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ABSTRACT. This note employs recurrence techniques to obtain entry-wise optimal inequalities
for inverses of triangular matrices whose entries satisfy some monotonicity constraints. The
derived bounds are easily computable.
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1. INTRODUCTION

Much work has been done in the recent past to understand off-diagonal decay properties of
structured matrices and their inverses (cf. Benzi and Golub [1], Demko, Moss and Smith [4],
Eijkhout and Polman |5], Jaffard][6], Nabben [7] and [8], Peluso and Politi [9], Robinson and
Wathen [10], Strohmel [11], Vecchib [12] and the references therein).

This paper studies nonnegative triangular matrices with off-diagonal decay. In particular, let

b1
laa lap
L, = 31 32 33

ln,l ln,2 ln,S ln,n
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2 KENNETH S. BERENHAUT AND PRESTONT. FLETCHER

be an invertible lower triangular matrix, and

T1,1
To21 T22

-1
X,=L "= | T31 T32 33

Tni Tn2 Tnp3 - Tpn
be its inverse.

We are interested in obtaining bounds on the entrieX jnunder the row-wise monotonicity
assumption

(1.1) 0<ls<liog<--<lii—1 <l

for2 <i<n.
As an added generalization, we will considky| satisfying
(1.2) <t g2 o hun
Lii Lii Lii
for some nondecreasing sequeRce: (ki, ko, K3, - - . ).
The paper proceeds as follows. Secfipn 2 contains some recurrence-type lemmas, while the
main result, Theorein 3.1, and its proof are contained in Selction 3. The paper closes with some
illustrative examples.

o~

S Ri—1,

2. PRELIMINARY LEMMAS

In establishing our main results, we will employ recurrence techniques. In particular, suppose
{b;} and{«; ;} satisfy the linear recurrence

(2.1) bi= > (—air)be, (1 <i<n),
k=0
with by = 1 and
(2.2) O0<aip< a1 <ao< <1 <A,
fori > 1.

We will employ the following lemma, which reduces the scope of consideration in bounding
solutions to[(2.11).

Lemma 2.1. Suppose thafb, } and{«; ;} satisfy [2.1) and (2]2). Then, there exists a sequence
ai,as,...,a,, With0 < a; <iforl <i <mn,suchthatb,| < |d,|, where{d;} satisfies], = 1,
and forl < <n,

Zi_l (—Az)dj if a; <1

(2.3) =4 " .
0, otherwise
In proving Lemma 2J1, we will refer to the following result on inner products.

Lemma 2.2. Suppose thgb = (py,...,p,) andqg = (¢, . - ., ¢,)" are n-vectors with

(2.4) 0>p1>py > >p, > —A
Define

v P Tl:l/ -
(2.5) p.(v,A)=(0,0,...,0,—A,...,—A —A)
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for0 < v <n. Then,
(2.6) min {p; (v, 4) - q} < p-q < max {p] (v, 4) - g},

0<v<n

wherep - g denotes the standard dot proddgt”_, p;¢;.
Proof. Supposep is of the form

€1 €2
A A

(2.7) (D1, Djs =k, =k = A, —A),

With0 > p; > pp > --- > p; > —k > —A, e > 1 andey > 0. First, assume thai - g > 0,
and considess = Y7, ¢;. If S < 0then, since: < A4,

el €2
(28) <p17p27 S 7pj*17pj7r_A7 SR _"4\,_"47 ceey _A> -q Z D-q.
Otherwise, since-k < pj,
el €2
—_——~—
(29) (p17p27 -y Pj—1,PjsPjs- - -5 Py _Aa R _A) -q 2 p-q.

In either case, there is a vector of the form[in[2.7) with strictly less distinct values, whose inner
product withg is at least as large gs- g. Inductively, there exists a vector of the form|in (2.7)
with e; + e; = n, with as large, or larger, inner product. Hence, we have reduced to the case

el (D)
wherep = (—k,...,—k,—A, ..., —A), wheree; = 0 ande,, = 0 are permissible. If = 0 or
e; = 0, thenp = pj(e;, A). Otherwise, consides = > ', ¢;. If S <0, then
(2.10) p,(0,A)-q=p-q
If S >0,
(2.11) py(e,A)-q=zp-q
The result for the case - ¢ > 0 now follows from [2.10) and (2.11).
The case whep - g < 0 is handled similarly, and the lemma follows. O

We now turn to a proof of Lemnja 2.1.

Proof of Lemma 2]1The proof, here, involves applying Leminaj2.2 to successively “scale” the
rows of the coefficient matrix

—Q1.0 0 c. 0
—Qpo —O21 T 0
’
| —Qpo —Op1 - —Qpn—1

while not decreasing the value 8f,| at any step.
First, define the sequences

Q; = (-Oéao, N _ai,i—l) and
b = (by,....b;),

for0<k<j<n-—1landl <i<n.
Now, note that applying Lemnja 2.2 to the vectprs- &, andg = b""~! yields a vector
p* (v, A,) (asin [2.5)) such that either

(2.12) P (Vn, Ap) - 0" > @, - b"" T =b, >0
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or
(2.13) p(vn, Ay) - 0" < @&, b =1, <0

Hence, suppose that the entries of tifethroughn!” rows of the coefficient matrix are of the
form in (2.5), and expreds, as a linear combination &f, b, . . ., by i.e.

k
bn=> Cfb;
=1

k—1
(2.14) = Cfbp+ Y _ Cfby.
=1

Now, suppos&® > 0. As before, applying Lem@.Z to the vectprs= &, andg = %!
yields a vectomp; (v, Ax), such that

(2.15) Py vk, Ag) - B > @y b = gy
Similarly, if C¥ < 0, we obtain a vectop; (v, A), such that
(2.16) P (v, Ap) - b9 <@y - b =y

Using the respective entries i} (v, Ax) in place of those i, in ) will not decrease the
value ofb,,. This completes the induction for the case> 0; the casé, < 0 is similar, and
the lemma follows. O

Remark 2.3. A version of Lemmad 2]4 ford; = 1 was recently applied in proving that all
symmetric Toeplitz matrices generated by monotone convex sequences have off-diagonal decay
preserved through triangular decompositions (see [2]).

Now, Fora = (A, Ay, As,...), with

(2.17) 0<A <A< A3<---

define

(2.18) Zi(a) el maX{HAv 1<y Si},
v=j

fori > 1.

We have the following result on bounds for linear recurrences.

Lemma 2.4. Suppose that = (A;) satisfies the monotonicity constraint jn (2.17). Then, for
1> 1,

(2.19) sup{|b;| : {b;} and{q; ;} satisfy [2.1) and(2]3) = Z;(a).

Proof. Suppose thafb;} satisfies[(2]1) andl (4.2), and set= Z;(a) andM; = max{1, (;}, for
i > 1. From [2.18), we have

(2.20) Aip1iM; = Giga,

fori > 1. By Lemmd 2.1, we may find sequendes} and{q; } satisfying [2.B) such that
(2.21) du] = [bal.

We will show that{d;} satisfies the inequality

(2.22) di + disy + - -+ di| <M,

foro <1 <.
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Note that[(2.2R) (foi = n — 1) and [2.8) imply that/, =0 ora, <n —1and

n—1

> (—An)d;

Jj=an

n—1
> d;

Jj=an
S AnMnfl
(2.23) = (p.

|dn| -

Sincedy = 1,d; € {0,—A;} and

max{|di|, |do + di|} = max{1, A, |1 — A;|}
= max{l, A}
(2.24) = M,

i.e. the inequality in[(2.32) holds far = 1. Hence, suppose thdt (2]22) holds fox N.
Rewritingdy, with v = ax, we have fol) <z < N — 1,

dr+dx+1++dN:(dx+da:+1++dN—1)_An(dv++dN—l)

(2.25) (Aot dyo) (), o>z
| (1= AN)(do + -+ dyo1) — An(dy + +dyy), ifo <z
Let
dy+-+dyoy, fo>z
Sy = | |
dy + -+ +dyoy, fo<uao
and

dpy+ -+ dy_y, fo>zx
Sy = . .
dv—i‘"'—i‘dxfl, |f1)§x

In showing thatd, + d,.; + - - - + dy| < My, we will consider several cases depending on
whetherAy > 1 or Ay < 1, and the signs af; andS;.
Case 1(Ay > 1 andS5;S; > 0)

(1) v > .
|dx+dz+1+"'+dN‘ = ’(1_AN>51+SQ|
S maX{AN|Sl|,AN|SQ|}
< Aymax{My_1,M,_1}
< AnMpy_y
= (N
(2.26) = My,

where the first inequality follows sincg — Ay)S; and S, are of opposite signs and
A, > 1. The second inequality follows from induction. The last equalities are direct
consequences of the definition bfy and the fact thatly > 1. The monotonicity of
{M;} is employed in obtaining the third inequality.
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(2) v < x.
|dz + da}—H + e+ dN| == |(1 - AN)Sl - ANSQ|
<|ANS1 + AN S|
= An|S1 + Ss|
= Anldy + dypy1 + - -+ dn_1]
< AvMy_y
=y
(2.27) = My.
In (2.27), the first inequality follows sindd — Ax)S; and—Ay.S, are of the same
sign.
Case 2(Ay > 1 andS;5; <0)
1) v > .
|dy 4+ dyi1 + -+ +dy| = [(1 — An)S1 + S|
(2.28) =|— AnS1 + (S1 + S9)].

If S; andS; + S, are of the same sign, then

| — AN51 -+ (Sl + Sg)‘ S maX{AN\Sll, |Sl -+ SQ’}
< AyMn_q
(2.29) — My.

Otherwise,

| — AnS1+ (S1+ S2)| < | — AxS1 + An(S1 + S9)|
= An|S|
< AnMy_
(2.30) — My,

(2) v < z.
|dy +dpi1 + -+ dy| =|(1 — An)S1 — AnSs|
S maX{AN\Sl|,AN|SQ\}

< AvMn_y
(2.31) — My

Case 3(Ay < land$;S; > 0)
Note that forAy < 1, M; = 1 for all 7.

Q) v > =x.
|dy + dpy1 + - +dn| = [(1 = Ax)S1 + Sa
< Sy + S
< My
(2.32) — My.
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(2) v < x.
|de +dey1 + - +dy| = (1 — An)S1 — AnSs|
< max{[51], |S2[}
< Mn_y
(2.33) = My.
Case 4(Ay < 1land$S;S; <0)
Q) v >z
|dz + dor1 + -+ dy| = [(1 = An)S1 + 52
< max{|51, 52|}
< max{Mn_1, M,_1}
(2.34) = My.
(2) v < x.
|dy + dyi1 + - +dn| = |(1 — An)S1 — AnSs|
< |S1 + o
< My
(2.35) = My.

Thus, in all case§l, + d,+1 + - -+ + dy| < My and hence by (2.23)dn| < (y. Equation
(2.19) now follows since, fot < h < n, |b,| = A,An41 - - - A, is attained fofw; ;] defined by

—Ay, fi=h
0, otherwise

O

We close this section with an elementary result (without proof) which will serve to connect
entries inL,,' with solutions to[(2.]L).

Lemma 2.5. SupposeV = [m; j|nxn @aNdy = [y;]nx1, satisfyMy = (1,0,...,0)’, with M
an invertible lower triangular matrix. Ther, = 1/m, ;, and

i—1
mi,~
(2.37) =3 (—m,? ) v

for2 <i<n.

3. THE MAIN RESULT
We are now in a position to prove our main result.

Theorem 3.1. Suppose: = (kx;) satisfies

(3.1) 0<kK <hy<KRg< -+,
and set
(3.2) SY ik > 1),
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As well, defind W, ;} by

(33) Wi,j déf H Ry
v e (SN{Gj+1.i=2}) U {i-1}

Then, forl < i <mn, |z;;] <1/l;; andforl < j <i <n,

Wi,
(34) |l’i7j’ S o .
L

Proof. Suppose that > 1 and X,, = L;'. Solving for the sub-diagonal entries in th#&
column of X ,, leads to the matrix equation

bpp Lp,p 1
lpt1p Iptiper Tp+ip | 0
bnp bipt1 o0 lam Ln,p 0

Applying Lemmd 2.5 gives;,, = 1/1,,, and
VA

(3.5) Lp+ip = Z (_@) Lp+j,ps
=0 p+i,p+i

forl1 <i<n-—p.
Now, note that[(1]2) gives

lpti lpti lpti pti—
(3.6) e e L N L
p+i,pti p+i.pti p+i.pti
Hence by Lemmp 24,
[Tpripl < |Tppl Zi((Kps Kpris s Kprio1))
1
(3.7) =+ Wotis
b,p
for1 <i¢ < n — p, and the theorem follows. O

4. EXAMPLES

In this section, we provide examples to illustrate some of the structural information contained
in Theoreni 3.

Example 4.1(Equally spaced!;). Suppose tha#l; = Ci for: > 1, whereC' > 0. Then, for
n>1,

= 3

nC, Ce (0, %1] ;
Zn(a) =13 (n)pC*, C € (n—k—i—l’ #} , (2<k<n-1)

nlC™,  C € (1,00),

where(n)y =n(n—1)---(n —k+1).
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Consider the matrix

1 0 0 0 0 0 0
025 1 0 0 0 0 0
05 05 1 0 0 0 0
L;=1| 075 0.75 075 1 0 0o 01,
1 1 1 1 1 0 O
0 1.25 1.25 1.25 125 1 O
1.5 15 15 15 15 15 1
with (rounded to three decimal places)
1 0 0 0 0 0 0
—0.25 1 0 0 0 0 0
—-0.375 —0.5 1 0 0 0 0
4.2) X;=L;'=| -0281 -0375 —-0.75 1 0 0 0
—0.094 —0.125 —-0.25 -1 1 0 0
1.25 0 0 0 —-1.25 1 0
—1.875 0 0 0 037 —15 1

Applying Theoren 3]1, with = (.25, .50,.75, 1.00, 1.25, 1.50, . . . ) gives the entry-wise bounds

1 0 0 0 0 0 0

0.25 1 0 0 0 0 0

0.5 0.5 1 0 0 0 0

(4.2) 0.75 0.75 0.75 1 0 0 0
1 1 1 1 1 0 0

1.25 1.25 125 125 125 1 O

1.875 1.875 1.875 1.875 1.875 1.5 1

Comparing[(4.]1) and (4.2), the absolute values of entry-wise ratios are

1
1 1

075 1 1

(4.3) 0375 05 1

1
0.094 0.125 025 1 1
1 0 0O 0 1 1
1 0 0 0 02 11
Note that herel.; was constructed so that;;| = W7 ;. In fact, as suggested 19), for
eachd-tuple (k, I, J,n) with 1 < J < I < n, there exists a paitL,,, X ,,) satisfying (1.2) with
Xn = (l’@j) = L;l, such tha¢$17j| = WLJ.

Example 4.2(Constant4;). Suppose thatl; = C fori > 1, whereC' > 0. Then, forn > 1,
c, ifC<l1
Zn(a') - .
ct, ifC>1
In [3], the following theorem was obtained when (2.2) is replaced with
(4.4) 0<a;; <A,

for0 <j<i—1andi> 1.
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Theorem 4.1. Suppose thatt > 0 andm = [1/A], where square brackets indicate the greatest
integer function. If{A;}22, is defined by

(4.5) A, = max{|b,| : {b;} and[«; ;] satisfy [2.1) and (4]4)

forn > 1, then

(A, ifn=1
max (A, A?), ifn=2
(4.6) A=< [%2] [5] AP+ A, f3<n<2m+1
(n —2)A% if n=2m+2
| AN+ Apo, if n>2m+3
Proof. Seel[3]. O

Thus, if the monotonicity assumption in (.2) is dropped the scenario is much different. In
fact, in (4.6),{A,} increases at an exponential rate for.4lt> 0. This leads to the following
guestion.

Open Question.Set

(4.7) A} = max{|b,| : {b;} and|q; ;] satisfy [2.1) andy; ; < A, for0 < j <i—1}.

What is the value of\’ in terms of the sequende4;} and its assorted properties (eg. mono-
tonicity, convexity etc.)?
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