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ABSTRACT. We discuss a refinement of an inequality from Information Theory using other
well known inequalities. Then we consider relationships between the logarithmic mean and
inequalities of the geometric-arithmetic means.
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1. RESULTS
The following inequality is well known in Information Theory [1], see alsb [4].
Proposition 1.1. Letp;,g; > 0, wherel < i < nand) ;  p; = Y . ,9. Then0 <
S piln(pi/g;) with equality iffp; = g;, for all i.

The following improves this inequality. Indeed, the lower bound is sharpened, an upper
bound is provided, and the equality condition is built right in.

Proposition 1.2. Letp;,g; > 0, wherel <: <nand) "  p, => ., g;. Then the following
estimates hold.

- 9:(9: — i) pi 9i(9: — pi)*
; (gi)z + (max glvpl 2 a sz = ( ) - Z (gz) + (min(gi7pi))2

Proof. We begin with the inequality [6]
1 < ln( )
x?+1 7 22-1

(1.1)

1
<2— forx > 0.
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Thus , ,
¢t —1 T —
<l < for 0 <1
2z n(m)_x2+1 Srsh
and , ,
zv—1 x
x2+1§1n(:v)§ forl <uz.
Equalities occur only for = 1. We rewrite these as
(z —1)° z(r — 1)°
(1.2) r—1-— 5 §1n(x)§x—1—x2—+1 for0 <z <1,
and
z(z — 1) (z —1)?

Now, substitutingy; /p; for z in (1.7) and[(1.8), and then summing we obtain

9i(9: — pi)? i
2 6= D D (g S Zp”“( )

[

9i<pi 9i<pi 9i<pi 9i<pi
9i(gi — pi)?
SDIED DS e
9i<pi 9i<pi 9i<pi gi pi
and
9i(9: — pi)? i
IUEDIED S D AN €Y
9:>Di 95>Di 9 >Di (9:)* + (ps) 9i>Dpi pi
gz 9 — pz)2
= Zgi sz Z (g:)% + (g;)?
gi>Dpi gi>Di gi>pi ¢ ¢
respectively.
Taking these together and usidg;_, p; = >"" | g; we have our proposition. O
2. REMARKS

Remark 2.1. With G = /zy, L = (z —y)/(In(z) — In(y)), andA = (z + y)/2, being
the Geometric, Logarithmic, and Arithmetic Meansaxofy > 0 respectively, the inequality
G < L < Aiswell known [8], [2]. This can be proved by observing (c.f. [5]) that

1
L—/ zhy!~t dt,
0

Theorem 2.2(Hadamard’s Inequality)If f is a convex function ofu, b], then

o-ar (“5) < [ rwa< L0000

with the inequalities being strict whefhis not constant.

and then applying the following:

The inequality in[(1.]l) now can be obtained by letting= 1/z in G < L < A. Thus any
refinement ofG < L < A would lead to an improved version of (IL.1) and in principle, to
an improvenemt of Proposm.. 2. For example, it is also known @hat GiAs < L <
2G + 1A < A [3], [8], [2]. The latter can be proved simply by observing that the left side of
Hadamard’s Inequality is the midpoint approximatibhto L and the right side is the trapezoid
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approximation?’. Now %M + %T Is Simpson’s rule and looking at the error term there (e.g.
[7]) yields L < 2G + 3 A < A.

Remark 2.3. UsingG < G345 < L < 2G4+ 3A < A withy =z + 1 we get
22 +1\7
D < (Val ) (25
1 2 12x+1 20+ 1
<~ <= 1) + = < .
Shirn Sgvrletrs——s =

Therefore

( 1) o ( 1)(m>”3<h;1>”3
<e<

1+~ 1+ =
i i

(c.f. [4]). For exampler = 100 gives2.71828182842204 < e < 2.71828182846830. Now
e = 2.71828182845905. .. , so the left and right hand sides are both correct to 10 decimal
places. We point out also thatdoes not need to be an integer.
Remark 2.4. UsingG < G3 A3 <L < %G + %A < A, and replacing: with ¢* and letting
y = e %, we have
inh 2 1
1 < (cosh(z))? < sinh(x) < 3 + 3 cosh(z) < cosh(x).
T
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