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ABSTRACT. In this paper, some sharp inequalities for bounding the gamma furictionand
the ratio of two gamma functions are established. From these, several known results are recov-
ered, refined, extended and generalized simply and elegantly.
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In [4], it was proved that the function
InT'(z+1)

® fla) = ===

is strictly increasing fron{1, co) onto (1 — ~, 1), where~ is Euler-Mascheroni’s constant. In
particular, forz € (1, 00),
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In [1, Theorem 2], inequality {2) was extended and sharpenedzlf0, 1), then
(3) pole=1)—r ~ I(z) < LPE=1)—

with the best possible constants= 1 — v andg = %(%2 — 7). If z € (1,00), then inequality
(3) holds with the best possible constants- %(%2 — ) andj = 1.

In [8], by using the convolution theorem for Laplace transforms and other techniques, in-
equalities[(R) and {3) were refined: The double inequality

T—y z—1/2

4) T~ I'(z) < ’
holds forx > 1 and the constantg and% are the best possible. For< x < 1, the left-hand
inequality in [4) still holds, but the right-hand inequality i (4) reverses.

exfl exfl

Remark 1. The double inequality {4) can be verified simply as follows:In [3], the function

(5) 0(z) = zlnz — ()]

was proved to be decreasing and conveiirno) with (1) = ~ and two limitslim, o+ 6(z) =

1 andlim, .. f(z) = 1. Since the functiory,(z) = “~& for z > 0 satisfiesxggj—(gf;) —
z[¢(z) — Inz] + q, itincreases for > 1, decreases fax < 1, and has a unique minimum for
$ < a < 1in (0,00). This implies that the function, () decreases if0, ;) and increases in
(20, 00) for a = zp[lnzg — ¥ (x0)] and allzy € (0, 00). Hence, taking:, = 1 yields thatw = v
andg,(z) decreases if0, 1) and increases ifl, o), and takingy = 3 gives that the function
g1/2(x) is decreasing if0, co). By virtue of g,(1) = e, the double inequality {4) follows.

The first main result of this paper is the following theorem which can be regarded as a gener-
alization of inequalitieq (2)[ (3) anf](4).

Theorem 2. Leta be a positive number. Then the functig)ﬁ% is decreasing in0, a

and increasing irfa, ), and the functior.-% in (0, o) is increasing if and only i6 > 1 and
decreasing if and only & < %

Proof. This follows from careful observation of the arguments in Rerpark 1. O
Fora > 0 andb > 0 with a # b, the mean
1/ 50\ V-0
(6) I(avb) = _<_>
e\ a®

is called the identric or exponential mean. See [9] and related references therein.
As direct consequences of Theorgm 2, several sharp inequalities related to the identric mean
and the ratio of gamma functions are established as follows.

Theorem 3. Fory >z > 1,

™ Ho) 2 L)

_ - )

Y-z T Y-z )
< S e or ) < (1) 1Y
If 1 >y >z > 0, inequality(7]) reverses.

Fory > x > 0, inequality
D(z) a*° - y\'T(y)
8 \M o oy I y—x J ) 2\
© o) “pt 7 Iyl < (x I'(z)
holds if and only ih > 1. The reversed inequalii) is valid if and only ifb < %
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Proof. Letting a = 1 in Theoren] b gives that the functidh-2 is decreasing ir{0, 1] and
increasing in1, co). Thus, fory > = > 1,

o eT(@) _ ()

Ty yur
Rearranging (9) leads to the inequalitiesih (7).
The rest of the proofs are similar, so we shall omit them. O

Remark 4. The inequalities in(7) an{8) have been obtainedlin [7] ahd [2, Theorem 4]. How-
ever, Theorem|3 provides an alternative and concise proof olig®asic-Alzer’s double in-
equalities in[[2[7]. In[[5, B], several new inequalities similarto (7) and (8) were presented.

The third main results of this paper are refinements and sharpenings of the double inequalities
(@), (3) and[(%), which are stated below.

Theorem 5. The function

_eI'(x)
(10) h(z) = e[l 2+ 9(@)]

in (0, 00) has a unique maximumat = = 1, with the limits

(11) lim, h(z) =1 and lim h(z) = V2.
x—0 T—00
Consequently, sharp double inequalities
z[1—In z+1)(z)] z[1—Inz+¢(z)]
(12) <T@ <
er er—
in (0,1] and
/9 z[1—Inz+(x)] z[1—Inz+1(x)]
(13) i <T(r) <
e er=

in [1, 00) are valid.
Proof. Direct calculation yields
(14) W(x) = [Inz —(z) — xpz e @-UD(g) In g,

Since the factory’(z) + ¥ (z) — Inz — 1 = —60'(x) andd(z) is decreasing if0, ), the
functionh(z) has a unigue maximumatz = 1.

The second limit in[(1]1) follows from standard arguments by using the following two well
known formulas: Asc — oo,

B 1 In(27) 1 1
(15) IHF(I>—(I—§>1H$—$+ 5 +m+0<5),
1 1 1
Direct computation gives
(17) 1113[)1+ Inh(z) = lirgl+ Inl(z) — z¢(x)Inz] =0
by utilizing the following two well known formulas
> T i
18 —Inl'(z) =1 Inf14+—-|——
(18) nl'(z) nx+7x+;{n( +k) k‘}
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and
(19) )= 3 (!
-7 — E+1 z+k
for z > 0. The proof is complete. O

Remark 6. The graph in Figurg|1 plotted by MHEMATICA 5.2 shows that the left hand sides

-0.05¢

Figure 1: Graph ofZ— — Var 2™l i (1, 5)

eT

in double inequalities (4) anfl (IL3) far> 1 do not include each other and that the lower bound
in (13) is better than the one in|(4) when> 1 is large enough.
As discussed in Rema@ 1, the double inequality: z[Inz — ¢ ()] < 1in (0,00) clearly
holds. Therefore, the upper bounds[in|(12) gnd (13) are better than the corresponding one in

@.

Theorem 7. Inequality

x[ln:v—d)(z)]r( ) 1/(z—y)
T T
(20) Iay) < {yyunyww)}r(y) }

holds true forz > 1 andy > 1 withx £ 4. If 0 < x < 1and0 < y < 1 with x # y, inequality
(20)is reversed.

Proof. From Theorem5, it is clear that the functibfr) is decreasing ifil, co) and increasing
in (0,1]. A similar argument to the proof of Theorém 3 straightforwardly leads to inequality
(20) and its reversed version. O

Remark 8. The inequality[(2D) is better than those[if (7), since the function
(21) q(t) £ () —Int]—y

is decreasing inl0, co) with ¢(1) = 1 andlim;_,+ ¢(t) = oo, which is shown by the graph of
q(t), plotted by MATHEMATICA 5.2.
It is conjectured that the functiay(t) is logarithmically completely monotonic if®, o).
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