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ABSTRACT. In this paper, some sharp inequalities for bounding the gamma functionΓ(x) and
the ratio of two gamma functions are established. From these, several known results are recov-
ered, refined, extended and generalized simply and elegantly.
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In [4], it was proved that the function

(1) f(x) =
ln Γ(x+ 1)

x lnx

is strictly increasing from(1,∞) onto (1 − γ, 1), whereγ is Euler-Mascheroni’s constant. In
particular, forx ∈ (1,∞),

(2) x(1−γ)x−1 < Γ(x) < xx−1.
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In [1, Theorem 2], inequality (2) was extended and sharpened: Ifx ∈ (0, 1), then

(3) xα(x−1)−γ < Γ(x) < xβ(x−1)−γ

with the best possible constantsα = 1− γ andβ = 1
2

(
π2

6
− γ

)
. If x ∈ (1,∞), then inequality

(3) holds with the best possible constantsα = 1
2

(
π2

6
− γ

)
andβ = 1.

In [8], by using the convolution theorem for Laplace transforms and other techniques, in-
equalities (2) and (3) were refined: The double inequality

(4)
xx−γ

ex−1
< Γ(x) <

xx−1/2

ex−1

holds forx > 1 and the constantsγ and 1
2

are the best possible. For0 < x < 1, the left-hand
inequality in (4) still holds, but the right-hand inequality in (4) reverses.

Remark 1. The double inequality (4) can be verified simply as follows: In [3], the function

(5) θ(x) = x[lnx− ψ(x)]

was proved to be decreasing and convex in(0,∞) with θ(1) = γ and two limitslimx→0+ θ(x) =

1 and limx→∞ θ(x) = 1
2
. Since the functiongα(x) = exΓ(x)

xx−α
for x > 0 satisfiesxg

′
α(x)

gα(x)
=

x[ψ(x)− lnx] + α, it increases forα ≥ 1, decreases forα ≤ 1
2
, and has a unique minimum for

1
2
< α < 1 in (0,∞). This implies that the functiongα(x) decreases in(0, x0) and increases in

(x0,∞) for α = x0[lnx0−ψ(x0)] and allx0 ∈ (0,∞). Hence, takingx0 = 1 yields thatα = γ
andgγ(x) decreases in(0, 1) and increases in(1,∞), and takingα = 1

2
gives that the function

g1/2(x) is decreasing in(0,∞). By virtue ofgα(1) = e, the double inequality (4) follows.

The first main result of this paper is the following theorem which can be regarded as a gener-
alization of inequalities (2), (3) and (4).

Theorem 2. Let a be a positive number. Then the function exΓ(x)

xx−a[ln a−ψ(a)] is decreasing in(0, a]

and increasing in[a,∞), and the functione
xΓ(x)
xx−b

in (0,∞) is increasing if and only ifb ≥ 1 and
decreasing if and only ifb ≤ 1

2
.

Proof. This follows from careful observation of the arguments in Remark 1. �

Fora > 0 andb > 0 with a 6= b, the mean

(6) I(a, b) =
1

e

(
bb

aa

)1/(b−a)

is called the identric or exponential mean. See [9] and related references therein.
As direct consequences of Theorem 2, several sharp inequalities related to the identric mean

and the ratio of gamma functions are established as follows.

Theorem 3. For y > x ≥ 1,

(7)
Γ(x)

Γ(y)
<
xx−γ

yy−γ
ey−x or [I(x, y)]y−x <

(
y

x

)γ
Γ(y)

Γ(x)
.

If 1 ≥ y > x > 0, inequality(7) reverses.
For y > x > 0, inequality

(8)
Γ(x)

Γ(y)
<
xx−b

yy−b
ey−x or [I(x, y)]y−x <

(
y

x

)b
Γ(y)

Γ(x)

holds if and only ifb ≥ 1. The reversed inequality(8) is valid if and only ifb ≤ 1
2
.
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Proof. Letting a = 1 in Theorem 2 gives that the functione
xΓ(x)
xx−γ

is decreasing in(0, 1] and
increasing in[1,∞). Thus, fory > x ≥ 1,

(9)
exΓ(x)

xx−γ
<
eyΓ(y)

yy−γ
.

Rearranging (9) leads to the inequalities in (7).
The rest of the proofs are similar, so we shall omit them. �

Remark 4. The inequalities in (7) and (8) have been obtained in [7] and [2, Theorem 4]. How-
ever, Theorem 3 provides an alternative and concise proof of Kečlić-Vasíc-Alzer’s double in-
equalities in [2, 7]. In [5, 6], several new inequalities similar to (7) and (8) were presented.

The third main results of this paper are refinements and sharpenings of the double inequalities
(2), (3) and (4), which are stated below.

Theorem 5. The function

(10) h(x) =
exΓ(x)

xx[1−lnx+ψ(x)]

in (0,∞) has a unique maximume at x = 1, with the limits

(11) lim
x→0+

h(x) = 1 and lim
x→∞

h(x) =
√

2π .

Consequently, sharp double inequalities

(12)
xx[1−lnx+ψ(x)]

ex
< Γ(x) ≤ xx[1−lnx+ψ(x)]

ex−1

in (0, 1] and

(13)

√
2π xx[1−lnx+ψ(x)]

ex
< Γ(x) ≤ xx[1−lnx+ψ(x)]

ex−1

in [1,∞) are valid.

Proof. Direct calculation yields

(14) h′(x) = [lnx− ψ(x)− xψ′xxx[lnx−ψ(x)−1]Γ(x) ln x.

Since the factorxψ′(x) + ψ(x) − lnx − 1 = −θ′(x) andθ(x) is decreasing in(0,∞), the
functionh(x) has a unique maximume atx = 1.

The second limit in (11) follows from standard arguments by using the following two well
known formulas: Asx→∞,

ln Γ(x) =

(
x− 1

2

)
lnx− x+

ln(2π)

2
+

1

12x
+O

(
1

x

)
,(15)

ψ(x) = lnx− 1

2x
− 1

12x2
+O

(
1

x2

)
.(16)

Direct computation gives

(17) lim
x→0+

lnh(x) = lim
x→0+

[ln Γ(x)− xψ(x) ln x] = 0

by utilizing the following two well known formulas

(18) − ln Γ(x) = lnx+ γx+
∞∑
k=1

[
ln

(
1 +

x

k

)
− x

k

]
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and

(19) ψ(x) = −γ +
∞∑
k=0

(
1

k + 1
− 1

x+ k

)
for x > 0. The proof is complete. �

Remark 6. The graph in Figure 1 plotted by MATHEMATICA 5.2 shows that the left hand sides

2 3 4 5

-0.1

-0.05

0.05

Figure 1: Graph ofx
x−γ

ex−1 −
√

2π xx[1−ln x+ψ(x)]

ex in (1, 5)

in double inequalities (4) and (13) forx > 1 do not include each other and that the lower bound
in (13) is better than the one in (4) whenx > 1 is large enough.

As discussed in Remark 1, the double inequality1
2
< x[lnx − ψ(x)] < 1 in (0,∞) clearly

holds. Therefore, the upper bounds in (12) and (13) are better than the corresponding one in
(4).

Theorem 7. Inequality

(20) I(x, y) <

{
xx[lnx−ψ(x)]Γ(x)

yy[ln y−ψ(y)]Γ(y)

}1/(x−y)

holds true forx ≥ 1 andy ≥ 1 with x 6= y. If 0 < x ≤ 1 and0 < y ≤ 1 with x 6= y, inequality
(20) is reversed.

Proof. From Theorem 5, it is clear that the functionh(x) is decreasing in[1,∞) and increasing
in (0, 1]. A similar argument to the proof of Theorem 3 straightforwardly leads to inequality
(20) and its reversed version. �

Remark 8. The inequality (20) is better than those in (7), since the function

(21) q(t) , tt[ψ(t)−ln t]−γ

is decreasing in(0,∞) with q(1) = 1 andlimt→0+ q(t) = ∞, which is shown by the graph of
q(t), plotted by MATHEMATICA 5.2.

It is conjectured that the functionq(t) is logarithmically completely monotonic in(0,∞).
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