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ABSTRACT. We study subharmonic functions in the unit ball ofRN , with either a Bloch–type
growth or a growth described through integral conditions involving some involutions of the ball.
Considering mappingsu 7→ gu between sets of functions with a prescribed growth, we study
how the choice of these sets is related to the growth of the functiong.
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1. I NTRODUCTION

This paper is devoted to functionsu which are defined in the unit ballBN of RN (relative
to the Euclidean norm|·|), whose growth is described by the above boundedness onBN of
x 7→ (1 − |x|2)α v(x) for some parameterα. The functionv may denote merelyu or some
integral involvingu and involutionsΦx (precise definitions and notations will be detailed in
Section 2). In the first (resp. second) case,u is said to belong to the setX (resp.Y). Given a
functiong defined onBN , we try to obtain links between the growth ofg and information on
such mappings as

Y → X ,

u 7→ gu.

This work is motivated by the situation known in the case of holomorphic functionsf in the
unit diskD of C. Such a function is said to belong to the Bloch spaceBλ if

||f ||Bλ
:= |f(0)|+ sup

z∈D
(1− |z|2)λ |f ′(z)| < +∞.

It is said to belong to the spaceBMOAµ if

||f ||2BMOAµ
:= |f(0)|2 + sup

a∈D

∫
D

(1− |z|2)2µ−2 |f ′(z)|2(1− |ϕa(z)|2) dA(z) < +∞

with dA(z) the normalized area measure element onD andϕa(z) = a−z
1−az

.
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2 R. SUPPER

Givenh a holomorphic function onD, the operatorIh : f 7→ Ih(f) defined by:

(Ih(f))(z) =

∫ z

0

h(ζ) f ′(ζ) dζ ∀z ∈ D

was studied for instance in [7] where it was proved thatIh : BMOAµ → Bλ is bounded (with
respect to the above norms) if and only ifh ∈ Bλ−µ+1 (assuming1 < µ < λ).

Since|f ′|2 is subharmonic in the unit ball ofR2, the question naturally arose whether some
similar phenomena occur for subharmonic functions inBN for N ≥ 2.

2. NOTATIONS AND M AIN RESULTS

Let BN = {x ∈ RN : |x| < 1} with N ∈ N, N ≥ 2 and |·| the Euclidean norm inRN .
Givena ∈ BN , let Φa : BN → BN denote the involution defined by:

Φa(x) =
a− Pa(x)−

√
1− |a|2Qa(x)

1− 〈x, a〉
∀x ∈ BN ,

where

〈x, a〉 =
N∑

j=1

xj aj , Pa(x) =
〈x, a〉
|a|2

a , Qa(x) = x− Pa(x)

for all x = (x1, x2, . . . , xN) ∈ RN anda = (a1, a2, . . . , aN) ∈ RN , with Pa(x) = 0 if a = 0.
We refer to [4, pp. 25–26] and [1, p. 115] for the main properties of the mapΦa (initially
defined in the unit ball ofCN ). For instance, we will make use of the relation:

1− |Φa(x)|2 =
(1− |a|2) (1− |x|2)

(1− 〈x, a〉)2
.

In the following,α, β, γ andλ are given real numbers, withγ ≥ 0.

Definition 2.1. LetXλ denote the set of all functionsu : BN → [−∞, +∞[ satisfying:

MXλ
(u) := sup

x∈BN

(1− |x|2)λ u(x) < +∞.

LetYα,β,γ denote the set of all measurable functionsu : BN → [−∞, +∞[ satisfying:

MYα,β,γ
(u) := sup

a∈BN

(1− |a|2)α

∫
BN

(1− |x|2)β u(x) (1− |Φa(x)|2)γ dx < +∞.

The subsetSX λ (resp. SYα,β,γ) gathers allu ∈ Xλ (resp. u ∈ Yα,β,γ) which moreover are
subharmonic and non–negative. The subsetRSYα,β,γ gathers allu ∈ SYα,β,γ which moreover
are radial.

Remark 1. Whenλ < 0 (resp.α + β < −N or α < −γ), the setSX λ (resp.SYα,β,γ) merely
reduces to the single functionu ≡ 0 (see Propositions 6.2, 6.3 and 6.4).

In Proposition 3.1 and Corollary 3.2, we will establish thatSYα,β,γ ⊂ SX α+β+N and that
there exists a constantC > 0 such that

MXλ+α+β+N
(gu) ≤ C MXλ

(g) MYα,β,γ
(u)

for all u ∈ SYα,β,γ and allg ∈ Xλ with MXλ
(g) ≥ 0. We will next study whether some kind of

a “converse” holds and obtain the following:

Theorem 2.1.Givenλ ∈ R andg : BN → [0, +∞[ a subharmonic function satisfying:

∃C ′ > 0 MXλ+α+β+N
(gu) ≤ C ′ MYα,β,γ

(u) ∀u ∈ SYα,β,γ,

theng ∈ Xλ+N−1
2

in each of the six cases gathered in the following Table 2.1.
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MULTIPLICATION OF SUBHARMONIC FUNCTIONS 3

case α β γ

(i) α = N+1
2

+ β β > −N+1
2

γ > max(α,−1− β)

(ii) α = β + 1 β > −N+3
4

γ > |1 + β|

(iii) α = N+1
2
− γ β ≥ −γ N+1

4
< γ < N+1

2

(iv) α = 1 β ≥ 0 γ > 1

(v) α = 1 + β − γ β > −1 1+β
2

< γ < β + N+3
4

(vi) α = β+1
2

β ≥ −1
2

γ >
∣∣1+β

2

∣∣
Table 2.1: Six situations where Theorem 2.1 shows thatg belongs to the setXλ+ N−1

2
.

Theorem 2.2.Givenλ ∈ R andg a subharmonic function defined onBN , satisfying:

∃C ′′ > 0 MXλ+α+β+N
(gu) ≤ C ′′ MYα,β,γ

(u) ∀u ∈ RSYα,β,γ,

theng ∈ SX λ+α+N−1
2

provided thatα ≥ 0, β ≥ −N+1
2

, γ > N−1
2

.

3. SOME PRELIMINARIES

Notation 3.1. Givena ∈ BN andR ∈]0, 1[, let B(a, Ra) = {x ∈ BN : |x− a| < Ra} with

Ra = R
1− |a|2

1 + R|a|
.

Proposition 3.1. There exists aC > 0 depending only onN , β, γ, such that:

MXα+β+N
(u) ≤ C MYα,β,γ

(u) ∀u ∈ SYα,β,γ.

Proof. Let someR ∈]0, 1[ be fixed in the following. Sinceu ≥ 0, we obtain for anya ∈ BN :

MYα,β,γ
(u) ≥ (1− |a|2)α

∫
BN

(1− |x|2)β u(x) (1− |Φa(x)|2)γ dx

≥ (1− |a|2)α

∫
B(a,Ra)

(1− |x|2)β u(x) (1− |Φa(x)|2)γ dx.

It follows from Lemma 1 of [6] that

B(a, Ra) ⊂ E(a, R) = {x ∈ BN : |Φa(x)| < R},

hence:

(3.1) MYα,β,γ
(u) ≥ (1−R2)γ (1− |a|2)α

∫
B(a,Ra)

(1− |x|2)β u(x) dx

asγ ≥ 0. From Lemmas 1 and 5 of [5], it is known that

1−R

1 + R
≤ 1− |x|2

1− |a|2
≤ 2 ∀x ∈ B(a, Ra).
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4 R. SUPPER

Let Cβ =
(

1−R
1+R

)β
if β ≥ 0 andCβ = 2β if β < 0. Hence

MYα,β,γ
(u) ≥ Cβ(1−R2)γ (1− |a|2)α+β

∫
B(a,Ra)

u(x) dx.

The volume ofB(a, Ra) is σN
(Ra)N

N
with σN = 2 πN/2

Γ(N/2)
the area of the unit sphereSN in RN

(see [2, p. 29]) andRa ≥ R
1+R

(1− |a|2). The subharmonicity ofu now provides:

MYα,β,γ
(u) ≥ Cβ(1−R2)γ (1− |a|2)α+β u(a) σN

(Ra)
N

N

≥ Cβ
σN

N

RN(1−R)γ

(1 + R)N−γ
(1− |a|2)α+β+N u(a).

�

Corollary 3.2. Letg ∈ Xλ with MXλ
(g) ≥ 0. Then:

MXλ+α+β+N
(gu) ≤ C MXλ

(g) MYα,β,γ
(u) ∀u ∈ SYα,β,γ

where the constantC stems from Proposition 3.1.

Proof. Sinceu ≥ 0, we have for anyx ∈ BN :

(1− |x|2)λ+α+β+Ng(x) u(x) ≤ MXλ
(g) (1− |x|2)α+β+Nu(x)

≤ MXλ
(g) MXα+β+N

(u)

because ofMXλ
(g) ≥ 0. �

Lemma 3.3. Givena ∈ BN andR ∈]0, 1[, the following holds for anyx ∈ B(a, Ra):

1

2
<

1

1 + R |a|
≤ 1− 〈x, a〉

1− |a|2
≤ 1 + 2R |a|

1 + R |a|
< 2 and

1

4
<

1− 〈x, a〉
1− |x|2

< 2
1 + R

1−R
.

Proof. Clearly 〈x, a〉 = 〈a + y, a〉 = |a|2 + 〈y, a〉 with |y| < Ra. From the Cauchy-Schwarz
inequality, it follows that−Ra |a| ≤ 〈y, a〉 ≤ Ra |a|. Hence:

1− |a|2 −R |a| 1− |a|2

1 + R|a|
≤ 1− 〈x, a〉 ≤ 1− |a|2 + R |a| 1− |a|2

1 + R|a|
.

The term on the left equals

(1− |a|2)
(

1− R |a|
1 + R|a|

)
= (1− |a|2) 1

1 + R|a|

and1 + R|a| < 2. The term on the right equals

(1− |a|2)
(

1 +
R |a|

1 + R|a|

)
,

with R|a|
1+R|a| < 1. Now

1− 〈x, a〉
1− |x|2

=
1− 〈x, a〉
1− |a|2

1− |a|2

1− |x|2

and the last inequalities follow from Lemmas 1 and 5 of [5]. �
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MULTIPLICATION OF SUBHARMONIC FUNCTIONS 5

Lemma 3.4. Let H = {(s, t) ∈ R2 : t ≥ 0, s2 + t2 < 1} andP > −1, Q > −1, T > −1.
Then ∫∫

H

sP tQ (1− s2 − t2)T ds dt =


0 if P is odd;

Γ(P+1
2 )Γ(Q+1

2 )Γ(T+1)

2 Γ(P+Q
2

+T+2)
if P is even.

Proof. With polar coordinatess = r cos θ, t = r sin θ, this integral turns intoI1 I2 with

I1 =

∫ 1

0

rP+Q (1− r2)T r dr and I2 =

∫ π

0

(cos θ)P (sin θ)Q dθ.

Keeping in mind the various expressions for the Beta function (see [3, pp. 67–68]):

B(x, y) =

∫ 1

0

ξx−1 (1− ξ)y−1 dξ

= 2

∫ π/2

0

(cos θ)2x−1 (sin θ)2y−1 dθ =
Γ(x) Γ(y)

Γ(x + y)

(with x > 0 andy > 0), the change of variableω = r2 leads to:

I1 =
1

2

∫ 1

0

ω
P+Q

2 (1− ω)T dω

=
1

2
B

(
P + Q

2
+ 1, T + 1

)
=

Γ
(

P+Q
2

+ 1
)

Γ(T + 1)

2 Γ
(

P+Q
2

+ T + 2
) .

WhenP is odd,I2 = 0 becausecos(π − θ) = − cos(θ). However, whenP is even:

I2 = 2

∫ π/2

0

(cos θ)P (sin θ)Q dθ

= B

(
P + 1

2
,
Q + 1

2

)
=

Γ
(

P+1
2

)
Γ
(

Q+1
2

)
Γ
(

P+Q
2

+ 1
) .

�

Lemma 3.5. GivenA ≥ 0 anda ∈ BN , let u andfa denote the functions defined onBN by
u(x) = 1

(1−|x|2)A andfa(x) = 1
(1−〈x,a〉)A ∀x ∈ BN . They are both subharmonic inBN .

Remark 2. u is radial, but notfa.

Proof. Foru, the result of Lemma 3.5 has already been proved in Proposition 1 of [5]. For any
j ∈ {1, 2, . . . , N}, we now compute:

∂fa

∂xj

(x) = aj A (1− 〈x, a〉)−A−1 and
∂2fa

∂x2
j

(x) = (aj)
2 A (A + 1)(1− 〈x, a〉)−A−2,

so that:

(∆fa)(x) =
|a|2 A (A + 1)

(1− 〈x, a〉)A+2
≥ 0 ∀x ∈ BN .

�

Remark 3. GivenA ≥ 0, A′ ≥ 0, the functionfa defined onBN by

fa(x) =
1

(1− 〈x, a〉)A(1− |x|2)A′
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6 R. SUPPER

is subharmonic too. The computation

(∆fa)(x) ≥ fa(x)

(
A |a|

1− 〈x, a〉
− 2A′|x|

1− |x|2

)2

≥ 0

is left to the reader.

Proposition 3.6. GivenN ∈ N, N > 3, (s, t, b1, b2) ∈ R4 such that|s b1| + |t b2| < 1 and
P > 0, let

IP (s, t, b1, b2) =

∫ π

0

(sin θ)N−3 dθ

(1− s b1 − t b2 cos θ)P
.

Then

IP (s, t, b1, b2) =
√

π
Γ
(

N
2
− 1
)

Γ(P )

∑
k∈N

∑
j∈N

Γ(j + 2k + P )

k! j! Γ
(

N−1
2

+ k
) (b1 s)j

(
t b2

2

)2k

.

Proof. As ∣∣∣∣t b2 cos θ

1− s b1

∣∣∣∣ ≤ ∣∣∣∣ t b2

1− s b1

∣∣∣∣ < 1,

the following development is valid:

IP (s, t, b1, b2) =

∫ π

0

(sin θ)N−3 dθ

(1− s b1)P
(
1− t b2 cos θ

1−s b1

)P

=
1

(1− s b1)P

∑
n∈N

Γ(n + P )

n! Γ(P )

(
t b2

1− s b1

)n ∫ π

0

(sin θ)N−3(cos θ)n dθ.

The last integral vanishes whenn is odd. Whenn is even (n = 2k), then

2

∫ π/2

0

(sin θ)N−3(cos θ)2k dθ = B

(
N − 2

2
, k +

1

2

)
=

Γ
(

N−2
2

)
Γ
(
k + 1

2

)
Γ
(

N−1
2

+ k
)

=
Γ
(

N−2
2

)
(2k)!

√
π

Γ
(

N−1
2

+ k
)

22k k!

by [3, p. 40]. Hence:

IP (s, t, b1, b2) =
Γ
(

N−2
2

) √
π

Γ(P )

∑
k∈N

Γ(2k + P )

Γ
(

N−1
2

+ k
)

22k k!

(t b2)
2k

(1− s b1)2k+P
.

The result follows from the expansion

Γ(2k + P )

(1− s b1)2k+P
=
∑
j∈N

Γ(j + 2k + P )

j!
(b1 s)j.

�
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4. PROOF OF THEOREM 2.1

The cases(i), (ii) , (iii) , (iv), (v) and(vi) of Theorem 2.1 will be proved separately at the end
of this section.

Theorem 4.1. GivenA > 0, P > 0, T > −1 andN ∈ N (N ≥ 2) such that1 ≤ A + P ≤
N + 1 + 2T , let

IA,P,T (a, b) =

∫
BN

(1− |x|2)T

(1− 〈x, a〉)A (1− 〈x, b〉)P
dx ∀a ∈ BN ,∀b ∈ BN

andτ a number satisfying bothP−A
2

< τ < P and0 ≤ τ ≤ A+P
2

. Then

IA,P,T (a, b) ≤ K

(1− |a|2)A+P
2

−τ (1− |b|2)τ
∀a ∈ BN ,∀b ∈ BN

where the constantK is independent ofa andb.

Example 4.1. If P > A andτ = A+P
2

, then

IA,P,T (a, b) ≤ K

(1− |b|2)A+P
2

∀a ∈ BN ,∀b ∈ BN ,

with

K = 2A+P−1 π
N−1

2
Γ(T + 1)

Γ(P )
Γ

(
P − A

2

)
.

Example 4.2. If P < A andτ = 0, then

IA,P,T (a, b) ≤ K

(1− |a|2)A+P
2

∀a ∈ BN ,∀b ∈ BN ,

with

K = 2A+P−1 π
N−1

2
Γ(T + 1)

Γ(A)
Γ

(
A− P

2

)
.

Proof. Up to a unitary transform, we assumea = (|a|, 0, 0, . . . , 0) andb = (b1, b2, 0, . . . , 0).

Proof of Theorem 4.1 in the caseN > 3. Polar coordinates inRN provide the formulas:
x1 = r cos θ1 with r = |x|, x2 = r sin θ1 cos θ2 (the formulas forx3, . . . , xN are available in
[9, p. 15]) whereθ1, θ2,. . . , θN−2 ∈]0, π[ andθN−1 ∈]0, 2π[. The volume elementdx becomes
rN−1 dr dσ(N) wheredσ(N) denotes the area element onSN , with

dσ(N) = (sin θ1)
N−2(sin θ2)

N−3dθ1 dθ2 dσ(N−2)

(see [9, p. 15] for full details). Hereθ2 ∈]0, π[ sinceN > 3. In the following, we will write
s = r cos θ1 andt = r sin θ1, thus〈x, b〉 = s b1 + t b2 cos θ2 and

(4.1) IA,P,T (a, b) = σN−2

∫ π

0

∫ 1

0

(1− r2)T rN−1 (sin θ1)
N−2 IP (s, t, b1, b2)

(1− |a| s)A
dr dθ1

with IP (s, t, b1, b2) defined in the previous proposition. From [2, p. 29] we notice that

σN−2 Γ

(
N − 2

2

) √
π = 2 π

N−1
2 .

The expansion
1

(1− |a| s)A
=
∑
`∈N

Γ(` + A)

`! Γ(A)
(|a| s)`
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8 R. SUPPER

leads to:

IA,P,T (a, b) =
2 π

N−1
2

Γ(P ) Γ(A)

∑
(k,j,`)∈N3

Γ(j + 2k + P ) Γ(` + A)

k! j! `! Γ(N−1
2

+ k)
(b1)

j

(
b2

2

)2k

|a|` Jk,j,`

where

Jk,j,` =

∫ π

0

∫ 1

0

sj+` t2k (1− r2)T rN−1(sin θ1)
N−2 dr dθ1

=

∫∫
H

sj+` t2k+N−2(1− s2 − t2)T ds dt

with H as in Lemma 3.4. NowJk,j,` = 0 unlessj + ` = 2h (h ∈ N). Thus:

IA,P,T (a, b)

=
π

N−1
2

Γ(P ) Γ(A)

∑
(k,h)∈N2

2h∑
j=0

Γ(j + 2k + P ) Γ(2h− j + A) Γ
(
h + 1

2

)
Γ(T + 1)

k! j! (2h− j)! Γ
(
k + h + N

2
+ T + 1

) (b1)
j

(
b2

2

)2k

|a|2h−j

Taking [3, p. 40] into account:

(4.2) IA,P,T (a, b) =
π

N
2 Γ(T + 1)

Γ(P ) Γ(A)

∑
(k,h)∈N2

2h∑
j=0

(2h)! B(j + 2k + P, 2h− j + A)

22h+2k h! k! j! (2h− j)!

× Γ(2k + P + 2h + A)

Γ(k + h + N
2

+ T + 1)
bj
1 b2k

2 |a|2h−j.

Let

L =
2P+A−1 Γ(T + 1)

Γ(P ) Γ(A)
π

N−1
2 .

The duplication formula
√

π Γ(2z) = 22z−1 Γ(z) Γ

(
z +

1

2

)
(see [3, p. 45]) is applied with2z = 2k + P + 2h + A. Now

Γ(k + h +
A + P + 1

2
) ≤ Γ

(
k + h +

N

2
+ T + 1

)
sinceΓ increases on[1, +∞[ and

1 ≤ k + h +
A + P + 1

2
≤ k + h +

N

2
+ T + 1.

This leads to:

IA,P,T (a, b)

≤ L
∑

(k,h)∈N2

2h∑
j=0

(2h)! B(j + 2k + P, 2h− j + A) Γ
(
k + h + A+P

2

)
h! k! j! (2h− j)!

bj
1b

2k
2 |a|2h−j

= L
∑

(k,h)∈N2

Γ
(
k + h + A+P

2

)
h! k!

b2k
2

2h∑
j=0

(2h)!

j! (2h− j)!
bj
1 |a|2h−j B(j + 2k + P, 2h− j + A).
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MULTIPLICATION OF SUBHARMONIC FUNCTIONS 9

The last sum turns into:
2h∑

j=0

(2h)! bj
1 |a|2h−j

j! (2h− j)!

∫ 1

0

ξj+2k+P−1 (1− ξ)2h−j+A−1 dξ

=

∫ 1

0

(
2h∑

j=0

(2h)! (b1 ξ)j [(1− ξ) |a|]2h−j

j! (2h− j)!

)
ξ2k+P−1 (1− ξ)A−1 dξ

=

∫ 1

0

[b1 ξ + |a| (1− ξ)]2h ξ2k+P−1 (1− ξ)A−1 dξ.

Hence the majorant ofIA,P,T (a, b) becomes:

L

∫ 1

0

∑
k∈N

(b2 ξ)2k

k!

(∑
h∈N

Γ(h + k + A+P
2

)

h!
[b1 ξ + |a| (1− ξ)]2h

)
ξP−1 (1− ξ)A−1 dξ

= L

∫ 1

0

∑
k∈N

Γ(k + A+P
2

) (b2 ξ)2k

k!

(
1

1− [b1 ξ + |a| (1− ξ)]2

)k+A+P
2

ξP−1(1− ξ)A−1 dξ

according to the expansion

Γ(C)

(1−X)C
=
∑
h∈N

Γ(h + C)

h!
Xh

with |X| < 1 whenC > 0 (see [8, p. 53]). HereX = [b1 ξ + |a| (1 − ξ)]2 belongs to] − 1, 1[
sinceb1 and|a| do andξ ∈ [0, 1]. The same expansion now applies with

C =
A + P

2
and X =

(b2 ξ)2

1− [b1 ξ + |a| (1− ξ)]2

since|X| < 1, as

δ(ξ) := (b2 ξ)2 + [b1 ξ + |a| (1− ξ)]2

= |b|2 ξ2 + |a|2 (1− ξ)2 + 2ξ(1− ξ) b1 |a|
≤ |b|2 ξ2 + |a|2 (1− ξ)2 + 2ξ(1− ξ)|b| |a|
= [ξ |b|+ |a| (1− ξ)]2 < 1.

Hence

IA,P,T (a, b)

≤ L

∫ 1

0

Γ
(

A+P
2

)(
1− (b2 ξ)2

1−[b1 ξ+|a| (1−ξ)]2

)A+P
2

ξP−1 (1− ξ)A−1 dξ

(1− [b1 ξ + |a| (1− ξ)]2)
A+P

2

= L · Γ

(
A + P

2

)∫ 1

0

ξP−1 (1− ξ)A−1 dξ

(1− [b1 ξ + |a| (1− ξ)]2 − (b2 ξ)2)
A+P

2

.

Now

1− δ(ξ) ≥ 1− [ξ |b|+ |a| (1− ξ)]2

≥ 1− [ξ |b|+ (1− ξ)]2

= ξ(1− |b|)[2− ξ(1− |b|)]
≥ ξ(1− |b|2)
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since
[2− ξ(1− |b|)]− (1 + |b|) = (1− ξ)(1− |b|) ≥ 0.

Similarly,
1− δ(ξ) ≥ (1− ξ)(1− |a|2).

Thus
1

[1− δ(ξ)]
A+P

2

≤ 1

[(1− ξ)(1− |a|2)]A+P
2

−τ [ξ(1− |b|2)]τ

sinceτ ≥ 0 and A+P
2
− τ ≥ 0. Finally:

IA,P,T (a, b) ≤
L · Γ

(
A+P

2

)
(1− |a|2)A+P

2
−τ (1− |b|2)τ

∫ 1

0

ξP−τ−1 (1− ξ)A+τ−A+P
2

−1 dξ.

This integral converges sinceP − τ > 0 and

A + τ − A + P

2
=

A− P

2
+ τ > 0.

Now the result follows with

K = L · Γ
(

A + P

2

)
B

(
P − τ,

A− P

2
+ τ

)
= L Γ(P − τ) Γ

(
A− P

2
+ τ

)
.

Proof of Theorem 4.1 in the caseN = 3. Here

IA,P,T (a, b) =

∫ π

0

∫ 1

0

(1− r2)T r2 (sin θ1) JP (s, t, b1, b2)

(1− |a| s)A
dr dθ1,

where

JP (s, t, b1, b2) =

∫ 2π

0

dθ2

(1− s b1 − t b2 cos θ2)P
= 2 IP (s, t, b1, b2)

with IP (s, t, b1, b2) as in Proposition 3.6, withN = 3. HenceIA,P,T (a, b) has the same expres-
sion as in Formula (4.1), withN = 3, sinceσ1 = 2. Thus the proof ends in the same manner as
that above in the caseN > 3.

Proof of Theorem 4.1 in the caseN = 2. Now x1 = s = r cos θ andx2 = t = r sin θ:

IA,P,T (a, b)

=

∫ 2π

0

∫ 1

0

(1− r2)T r dr dθ

(1− |a| s)A (1− s b1 − t b2)P

=

∫
B2

∑
`∈N

Γ(` + A)

`! Γ(A)
(|a| s)`

∑
n∈N

(t b2)
n

n! Γ(P )

Γ(n + P )

(1− s b1)n+P
(1− s2 − t2)T ds dt

=
∑

(`,n,j)∈N3

Γ(` + A) |a|` (b2)
n Γ(j + n + P ) (b1)

j

`! Γ(A) n! Γ(P ) j!

∫
B2

s`+j tn (1− s2 − t2)T ds dt.

The last integral vanishes whenn is odd or` + j odd. Otherwise (n = 2k and` + j = 2h), it
equals

2

∫
H

s`+j tn (1− s2 − t2)T ds dt =
Γ
(
h + 1

2

)
Γ
(
k + 1

2

)
Γ(T + 1)

Γ(k + h + T + 2)

by Lemma 3.4 and turns into

n! (2h)! π Γ(T + 1)

22h+2k h! k! Γ(k + h + T + 2)
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according to [3, p. 40]. ThusIA,P,T (a, b) is again recognized as Formula (4.2) now withN = 2
and the proof ends as for the caseN > 3. �

We now present an example of a family of functions{fa}a which is uniformly bounded above
in Yα,β,γ:

Corollary 4.2. Givenβ > −N+1
2

(N ≥ 2) let α = N+1
2

+ β andγ > max(α,−1− β). For any
a ∈ BN let fa denote the function defined by:fa(x) = 1

(1−〈x,a〉)2α , ∀x ∈ BN . Thenfa ∈ Yα,β,γ,

∀a ∈ BN . Moreover, there existsK > 0 such thatMYα,β,γ
(fa) ≤ K, ∀a ∈ BN .

Remark 4. This constantK is the same as that in the previous theorem, withA = 2α, P = 2γ
andT = β + γ.

Proof. With the above choices for parametersA, P , T , we actually have:P > A > 0, T > −1
and

A + P = 2α + 2γ = N + 1 + 2β + 2γ = N + 1 + 2T > 1.

The conditions0 ≤ τ ≤ α + γ together withγ − α < τ < 2γ reduce to:γ − α < τ ≤ α + γ.
Let

(4.3) Jb(fa) = (1− |b|2)α

∫
BN

(1− |x|2)β fa(x) (1− |Φb(x)|2)γ dx.

Now

Jb(fa) = (1− |b|2)α+γ

∫
BN

(1− |x|2)β+γ

(1− 〈x, a〉)N+1+2β (1− 〈x, b〉)2γ
dx

≤ K ∀a ∈ BN ,∀b ∈ BN

according to Theorem 4.1 applied withτ = α + γ = A+P
2

. �

4.1. Proof of Theorem 2.1 in the case(i). GivenR ∈]0, 1[, the subharmonicity ofg provides
for anya ∈ BN the majoration:

g(a) ≤ 1

Va

∫
B(a,Ra)

g(x) dx

with Va the volume ofB(a, Ra). From Lemma 3.3, it is clear that:

1 ≤
(

2
1 + R

1−R

1− |x|2

1− 〈x, a〉

)A

∀x ∈ B(a, Ra)

with A = 2α > 0. Now g(x) ≥ 0, ∀x ∈ BN . With fa as in Corollary 4.2, this leads to:

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)A fa(x) g(x) dx.

Now

A = α + β +
N + 1

2
= α + β + N − N − 1

2
,

thus

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)λ+α+β+N fa(x) g(x)

(1− |x|2)λ+N−1
2

dx

≤ C ′K

(
2

1 + R

1−R

)A ∫
B(a,Ra)

dx

(1− |x|2)λ+N−1
2
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12 R. SUPPER

from Corollary 4.2. Lemmas 1 and 5 of [5] provide(
1− |x|2

1− |a|2

)λ+N−1
2

≥ Cλ+N−1
2

∀x ∈ B(a, Ra),

with Cλ+N−1
2

defined in the same pattern asCβ in the proof of Proposition 3.1. Finally:

Va g(a) ≤ C ′K

Cλ+N−1
2

(
2

1 + R

1−R

)A
Va

(1− |a|2)λ+N−1
2

,

thus

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ+N−1
2

(
2

1 + R

1−R

)2α

∀R ∈]0, 1[.

The majorant is an increasing function with respect toR. LettingR tend toward0+, we get:

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ+N−1
2

22α.

4.2. Proof of Theorem 2.1 in the case(ii) . Here we work withfa defined by:

fa(x) =
1

(1− 〈x, a〉)A
where A = α + β + N.

Theorem 4.1 applies once again, withA = N + 1 + 2β > N−1
2

> 0, P = 2γ > 0 and
T = β + γ > −1 (becauseγ > −1 − β). ConditionA + P = N + 1 + 2T is fulfilled too.
Moreoverτ := α+γ = β +γ +1 satisfies both0 ≤ τ ≤ β +γ + N+1

2
(obviously0 < β +γ +1

and1 < N+1
2

) andγ − β − N+1
2

< τ < 2γ:

τ − γ + β +
N + 1

2
= 2β +

N + 3

2
> 0 and 2γ − τ = γ − 1− β > 0.

With such a choice forτ we have

A + P

2
− τ =

N + 1

2
− 1 =

N − 1

2
,

thus

(4.4) IA,P,T (a, b) ≤ K

(1− |a|2)N+1
2

−1(1− |b|2)α+γ
∀a ∈ BN ,∀b ∈ BN .

Hence,Jb(fa) defined in Formula (4.3) now satisfies

(4.5) Jb(fa) ≤
K

(1− |a|2)N−1
2

∀a ∈ BN ,∀b ∈ BN .

In other words,

(4.6) MYα,β,γ
(fa) ≤

K

(1− |a|2)N−1
2

∀a ∈ BN .

This implies:

(4.7) MXλ+α+β+N
(g fa) ≤

C ′K

(1− |a|2)N−1
2

∀a ∈ BN .
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With R andVa as in the previous proof, we obtain here:

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)λ+α+β+N fa(x) g(x)

(1− |x|2)λ
dx

≤ C ′K

(1− |a|2)N−1
2

(
2

1 + R

1−R

)A ∫
B(a,Ra)

dx

(1− |x|2)λ

and the last integral is majorized by Va

Cλ (1−|a|2)λ with Cλ defined similarly toCβ in the proof of
Proposition 3.1. Finally:

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ

2N+1+2β.

4.3. Proof of Theorem 2.1 in the case(iii) . Herefa is defined by:

fa(x) =
1

(1− 〈x, a〉)A(1− |x|2)β+γ
∀x ∈ BN ,

whereA = N + 1− 2γ > 0. Theorem 4.1 is applied withP = 2γ > 0 andT = 0 > −1. Thus

A + P = N + 1 = N + 1 + 2T.

We have to chooseτ satisfying both

0 ≤ τ ≤ N + 1

2
and 2γ − N + 1

2
< τ < 2γ.

Now

τ :=
N + 1

2
=

A + P

2
= α + γ

fulfills the last condition since:

2γ − τ = 2

(
γ − N + 1

4

)
> 0 and τ − 2γ +

N + 1

2
= 2

(
N + 1

2
− γ

)
> 0.

Formula (4.3) impliesJb(fa) ≤ K for all a ∈ BN and allb ∈ BN . ThusMYα,β,γ
(fa) ≤ K,

∀a ∈ BN . As before,

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)A+β+γ g(x)

(1− 〈x, a〉)A (1− |x|2)β+γ
dx.

Now

A + β + γ = N + 1− γ + β

= N + 1 + α− N + 1

2
+ β

= α + β + N − N − 1

2
,

whence

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)α+β+N fa(x) g(x)

(1− |x|2)N−1
2

dx

≤ C ′K

(
2

1 + R

1−R

)A ∫
B(a,Ra)

dx

(1− |x|2)λ+N−1
2

and the proof ends as in the case(i). Here

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ+N−1
2

2N+1−2γ.
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4.4. Proof of Theorem 2.1 in the case(iv). Herefa is defined by:

fa(x) =
1

(1− 〈x, a〉)A(1− |x|2)β
∀x ∈ BN ,

whereA=N +1, T =γ andP =2γ thusA+P =N +1+2T , allowing us to use Theorem 4.1,
with τ = α + γ = 1 + γ (since0 ≤ τ ≤ N+1

2
+ γ and γ − N+1

2
< τ < 2γ). Hence

Inequalities (4.4), (4.5), (4.6) and (4.7) follow. Now

(4.8) Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

(1− |x|2)A+β fa(x) g(x) dx.

SinceA + β = α + β + N , this turns into:

Va g(a) ≤
(

2
1 + R

1−R

)A ∫
B(a,Ra)

MXλ+α+β+N
(g fa)

(1− |x|2)λ
dx

and the proof ends as in the case(ii) , here with:

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ

2N+1.

4.5. Proof of Theorem 2.1 in the case(v). Herefa is defined by:

fa(x) =
1

(1− 〈x, a〉)A(1− |x|2)γ
∀x ∈ BN ,

where

A = N + 1 + 2(β − γ) > N + 1− N + 3

2
=

N − 1

2
> 0.

With P = 2γ > 0 andT = β, the conditionA + P = N + 1 + 2T of Theorem 4.1 is fulfilled.
Moreoverτ := α + γ = 1 + β satisfies

0 ≤ τ ≤ N + 1

2
+ β and 2γ − N + 1

2
− β < τ < 2γ

since:

2γ − τ = 2γ − (1 + β) > 0 and τ − 2γ +
N + 1

2
+ β = −2γ +

N + 3

2
+ 2β > 0.

Again

A + P

2
− τ =

N + 1

2
− 1 =

N − 1

2

and inequalities (4.4) to (4.7) follow. Formula (4.8) still holds with(1 − |x|2)A+γ instead of
(1− |x|2)A+β. Here

A + γ = N + 1 + 2β − γ = N + α + β

and the conclusion follows as in the previous case. Finally:

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ

2N+1+2(β−γ).
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4.6. Proof of Theorem 2.1 in the case(vi). Herefa is defined by:

fa(x) =
1

(1− 〈x, a〉)A(1− |x|2)α
∀x ∈ BN

with A = N +β > N−1
2

> 0, P = 2γ > 0, T = β−1
2

+γ > −1 (actuallyT +1 = β+1
2

+γ > 0).
The use of Theorem 4.1 is allowed since

A + P = N + 1 + β − 1 + 2γ = N + 1 + 2T.

Now τ := α + γ = β+1
2

+ γ satisfies0 ≤ τ ≤ N+β
2

+ γ (because ofγ > −β+1
2

). Moreover
γ − N+β

2
< τ < 2γ is fulfilled too since

β + 1

2
< γ and β + 1 + (N + β) = 1 + N + 2β > 0.

In addition,
A + P

2
− τ =

N + β

2
− β + 1

2
=

N − 1

2
.

Again it induces Formula (4.6). With(1− |x|2)A+β replaced by(1− |x|2)A+α, inequality (4.8)
remains valid. SinceA + α = N + α + β, the conclusion is once again obtained in a similar
way as in the cases(iv) and(v), here with

MX
λ+ N−1

2

(g) ≤ C ′K

Cλ

2N+β.

5. THE SITUATION WITH RADIAL SUBHARMONIC FUNCTIONS

5.1. The example ofu : x 7→ (1− |x|2)−A with A ≥ 0.

Proposition 5.1. GivenP ≥ 1, T > −1 andN ∈ N (N ≥ 2) such thatP ≤ N + 1 + 2T , let

IP,T (b) =

∫
BN

(1− |x|2)T

(1− 〈x, b〉)P
dx ∀b ∈ BN .

Then

IP,T (b) ≤ K ′

(1− |b|2)P/2
∀b ∈ BN ,

(equality holds whenP = N + 1 + 2T ) with

K ′ =
Γ(T + 1)

Γ
(

P+1
2

) π
N
2 .

Proof. Letting A → 0+ in Theorem 4.1, the majorization ofIP,T (b) is an immediate result,
sinceK (as a function ofA) tends towardsK ′: see Example 4.1. Nonetheless, we still have to
show that equality holds in the caseP = N + 1 + 2T .

Proof in the caseN ≥ 3. Up to a unitary transform, we may assumeb = (|b|, 0, 0, . . . , 0), so
that〈x, b〉 = |b|x1 = |b| r cos θ1 with θ1 ∈]0, π[ (we will haveθ1 ∈]0, 2π[ in the caseN = 2).
Now

dx = rN−1 (sin θ1)
N−2 dr dθ1 dσ(N−1),

with the same notations as in the proof of Theorem 4.1. Here:

IP,T (b) = σN−1

∫ π

0

∫ 1

0

(1− r2)T rN−1 (sin θ1)
N−2

(1− |b| r cos θ1)P
dr dθ1.
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Then

(5.1) IP,T (b) = σN−1

∑
n∈N

Γ(n + P )

n! Γ(P )
|b|n

∫∫
H

sn tN−2 (1− s2 − t2)T ds dt

with s = r cos θ1 andt = r sin θ1. This integral vanishes for oddn. If n = 2k, its value is
given by Lemma 3.4. Thus

IP,T (b) =
σN−1 Γ

(
N−1

2

)
Γ(T + 1)

2 Γ(P )

∑
k∈N

|b|2k Γ
(
k + 1

2

)
Γ(2k + P )

(2k)! Γ
(
k + N

2
+ T + 1

) .

Now [2, p. 29] and [3, p. 40] lead to:

IP,T (b) =
Γ(T + 1)

Γ(P )
π

N−1
2

∑
k∈N

|b|2k
√

π Γ(2k + P )

22k k! Γ
(
k + N

2
+ T + 1

) .
Through the duplication formula ([3, p. 45]), it follows that:

IP,T (b) =
Γ(T + 1)

Γ(P )
π

N−1
2

∑
k∈N

|b|2k 22k+P−1 Γ
(
k + P

2

)
Γ
(
k + P+1

2

)
22k k! Γ

(
k + N

2
+ T + 1

)
= K ′

∑
k∈N

Γ
(
k + P

2

)
k! Γ

(
P
2

) |b|2k

with

K ′ =
Γ(T + 1)

Γ(P )
π

N−1
2 2P−1Γ

(
P

2

)
.

Another application of the duplication formula provides the final expression ofK ′.

Proof in the caseN = 2. Now

IP,T (b) =

∫ 2π

0

∫ 1

0

(1− r2)T r

(1− |b| r cos θ)P
dr dθ.

Then

IP,T (b) =
∑
n∈N

Γ(n + P )

n! Γ(P )
|b|n

( ∫ 1

0

rn+1 (1− r2)T dr

)(∫ 2π

0

(cos θ)n dθ

)
.

The last integral equals2
∫ π

0
(cos θ)n dθ for any n. As σ1 = 2, here we recognize the same

expression as in formula (5.1), replacingN by 2. Hence the same conclusion. �

Corollary 5.2. Givenα ≥ 0, β ≥ −N+1
2

andγ > N−1
2

, let A = N+1
2

+ β andu defined onBN

by:

u(x) =
1

(1− |x|2)A
∀x ∈ BN .

Thenu ∈ RSYα,β,γ and MYα,β,γ
(u) ≤ K ′ whereK ′ stems from Proposition 5.1 (withP =

2γ > 1 andT = β + γ − A = γ − N+1
2

> −1).

Proof. The subharmonicity ofu follows from Lemma 3.5 sinceA ≥ 0. Let Jb(u) be defined
similarly as in formula (4.3). Then

Jb(u) = (1− |b|2)α+γ

∫
BN

(1− |x|2)β+γ−A

(1− 〈x, b〉)P
dx.

As
N + 1 + 2T = N + 1 + 2γ − (N + 1) = P,
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Proposition 5.1 provides:

Jb(u) ≤ (1− |b|2)α+γ K ′

(1− |b|2)P/2
≤ K ′

sinceα ≥ 0. The conclusion proceeds from

MYα,β,γ
(u) = sup

b∈BN

Jb(u).

�

5.2. Proof of Theorem 2.2. Let A andu be defined as in Corollary 5.2. WithR andVa as in
the proof of Theorem 2.1:

Va g(a) ≤
∫

B(a,Ra)

(1− |x|2)A u(x) g(x) dx

=

∫
B(a,Ra)

(1− |x|2)λ+α+β+N u(x) g(x) dx

(1− |x|2)λ+α+N−1
2

since:

A =
N + 1

2
+ β = β + N − N − 1

2
.

This leads to:

Va g(a) ≤ C ′′ K ′
∫

B(a,Ra)

dx

(1− |x|2)λ+α+N−1
2

≤ C ′′ K ′ Va

Cλ+α+N−1
2

1

(1− |a|2)λ+α+N−1
2

,

with Cλ+α+N−1
2

defined in the same way asCβ in the proof of Proposition 3.1. We obtain finally:

MX
λ+α+ N−1

2

(g) ≤ C ′′ K ′

Cλ+α+N−1
2

.

6. ANNEX : T HE SETS SX λ AND SYα,β,γ FOR SOME SPECIAL VALUES OF λ, α, β, γ

Throughout the paper, it was assumed thatγ ≥ 0. Whenγ ≤ 0, the setSYα,β,γ is related to
other sets of the same kind by:

Proposition 6.1. Givenα ∈ R, β ∈ R andγ ≤ 0, then

Y+
α+γ,β+γ,0 ⊂ Y+

α,β,γ ⊂ Y+
α+sγ,β−sγ,0 ∀s ∈ [−1, 1],

whereY+
α,β,γ denotes the subset ofYα,β,γ consisting of all non-negativeu ∈ Yα,β,γ (not neces-

sarily subharmonic).

Proof. For anya ∈ BN andx ∈ BN , the following holds:

(6.1) (1− |a|2)α(1− |x|2)β(1− |Φa(x)|2)γ = (1− |a|2)α+γ(1− |x|2)β+γ(1− 〈a, x〉)−2γ.

Since〈a, x〉 ∈]− 1, 1[ through the Cauchy-Schwarz inequality, we have(1−〈a, x〉)−2γ ≤ 2−2γ

as−2γ ≥ 0. If u ∈ Yα+γ,β+γ,0 andu(x) ≥ 0, ∀x ∈ BN , thenu ∈ Yα,β,γ with

MYα,β,γ
(u) ≤ 2−2γ MYα+γ,β+γ,0

(u).

Also, 〈a, x〉 < |a| and〈a, x〉 < |x|, thus

(1− 〈a, x〉)(s−1)γ ≥ (1− |a|)(s−1)γ and (1− 〈a, x〉)(−s−1)γ ≥ (1− |x|)(−s−1)γ
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since(s− 1)γ ≥ 0 and(−s− 1)γ ≥ 0. Moreover

1− |a| = 1− |a|2

1 + |a|
≥ 1− |a|2

2
and 1− |x| ≥ 1− |x|2

2
,

thus

(1− 〈a, x〉)−2γ ≥ (1− |a|2)(s−1)γ(1− |x|2)(−s−1)γ

(
1

2

)−2γ

.

Finally

(1− |a|2)α(1− |x|2)β(1− |Φa(x)|2)γ ≥ 22γ(1− |a|2)α+sγ(1− |x|2)β−sγ.

Any non-negativeu ∈ Yα,β,γ then belongs toYα+sγ,β−sγ,0 with

MYα+sγ,β−sγ,0
(u) ≤ 2−2γ MYα,β,γ

(u).

�

Remark 5. Even withγ ≤ 0, Proposition 3.1 still holds, since

(1− |Φa(x)|2)γ =

(
1− 〈a, x〉
1− |x|2

)−γ (
1− 〈a, x〉
1− |a|2

)−γ

≥
(

1

2

)−γ (
1

4

)−γ

= 23γ ∀x ∈ B(a, Ra)

according to Lemma 3.3. For the proof of Proposition 3.1 in the caseγ ≤ 0, it is enough to
replace(1−R2)γ in formula (3.1) by23γ.

Proposition 6.2. If λ < 0, then the setSX λ contains only the functionu ≡ 0 onBN .

Proof. Givenu ∈ SX λ andξ ∈ BN , let r ∈]|ξ|, 1[. Then

u(ξ) ≤ max
|x|≤r

u(x) = max
|x|=r

u(x)

according to the maximum principle (see [2, pp. 48–49]). Thus

0 ≤ u(ξ) ≤ MXλ
(u) (1− r2)−λ

which tends towards0 asr → 1− (since−λ > 0). Finally u(ξ) = 0. �

Remark 6. Whenα < 0, it is not compulsory thatSYα,β,γ = {0}. For instance, withα, β, γ as
in case(ii) of Theorem 2.1, we haveα = β + 1 > 1−N

4
. It is thus possible to chooseβ in such a

way thatα < 0. In Subsection 4.2 we have an example of functionfa ∈ SYα,β,γ (with a fixed
in BN ) and this function is not vanishing. Similarlyβ < 0 does not implySYα,β,γ = {0}. In
Table 2.1 we have several examples of such situations: see Subsections 4.1 to 4.6 for examples
of non-vanishing subharmonic functions belonging to such setsSYα,β,γ.

Proposition 6.3. Letγ ∈ R and(α, β) ∈ R2 such thatα + β < −N , thenSYα,β,γ = {0}.

Proof. Given R ∈]0, 1[, let KR,γ = (1 − R2)γ if γ ≥ 0, or KR,γ = 23γ if γ ≤ 0. Then:
(1 − |Φa(x)|2)γ ≥ KR,γ, ∀a ∈ BN , ∀x ∈ B(a, Ra) according to Remark 5 (also remember
that |Φa| < R on B(a, Ra), see [6]). WithCβ as in the proof of Proposition 3.1, the following
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inequalities hold for anyu ∈ SYα,β,γ and anya ∈ BN . The second inequality is based upon
u ≥ 0 and the last one makes use of the suharmonicity ofu.

(1− |a|2)−α MYα,β,γ
(u) ≥

∫
BN

(1− |x|2)β u(x) (1− |Φa(x)|2)γdx

≥ KR,γ

∫
B(a,Ra)

(1− |x|2)β u(x) dx

≥ KR,γ Cβ (1− |a|2)β

∫
B(a,Ra)

u(x) dx

≥ KR,γ Cβ (1− |a|2)β Va u(a)

where the volumeVa of B(a, Ra) satisfies:

Va ≥
σN

N

(
R

1 + R

)N

(1− |a|2)N

(see the end of the proof of Proposition 3.1). Thus

u(a) ≤ κ (1− |a|2)−α−β−N ∀a ∈ BN ,

the constantκ > 0 being independent ofa.
Givenξ ∈ BN , the maximum principle now provides for anyr ∈]|ξ|, 1[:

0 ≤ u(ξ) ≤ max
|x|≤r

u(x) = max
|x|=r

u(x) ≤ κ (1− r2)−α−β−N

which tends towards0 asr → 1−, since−α− β −N > 0. Henceu(ξ) = 0. �

Proposition 6.4. Givenγ ≥ 0, α < −γ andβ ∈ R, thenSYα,β,γ = {0}.
Proof. Since1 − 〈x, a〉 ∈]0, 2[, we have(1 − 〈a, x〉)−2γ ≥ 2−2γ, ∀x ∈ BN , ∀a ∈ BN . Given
u ∈ SYα,β,γ, ξ ∈ BN andr ∈]0, 1− |ξ|[, the formula (6.1) leads to:

MYα,β,γ
(u) ≥ (1− |a|2)α+γ 2−2γ

∫
B(ξ,r)

(1− |x|2)β+γ u(x) dx ∀a ∈ BN

sinceu ≥ 0 onBN ⊃ B(ξ, r). Now |x| ≤ |ξ| + r, ∀x ∈ B(ξ, r). Let Lξ = [1− (|ξ| + r)2]β+γ

if β + γ ≥ 0, or Lξ = 1 if β + γ ≤ 0. Then

(1− |a|2)−α−γ 22γ MYα,β,γ
(u) ≥ Lξ

∫
B(ξ,r)

u(x) dx ≥ Lξ
σN

N
rN u(ξ) ∀a ∈ BN

sinceu is subharmonic and the volume ofB(ξ, r) is σN

N
rN . Finally, with ξ fixed, we have:

0 ≤ u(ξ) ≤ κξ (1− |a|2)−α−γ ∀a ∈ BN ,

the constantκξ > 0 being independent ofa. Henceu(ξ) = 0, letting |a| → 1−. �
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