt =
H
by Lemmg 3.% and turns into
n! (2h)! 7 I'(T 4 1)
22 Pl T (kK +h+T +2)
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according to([3, p. 40]. Thus, pr(a,b) is again recognized as Form4.2) now with= 2
and the proof ends as for the case> 3. O

We now present an example of a family of functidrfs}, which is uniformly bounded above
in yaﬁﬁ:
Corollary 4.2. Giveng > —~£L (N > 2) leta = & + 3 andy > max(a, —1 — 3). For any
a € By let f, denote the function defined byj;(z) = W, Vz € By. Thenf, € V. 5.,
Va € By. Moreover, there exist&” > 0 such thatMy, , (f.) < K, Va € By.

Remark 4. This constanfs is the same as that in the previous theorem, Witk 2«, P = 2~
andT = 3+ 7.

Proof. With the above choices for parametetsP, T', we actually haveP > A > 0,T > —1
and
A+P=20+2y=N+1+20+2y=N+1+2T > 1.

The condition®) < 7 < «a + ~ together withy — a < 7 < 2yreducetory —a <7 < a + 7.
Let

(4.3) Jo(fa) = (1= |b|2)"‘/B (1= [2*)” fa(x) (1 = |@p(2)[*)" da.

Now
1 —|z?)P™
— (1= 2\a+y (
Jo(fa) = ( |6]9) /BN (1 — (z,a))N+1+28 (1 — (z,b))>
<K Va € By,Vb € By

dx

according to Theorefn 4.1 applied with= o + v = 452, O

4.1. Proof of Theorem|2.1 in the casé€i). Given R €]0, 1, the subharmonicity of provides
for anya € By the majoration:
1
o)< [ gl
a J B(a,Rq)

with V, the volume ofB(a, R,). From Lemma 3]3, itis clear that:

2 \A
1g(21+R ! \x|>) Vz € Bla, Ry)

1-R1—{(x,a
with A = 2a > 0. Now g(z) > 0, Vz € By. With f, as in Corollary 4.p, this leads to:
Vo < (28 [y o) oo e
- B(a,Ra)
Now
A:a+ﬁ+¥:a+ﬁ+l\f—¥,
thus

1 A 1— 2\ \+a+B+N :
ot < (2LERY' [ R gt
1=R/) Jp,Rra.) (1 =]z

<O,K(21+R)A/ dx
- L=R) Jp@r, (1— |z T
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12 R. SUIPPER

from Corollary{4.2. Lemmas 1 and 5 of [5] provide

1 _ |I’2 >‘+%
( ) 2 C)\—F% vx € B(CL,R@),

with CH% defined in the same pattern@s in the proof of Propositio@l. Finally:

'K 1 A g
Vi gla) < — (2 *R) ( v

C/\Jr% 1-R 1_|a|2)>‘+¥’
thus
C'K 14+ R\™
M < 2 VR €10, 1].
XA+%i(g) = C)\+% ( 1 —R) E] ) [

The majorant is an increasing function with respecRtd_etting R tend toward)™, we get:

C'K
MX N-1 (g) <

A e 229
+ 5 N—1
AL

4.2. Proof of Theorem([2.] in the casdii). Here we work withf, defined by:

1
fa(.f):m where A:CM“‘ﬁ‘{‘N

Theoren{ 41 applies once again, with= N +1+28 > M1 >0, P =2 >0and
T =06+~ > —1(becausey > —1 — ). ConditionA + P = N + 1 + 2T is fulfilled too.
Moreoverr := a+v = 3+~ + 1 satisfies botld < 7 < 3+~ + 2 (obviously0 < 3+~ +1

andl < ¥Hyandy — g — ¥ < 7 <2y

N +1 N +3
T—7+B+T+:2B+ i >0 and 2y—7=7—-1—-03>0.

With such a choice for we have

A+ P N+1 N -1

—’T:——l:—’
2 2 2
thus
K

(44) IA,P,T(aab) < Va € By,Vb € By.

(1—lal2)™3 (1 — [pf2)ot
Hence,J,(f,) defined in Formuld (4]3) now satisfies

(4.5) Wf) < ﬁ Va € By, Vb € By.
In other words,

(4.6) My, (f) < ﬁ Va € By.
This implies:

(.7) My, (9 ) < ﬁ Va € By,
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With R andV, as in the previous proof, we obtain here:

nm@g(xbﬁgf/ (1= o) (o) (o)
B(a,Ra)

1-R (1 —fz[?)*

__ UK (21+R)A/ dx
- (1- |a|2)% 1-R Bla,Rs) (1 — [2[?)*

and the last integral is majorized W with C, defined similarly taC; in the proof of
Propositiorj 3./L. Finally:

C'K
M N—1 (g> < —— NI,

A S OA
4.3. Proof of Theorem[2.] in the casdiii) . Heref, is defined by:
1
o) = T apaa = e
whereA = N 4+ 1 —2v > 0. Theoreni 4]1 is applied with = 2y > 0 and7 = 0 > —1. Thus
A+P=N+1=N+1+2T.
We have to choose satisfying both

Vo € BN:

N+1 N +1
0<r< + and 2y — * < T < 2.
Now
N+1 A+ P .
T = = =«
2 2 7

fulfills the last condition since:

N +1 N +1 N+1
27—7:2(7—T+) >0 and T—2’7+T+:2<T+—’7> > 0.

Formula ) implies/,(f,) < K foralla € By and allb € By. ThusMy, , (f.) < K,
Va € By. As before,

Vg(a)<(2—1+R)A/ A=) o)
"\ 1-R/) Jpanr, (1= (z,a))* (1 — [z[?)
Now
A+B+y=N+1—-~v+p
N+1
:N+1+&—T+ﬁ
N -1
:Ol‘f'ﬁ‘i‘N—T,
whence

LERNA [ (L= ) () o)
V. < — N—_1 d
o0 < (2177) fron, DR

A
< C'K (2 ﬂ) / L
1-R B(a,Ra) (1 — |z|)M 2

and the proof ends as in the c4ge Here

C'K
M < 2N+1—2’y'
XH’% (g) - O)\Jerl

2
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14 R. SUIPPER

4.4. Proof of Theorem[2.] in the cas€iv). Heref, is defined by:
1
o) = T apaa =y

whereA=N + 1, T=~andP=2ythusA+ P=N + 1+ 2T, allowing us to use Theorem 4.1,
with 7 = o+ = 1+ vy (since0 < 7 < & + yandy — & < 7 < 29). Hence

Inequalities[(4.]4)[ (4]5)[ (4.6) and (#.7) follow. Now i

A
(4.8) mgm)g(Qiiﬁ) / (1= 2[4 £.(2) g(x) da.
B(a,Rq)

Vr € By,

1-R

SinceA + 3 = a+ 3+ N, this turns into:

1+ R\ My (g fa)
V, g(a) < <2 _> / Ata+B+N do
WS\PT"R) Jyony (- 2P

and the proof ends as in the cd8k, here with:

C'K
M N—1 (g) < —— 2N+

AT C

4.5. Proof of Theorem[2.] in the casdv). Here f, is defined by:

1
Jolo) = T an A — ey

Vr € BN,

where
N+3 N-1
2 2

With P = 2y > 0 andT" = $3, the conditionAd + P = N + 1 + 2T of Theorenj 411 is fulfilled.
Moreoverr := a + v = 1 + [ satisfies

N +1 N +1

A=N+1+2B-7)>N+1- > 0.

0<7< + 4 and 27——2 -0 < T <2y
since:
N+1 N+3
2y —r=2y—(146)>0 and -2+ gm0 M 5500

Again

A+ P N+1 N-—-1

= - _1=__-

2 2 2

and inequalities] (4]4) td (4.7) follow. Formula (4.8) still holds with— ||?)4+” instead of

(1 — |z|)A*+5. Here
A+~v=N+1420—y=N+a+p

and the conclusion follows as in the previous case. Finally:

My . (g) < C/_K QN+1+2(8—)

Ao C\y
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4.6. Proof of Theorem[2.] in the casévi). Heref, is defined by:

1
o = G ey

WithA=N+8> 21 >0,P=2y>0,T =21 ++> —1(actuallyT+1 = £+ > 0).
The use of Theorem 4.1 is allowed since

A+P=N+14+8—-14+2y=N+1+2T.

Now 7 := a 5 = “7% + v satisfies) < 7 < 532 + v (because of > —“). Moreover
Y= NTJFB < T <27IS fulfllled too since

VIGBN

ﬁ; <v and f+14+(N+08)=14+N+23>0.
In addition,
A+ P _N+p p+1 N-1
2 TT T 2 2

Again it induces Formuld (4.6). Witfl — |z|*)4+7 replaced by(1 — |z|?)4*<, inequality [(4.8)
remains valid. Sincel + o« = N + « + [, the conclusion is once again obtained in a similar
way as in the casdsv) and(v), here with

C'K
My N—1 (g) = 2N+ﬁ

Ao CA

5. THE SITUATION WITH RADIAL SUBHARMONIC FUNCTIONS
5.1. The example ofu : 2 +— (1 — |z|>)=* with A > 0.
Proposition 5.1. GivenP > 1,7 > —1andN € N (N > 2) such thatP < N + 1 + 2T, let

IP,T<b) = / él_ﬂ dx Vb € BN-

Then
/
Ipr(b) < A= ppyee Vb € By,
(equality holds whe® = N + 1 + 2T") with
LT+1) ~
K =—>—"In2.
L (%)

Proof. Letting A — 0% in Theoren] 41, the majorization df,+(b) is an immediate result,
sinceK (as a function ofd) tends towardss’: see Examplg 4]1. Nonetheless, we still have to
show that equality holds in the cage= N + 1 + 2T

Proof in the caseéV > 3. Up to a unitary transform, we may assume- (|4/,0,0,...,0), SO
that (z,b) = |b| x1 = |b| r cos 6, with 6, €]0, 7| (we will haved, €]0,2x[in the caseV = 2).
Now

drx = V=1 (sin 6,)N "2 dr dby do ™Y,

with the same notations as in the proof of Theo@h 4.1. Here:

)T V=1 (sin 0, )V -2
1 = )
pr(b) =on_ 1/ / 1—\b|rcos€1) dr db,
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Then
P)
(5.1) Ip7r(b) = on 1 Z L(n + ]b\" // N2 (1 - 2 — 1) dsdt
eN
with s = r cos6; andt = r sin6,. This mtegral vanishes for odd. If n = 2k, its value is
given by Lemma 3J4. Thus
ono1 D (4 T(T +1) 3 b]* T (k + 3) [(2k + P)
QF(P) CkNT (k+ 5 +T+1)
Now [2, p. 29] andl[3, p. 40] lead to:
N(T+1) ~x Z |b|?* /7 T(2k + P)
— ‘72 .
I'(P) < 2RI (k+ 5 +T+1)
Through the duplication formulal([3, p. 45]), it follows that:
r T+1 e b2k 2%H+P-1D (kb + D) T (K + &L
oty = D) ot g B2 Tkt ) T (k13
2REIT (k+ 5 +T+1)

]pj(b) =

keN

IP,T(b> =

keN
I'k+ %5
_ K/Z ksr (22)) |b|2k
keN 2
with ( )
(T +1 N—1 P

K =—— g% obir ().
r(p) " (2)

Another application of the duplication formula provides the final expressidty of
Proof in the caseV = 2. Now

o ol NT
(1—r)"r

Ip7(b) = dr do

pr(b) /0 /0 (1 —|b|r cosO)P

Ipr(b) =) Fﬁr—?i) 1b]" (/01 P (1= )T dr) (/OZW(COS 9)”d9> .

neN

Then

The last integral equal%foﬁ(cos 0)"df for anyn. As o; = 2, here we recognize the same
expression as in formula (5.1), replacingby 2. Hence the same conclusion. O

Corollary 5.2. Givena > 0, 8 > —2H andy > -1, let A = 2 + g andu defined orBy
by:
(1) =
ST =P
Thenu € RSVa s, and My, , (u) < K’ where K" stems from Proposition §.1 (witR =
2y>landT =f+y—A=~- 2 > 1)

Proof. The subharmonicity of: follows from Lemmd 35 sincel > 0. Let J,(u) be defined
similarly as in formula[(4.3). Then

— |x]2)ftr—A
ww) = =y [ G

Vx € By.

AS
N+142'=N+14+2y—(N+1)=P,
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Propositiorj 5.1 provides:
K/
2\«
Jp(u) < (1 — [p]?)* A= pee PERE <K'
sincea > 0. The conclusion proceeds from

My, , (u) = sup Jy(u).

beByN

0

5.2. Proof of Theorem|[2.2. Let A andu be defined as in Corollafy §.2. With andV/, as in
the proof of Theorerp 2]1:

Vo g(a) < / o (L e ) o) d

B / (1 = Ja) PN u(x) g(x) do
B(a.Ra) (1= |of2) ot

since: N1 N1
+
A=——+B=F+N-——.
This leads to:
d
Vaogla) <C” K// v —
Ba,Ra) (1= [z2) o7
C"K'V, 1
< N
Crtardst (1= |a[?)*ret2
with C, G-t defined in the same way &%; in the proof of Proposmop__ﬁ}l We obtain finally:

C// K/
: Mat 251

6. ANNEX: THE SETS SX, AND S8), 5., FOR SOME SPECIAL VALUES OF A, a, 3, 7y

Throughout the paper, it was assumed that 0. Wheny < 0, the setS),, 5, is related to
other sets of the same kind by:

Proposition 6.1. Givena € R, § € R andy < 0, then
y+’yﬁ+’yﬂcy;ﬁ'ycy;+5'yﬁ75ﬂ/0 vse[_:[vlL

where), , _ denotes the subset 31, s , consisting of all non-negative € Y, s, (not neces-
sarily subharmonic).

Proof. For anya € By andz € By, the following holds:
(6.1) (1 —]a)*(1 = [z*)?(1 = [@q(2)*)T = (1 = [a|)**7 (1 = |2[*)*F(1 = (a,z)) 7.

Since(a, ) €] — 1, 1] through the Cauchy-Schwarz inequality, we héve- (a, z))™27 < 2727
as—2v > 0. If u € Yoty g1+4,0 andu(z) > 0, Vo € By, thenu € Y, 5., with

Myayﬁy’y <u) S 272’\/ Mya+'y,ﬁ+'y70 (u)'
Also, (a,z) < |a| and(a, z) < |z|, thus
(1—{a,z))*™" > (1 —|a))™7 and (1 - (a,z)) D7 > (1 — |z)) 57
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since(s — 1)y > 0 and(—s — 1)y > 0. Moreover

1—la]?> _ 1—|a]? L P
L =lal = = and 1—|z| >
thus
1\
(L @) 2 (1= )= ) (5]
Finally

(1= lal)* (1 = [2[*)? (1 = [@a()[*)T = 27(1 — |a*)*F*7(1 — [a]*)7=.
Any non-negative. € Y, s, then belongs tQ/, . s, g—s,0 With

Mya+s'y,ﬁ—s’y,0 (u) S 2_27 Mya,ﬁ,’y (u)

Remark 5. Even withy < 0, Propositiony 31 still holds, since
1—Aa,2)\ " [1—{a,z)\ "
-y = () ()

1 |22 1— |af?

1 - 1 - 5
> | = - =27 B
> (2) (4) Vz € B(a, R,)

according to Lemmp 3.3. For the proof of Proposifiorj 3.1 in the gase0, it is enough to
replace(1 — R?)” in formula (3.1) by23".

Proposition 6.2. If A < 0, then the sefX’), contains only the function = 0 on By .

Proof. Givenu € SX, and{ € By, letr €]|¢], 1[. Then

u(§) < Tn‘gxu(a:) = Tn‘ixu(:z:)

according to the maximum principle (séé [2, pp. 48-49]). Thus
0 < u(8) < M, (u) (1—r*)~"
which tends toward8 asr — 1~ (since—X > 0). Finally u(§) = 0. O

Remark 6. Whena < 0, itis not compulsory thas),, 5, = {0}. For instance, withy, 3, v as

in case(ii) of Theore, we hawe = 5+ 1 > % It is thus possible to choosgin such a

way thata < 0. In Subsectiof 4|2 we have an example of functipre SY,, 5, (with a fixed

in By) and this function is not vanishing. Similarly < 0 does not implySY, s, = {0}. In

Table[ 2.1 we have several examples of such situations: see Subsctjoris 4.1 to 4.6 for examples
of non-vanishing subharmonic functions belonging to such&#tsg .

Proposition 6.3. Lety € R and(«, 8) € R? such thate + 3 < —N, thenSY,, 5., = {0}.

Proof. Given R €]0,1], let Kz, = (1 — R*)7if v > 0, or Kp, = 2% if v < 0. Then:
(1 —|®,(2)|*)” > Kg., Va € By, Yz € B(a, R,) according to Remark|5 (also remember
that|®,| < R onB(a, R,), seell6]). WithC; as in the proof of Propositign 3.1, the following
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inequalities hold for any, € SY, 3, and anya € By. The second inequality is based upon
u > 0 and the last one makes use of the suharmonicity. of

(1 —lal*)™" My, (u) Z/ (1= [2[*)? u(z) (1 — [®g(2)[*)

By

> K, [ ) )

> Ky Ca (1= [aP)* | L)

> Kpy Cp (1= al*)? Vo u(a)
where the volumé/, of B(a, R,) satisfies:

Vv, > N (i)N (1— ‘a|2)N
~“ N \1+R
(see the end of the proof of Propositjon|3.1). Thus
u(a) < k(1 —|af?)" PN Va € By,

the constant > 0 being independent af.
Given¢ € By, the maximum principle now provides for any]|¢|, 1]:

0 < u(é) < maxu(r) = maxu(z) < k(1 —r?) @ FN

|z|<r |z|=r
which tends toward8 asr — 1, since—a — 3 — N > 0. Henceu(¢) = 0. O
Proposition 6.4. Giveny > 0, o < —y andj € R, thenSY, g, = {0}.
Proof. Sincel — (x,a) €]0,2[, we have(l — (a,z))™2" > 2727, Vx € By, Va € By. Given
u € 8YVapq & € By andr €]0,1 — |¢][, the formula[(6.]1) leads to:
My, 02 U= 1aP) 2 [ (-l u)ds Vo€ By
' B(&r)
sinceu > 0 on By D B(&,7). Now |z| < [€] 47, Vo € B(£,r). Let Le = [1 — (€] + r)?]P™
if 34+~ >0,0rLe =1if 34~ <0. Then
(1 —|af*)~ 2% My, , (u) > Lg/ u(x)dr > Le IN N u(§) Va € By
B(Er) N
sinceu is subharmonic and the volume Bf¢, r) is F* rV. Finally, with ¢ fixed, we have:
0 <u(é) < ke (1—la*)™ Va € By,
the constank, > 0 being independent af. Henceu(¢) = 0, letting |a| — 1™ O
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