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1. I NTRODUCTION

Much work has been done in the recent past to understand off-diagonal decay properties of
structured matrices and their inverses (cf. Benzi and Golub [1], Demko, Moss and Smith [4],
Eijkhout and Polman [5], Jaffard [6], Nabben [7] and [8], Peluso and Politi [9], Robinson and
Wathen [10], Strohmer [11], Vecchio [12] and the references therein).

This paper studies nonnegative triangular matrices with off-diagonal decay. In particular, let

Ln =


l1,1

l2,1 l2,2

l3,1 l3,2 l3,3
...

...
...

...
ln,1 ln,2 ln,3 · · · ln,n


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2 KENNETH S. BERENHAUT AND PRESTONT. FLETCHER

be an invertible lower triangular matrix, and

Xn = L−1
n =


x1,1

x2,1 x2,2

x3,1 x3,2 x3,3
...

...
...

...
xn,1 xn,2 xn,3 · · · xn,n

 ,

be its inverse.
We are interested in obtaining bounds on the entries inXn under the row-wise monotonicity

assumption

(1.1) 0 ≤ li,1 ≤ li,2 ≤ · · · ≤ li,i−1 ≤ li,i

for 2 ≤ i ≤ n.
As an added generalization, we will consider[li,j] satisfying

(1.2) 0 ≤ li,1
li,i

≤ li,2
li,i

≤ · · · ≤ li,i−1

li,i
≤ κi−1,

for some nondecreasing sequenceκ = (κ1, κ2, κ3, . . . ).
The paper proceeds as follows. Section 2 contains some recurrence-type lemmas, while the

main result, Theorem 3.1, and its proof are contained in Section 3. The paper closes with some
illustrative examples.

2. PRELIMINARY L EMMAS

In establishing our main results, we will employ recurrence techniques. In particular, suppose
{bi} and{αi,j} satisfy the linear recurrence

(2.1) bi =
i−1∑
k=0

(−αi,k)bk, (1 ≤ i ≤ n),

with b0 = 1 and

(2.2) 0 ≤ αi,0 ≤ αi,1 ≤ αi,2 ≤ · · · ≤ αi,i−1 ≤ Ai,

for i ≥ 1.
We will employ the following lemma, which reduces the scope of consideration in bounding

solutions to (2.1).

Lemma 2.1. Suppose that{bi} and{αi,j} satisfy (2.1) and (2.2). Then, there exists a sequence
a1, a2, . . . , an, with0 ≤ ai ≤ i for 1 ≤ i ≤ n, such that|bn| ≤ |dn|, where{di} satisfiesd0 = 1,
and for1 ≤ i ≤ n,

(2.3) di =


∑i−1

j=ai
(−Ai)dj, if ai < i

0, otherwise
.

In proving Lemma 2.1, we will refer to the following result on inner products.

Lemma 2.2. Suppose thatp = (p1, . . . , pn)′ andq = (q1, . . . , qn)′ aren-vectors with

(2.4) 0 ≥ p1 ≥ p2 ≥ · · · ≥ pn ≥ −A.

Define

(2.5) p∗n(ν, A) = (

ν︷ ︸︸ ︷
0, 0, . . . , 0,

n−ν︷ ︸︸ ︷
−A, . . . ,−A,−A)
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INVERSES OFTRIANGULAR MATRICES WITH MONOTONEENTRIES 3

for 0 ≤ ν ≤ n. Then,

(2.6) min
0≤ν≤n

{p∗n(ν,A) · q} ≤ p · q ≤ max
0≤ν≤n

{p∗n(ν, A) · q},

wherep · q denotes the standard dot product
∑n

i=1 piqi.

Proof. Supposep is of the form

(2.7) (p1, . . . , pj,

e1︷ ︸︸ ︷
−k, . . . ,−k,

e2︷ ︸︸ ︷
−A, . . . ,−A),

with 0 ≥ p1 ≥ p2 ≥ · · · ≥ pj > −k > −A, e1 ≥ 1 ande2 ≥ 0. First, assume thatp · q > 0,
and considerS =

∑e1+j
i=j+1 qi. If S < 0 then, sincek < A,

(2.8) (p1, p2, . . . , pj−1, pj,

e1︷ ︸︸ ︷
−A, . . . ,−A

e2︷ ︸︸ ︷
−A, . . . ,−A) · q ≥ p · q.

Otherwise, since−k < pj,

(2.9) (p1, p2, . . . , pj−1, pj,

e1︷ ︸︸ ︷
pj, . . . , pj,

e2︷ ︸︸ ︷
−A, . . . ,−A) · q ≥ p · q.

In either case, there is a vector of the form in (2.7) with strictly less distinct values, whose inner
product withq is at least as large asp · q. Inductively, there exists a vector of the form in (2.7)
with e2 + e1 = n, with as large, or larger, inner product. Hence, we have reduced to the case

wherep = (

e1︷ ︸︸ ︷
−k, . . . ,−k,

e2︷ ︸︸ ︷
−A, . . . ,−A), wheree1 = 0 anden = 0 are permissible. Ifk = 0 or

e1 = 0, thenp = p∗n(e1, A). Otherwise, considerS =
∑e1

i=1 qi. If S < 0, then

(2.10) p∗n(0, A) · q ≥ p · q.

If S ≥ 0,

(2.11) p∗n(e1, A) · q ≥ p · q.

The result for the casep · q > 0 now follows from (2.10) and (2.11).
The case whenp · q ≤ 0 is handled similarly, and the lemma follows. �

We now turn to a proof of Lemma 2.1.

Proof of Lemma 2.1.The proof, here, involves applying Lemma 2.2 to successively “scale” the
rows of the coefficient matrix

−α1,0 0 . . . 0

−α2,0 −α2,1
. .. 0

...
...

. ..
...

−αn,0 −αn,1 · · · −αn,n−1

 ,

while not decreasing the value of|bn| at any step.
First, define the sequences

ᾱi = (−αi,0, . . . ,−αi,i−1) and

bk,j = (bk, . . . , bj),

for 0 ≤ k ≤ j ≤ n− 1 and1 ≤ i ≤ n.
Now, note that applying Lemma 2.2 to the vectorsp = ᾱn andq = b0,n−1 yields a vector

p∗(νn, An) (as in (2.5)) such that either

(2.12) p∗(νn, An) · b0,n−1 ≥ ᾱn · b0,n−1 = bn > 0
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or

(2.13) p∗(νn, An) · b0,n−1 ≤ ᾱn · b0,n−1 = bn ≤ 0

Hence, suppose that the entries of thekth throughnth rows of the coefficient matrix are of the
form in (2.5), and expressbn as a linear combination ofb1, b2, . . . , bk i.e.

bn =
k∑

i=1

Ck
i bi

= Ck
k bk +

k−1∑
i=1

Ck
i bi.(2.14)

Now, supposeCk
k > 0. As before, applying Lemma 2.2 to the vectorsp = ᾱk andq = b0,k−1

yields a vectorp∗k(νk, Ak), such that

(2.15) p∗k(νk, Ak) · b0,k−1 ≥ ᾱk · b0,k−1 = bk.

Similarly, if Ck
k ≤ 0, we obtain a vectorp∗k(νk, Ak), such that

(2.16) p∗k(νk, Ak) · b0,k−1 ≤ ᾱk · b0,k−1 = bk.

Using the respective entries inp∗k(νk, Ak) in place of those in̄αk in (2.1) will not decrease the
value ofbn. This completes the induction for the casebn > 0; the casebn ≤ 0 is similar, and
the lemma follows. �

Remark 2.3. A version of Lemma 2.4 forAi ≡ 1 was recently applied in proving that all
symmetric Toeplitz matrices generated by monotone convex sequences have off-diagonal decay
preserved through triangular decompositions (see [2]).

Now, Fora = (A1, A2, A3, . . . ), with

(2.17) 0 ≤ A1 ≤ A2 ≤ A3 ≤ · · ·
define

(2.18) Zi(a)
def
= max

{
i∏

v=j

Av : 1 ≤ j ≤ i

}
,

for i ≥ 1.
We have the following result on bounds for linear recurrences.

Lemma 2.4. Suppose thata = (Aj) satisfies the monotonicity constraint in (2.17). Then, for
i ≥ 1,

(2.19) sup{|bi| : {bj} and{αi,j} satisfy (2.1) and (2.2)} = Zi(a).

Proof. Suppose that{bi} satisfies (2.1) and (2.2), and setζi = Zi(a) andMi = max{1, ζi}, for
i ≥ 1. From (2.18), we have

(2.20) Ai+1Mi = ζi+1,

for i ≥ 1. By Lemma 2.1, we may find sequences{di} and{ai} satisfying (2.3) such that

(2.21) |dn| ≥ |bn|.
We will show that{di} satisfies the inequality

(2.22) |dl + dl+1 + · · ·+ di| ≤ Mi,

for 0 ≤ l ≤ i.
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Note that (2.22) (fori = n− 1) and (2.3) imply thatdn = 0 or an ≤ n− 1 and

|dn| =

∣∣∣∣∣
n−1∑
j=an

(−An)dj

∣∣∣∣∣
= An

∣∣∣∣∣
n−1∑
j=an

dj

∣∣∣∣∣
≤ AnMn−1

= ζn.(2.23)

Sinced0 = 1, d1 ∈ {0,−A1} and

max{|d1|, |d0 + d1|} = max{1, A1, |1− A1|}
= max{1, A1}
= M1,(2.24)

i.e. the inequality in (2.22) holds fori = 1. Hence, suppose that (2.22) holds fori < N .
RewritingdN , with v = aN , we have for0 ≤ x ≤ N − 1,

dx + dx+1 + · · ·+ dN = (dx + dx+1 + · · ·+ dN−1)− An(dv + · · ·+ dN−1)

=

{
(1− AN)(dv + · · ·+ dN−1) + (dx + · · ·+ dv−1), if v > x

(1− AN)(dx + · · ·+ dN−1)− AN(dv + · · ·+ dx−1), if v ≤ x
.(2.25)

Let

S1 =

{
dv + · · ·+ dN−1, if v > x

dx + · · ·+ dN−1, if v ≤ x
,

and

S2 =

{
dx + · · ·+ dv−1, if v > x

dv + · · ·+ dx−1, if v ≤ x
.

In showing that|dx + dx+1 + · · ·+ dN | ≤ MN , we will consider several cases depending on
whetherAN > 1 or AN ≤ 1, and the signs ofS1 andS2.
Case 1(AN > 1 andS1S2 > 0)

(1) v > x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 + S2|
≤ max{AN |S1|, AN |S2|}
≤ AN max{MN−1, Mv−1}
≤ ANMN−1

= ζN

= MN ,(2.26)

where the first inequality follows since(1 − AN)S1 andS2 are of opposite signs and
An > 1. The second inequality follows from induction. The last equalities are direct
consequences of the definition ofMN and the fact thatAN > 1. The monotonicity of
{Mi} is employed in obtaining the third inequality.
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(2) v ≤ x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 − ANS2|
≤ |ANS1 + ANS2|
= AN |S1 + S2|
= AN |dv + dv+1 + · · ·+ dN−1|
≤ ANMN−1

= ζN

= MN .(2.27)

In (2.27), the first inequality follows since(1 − AN)S1 and−ANS2 are of the same
sign.

Case 2(AN > 1 andS1S2 ≤ 0)

(1) v > x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 + S2|
= | − ANS1 + (S1 + S2)|.(2.28)

If S1 andS1 + S2 are of the same sign, then

| − ANS1 + (S1 + S2)| ≤ max{AN |S1|, |S1 + S2|}
≤ ANMN−1

= MN .(2.29)

Otherwise,

| − ANS1 + (S1 + S2)| ≤ | − ANS1 + AN(S1 + S2)|
= AN |S2|
≤ ANMN−1

= MN .(2.30)

(2) v ≤ x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 − ANS2|
≤ max{AN |S1|, AN |S2|}
≤ ANMN−1

= MN(2.31)

Case 3(AN ≤ 1 andS1S2 > 0)
Note that forAN ≤ 1, Mi = 1 for all i.

(1) v > x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 + S2|
≤ |S1 + S2|
≤ MN−1

= MN .(2.32)
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(2) v ≤ x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 − ANS2|
≤ max{|S1|, |S2|}
≤ MN−1

= MN .(2.33)

Case 4(AN ≤ 1 andS1S2 ≤ 0)

(1) v > x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 + S2|
≤ max{|S1|, |S2|}
≤ max{MN−1, Mv−1}
= MN .(2.34)

(2) v ≤ x.

|dx + dx+1 + · · ·+ dN | = |(1− AN)S1 − ANS2|
≤ |S1 + S2|
≤ MN−1

= MN .(2.35)

Thus, in all cases|dx + dx+1 + · · · + dN | ≤ MN and hence by (2.23),|dN | ≤ ζN . Equation
(2.19) now follows since, for1 ≤ h ≤ n, |bn| = AhAh+1 · · ·An is attained for[αi,j] defined by

αi,j =


−Ah, if i = h

−Ai, if i > h, j = i

0, otherwise

.(2.36)

�

We close this section with an elementary result (without proof) which will serve to connect
entries inL−1

n with solutions to (2.1).

Lemma 2.5. SupposeM = [mi,j]n×n andy = [yi]n×1, satisfyMy = (1, 0, . . . , 0)′, with M
an invertible lower triangular matrix. Then,y1 = 1/m1,1, and

(2.37) yi =
i−1∑
j=1

(
−mi,j

mi,i

)
yj,

for 2 ≤ i ≤ n.

3. THE M AIN RESULT

We are now in a position to prove our main result.

Theorem 3.1.Supposeκ = (κi) satisfies

(3.1) 0 ≤ κ1 ≤ κ2 ≤ κ3 ≤ · · · ,

and set

(3.2) S
def
= {i : κi > 1}.
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As well, define{Wi,j} by

(3.3) Wi,j
def
=

∏
v ∈ (S

⋂
{j,j+1,...,i−2})

⋃
{i−1}

κv.

Then, for1 ≤ i ≤ n, |xi,i| ≤ 1/li,i and for1 ≤ j < i ≤ n,

(3.4) |xi,j| ≤
Wi,j

lj,j
.

Proof. Suppose thatn ≥ 1 andXn = L−1
n . Solving for the sub-diagonal entries in thepth

column ofXn leads to the matrix equation
lp,p

lp+1,p lp+1,p+1
...

...
...

ln,p ln,p+1 · · · ln,n




xp,p

xp+1,p
...

xn,p

 =


1
0
...
0

 .

Applying Lemma 2.5 givesxp,p = 1/lp,p, and

(3.5) xp+i,p =
i−1∑
j=0

(
− lp+i,p+j

lp+i,p+i

)
xp+j,p,

for 1 ≤ i ≤ n− p.
Now, note that (1.2) gives

(3.6) 0 ≤ lp+i,p

lp+i,p+i

≤ lp+i,p+1

lp+i,p+i

≤ · · · ≤ lp+i,p+i−1

lp+i,p+i

≤ κp+i−1.

Hence by Lemma 2.4,

|xp+i,p| ≤ |xp,p|Zi((κp, κp+1, . . . , κp+i−1))

=
1

lp,p

Wp+i,p,(3.7)

for 1 ≤ i ≤ n− p, and the theorem follows. �

4. EXAMPLES

In this section, we provide examples to illustrate some of the structural information contained
in Theorem 3.1.

Example 4.1(Equally spacedAi). Suppose thatAi = Ci for i ≥ 1, whereC > 0. Then, for
n ≥ 1,

Zn(a) =


nC, C ∈

(
0, 1

n−1

]
;

(n)kC
k, C ∈

(
1

n−k+1
, 1

n−k

]
, (2 ≤ k ≤ n− 1);

n!Cn, C ∈ (1,∞),

where(n)k = n(n− 1) · · · (n− k + 1).
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Consider the matrix

L7 =



1 0 0 0 0 0 0
0.25 1 0 0 0 0 0
0.5 0.5 1 0 0 0 0
0.75 0.75 0.75 1 0 0 0
1 1 1 1 1 0 0
0 1.25 1.25 1.25 1.25 1 0

1.5 1.5 1.5 1.5 1.5 1.5 1


,

with (rounded to three decimal places)

(4.1) X7 = L−1
7 =



1 0 0 0 0 0 0
−0.25 1 0 0 0 0 0
−0.375 −0.5 1 0 0 0 0
−0.281 −0.375 −0.75 1 0 0 0
−0.094 −0.125 −0.25 −1 1 0 0
1.25 0 0 0 −1.25 1 0

−1.875 0 0 0 0.375 −1.5 1


.

Applying Theorem 3.1, withκ = (.25, .50, .75, 1.00, 1.25, 1.50, . . . ) gives the entry-wise bounds

(4.2)



1 0 0 0 0 0 0
0.25 1 0 0 0 0 0
0.5 0.5 1 0 0 0 0
0.75 0.75 0.75 1 0 0 0
1 1 1 1 1 0 0

1.25 1.25 1.25 1.25 1.25 1 0
1.875 1.875 1.875 1.875 1.875 1.5 1


.

Comparing (4.1) and (4.2), the absolute values of entry-wise ratios are

(4.3)



1
1 1

0.75 1 1
0.375 0.5 1 1
0.094 0.125 0.25 1 1

1 0 0 0 1 1
1 0 0 0 0.2 1 1


.

Note that hereL7 was constructed so that|x7,1| = W7,1. In fact, as suggested by (2.19), for
each4-tuple(κ, I, J, n) with 1 ≤ J ≤ I ≤ n, there exists a pair(Ln, Xn) satisfying (1.2) with
Xn = (xi,j) = L−1

n , such that|xI,J | = WI,J .

Example 4.2(ConstantAi). Suppose thatAi = C for i ≥ 1, whereC > 0. Then, forn ≥ 1,

Zn(a) =

{
C, if C ≤ 1

Cn, if C > 1
.

In [3], the following theorem was obtained when (2.2) is replaced with

(4.4) 0 ≤ αi,j ≤ A,

for 0 ≤ j ≤ i− 1 andi ≥ 1.
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Theorem 4.1.Suppose thatA > 0 andm = [1/A], where square brackets indicate the greatest
integer function. If{Λj}∞j=1 is defined by

(4.5) Λn = max{|bn| : {bi} and[αi,j] satisfy (2.1) and (4.4)},
for n ≥ 1, then

(4.6) Λn =



A, if n = 1

max(A, A2), if n = 2[
n−2

2

] [
n−1

2

]
A3 + A, if 3 ≤ n ≤ 2m + 1

(n− 2)A2, if n = 2m + 2

AΛn−1 + Λn−2, if n ≥ 2m + 3

.

Proof. See [3]. �

Thus, if the monotonicity assumption in (2.2) is dropped the scenario is much different. In
fact, in (4.6),{Λn} increases at an exponential rate for allA > 0. This leads to the following
question.

Open Question.Set

(4.7) Λ∗n = max{|bn| : {bi} and[αi,j] satisfy (2.1) andαi,j ≤ Ai for 0 ≤ j ≤ i− 1}.
What is the value ofΛ∗n in terms of the sequence{Ai} and its assorted properties (eg. mono-
tonicity, convexity etc.)?
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