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Abstract

Theoretical results involving approximation of integrals are often established
from the construction and resultant manipulation of an appropriate kernel. The
systematic use of these kernels has produced an abundance of new approxi-
mations and error estimates in terms of norms of the integrand. Notwithstand-
ing the great success of this approach, many approximations and error results
have yet to be discovered due to the algebraic complexities involved; especially
those that involve product integrands.

We outline a method that uses the computer algebra system Maple that is
able to recapture the well known Ostrowksi, trapezoidal and Simpson’s inequal-
ities. Moreover, the technique, which involves manipulation of the Peano kernel,
can be adapted to develop new rules.

2000 Mathematics Subject Classification: Primary: 68W30, 65D30; Secondary:

26D10, 26D15.

Key words: Symbolic computation, Numerical integration, Simpson’s rule, Trape-
zoidal rule, Integral inequalities.

This paper is based on the talk given by the author within the “International
Conference of Mathematical Inequalities and their Applications, 1", December 06-
08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/
conference |

The author is currently employed with the National Australia Bank. Contact email is:
John_Roumeliotis@national.com.au.

Integral Inequalities and
Computer Algebra Systems

John Roumeliotis

Title Page

Contents
“« | »
« |

Close

Quit
Page 2 of 44

|
|
|
|
Go Back |
|
|
|

J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:John.Roumeliotis@vu.edu.au
http://jipam.vu.edu.au/
http://www.ams.org/msc/
http://rgmia.vu.edu.au/conference
http://rgmia.vu.edu.au/conference

1 INtroduction. . . ...t 4
2 Ostrowski’s inequality — Manual Calculation. . .......... 5
3 Ostrowskilnequality. .......... ..o, 8
4 Corrected TrapezoidalRule .. ........................ 10
5 New Corrected TrapezoidalRule. . .................... 16
6 Modified Simpson'sRule............... ... ... 31
7 OtherResUltS. ... ...t e 38
References

Integral Inequalities and
Computer Algebra Systems

John Roumeliotis

Title Page

<4< 44
< >
Go Back
Close
Quit
Page 3 of 44

J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:John.Roumeliotis@vu.edu.au
http://jipam.vu.edu.au/

Newton-Cotes and Newton-Cotes type integration has been an area of much
recent activity. Cerone, Dragomir, €&iC and others have reported on gener-
alizations of the Ostrowski, trapezoidal and Simpson rules. These results have
involved new bounds being expressed in different norms,[©, 14, 1¢] as well
as new generalizations of the rules themselies [5]. For a good overview
we refer the reader to the survey] [and the book [1]. Much may be gar-
nished from the work of Cerone [ 3, 4, 5, 6] whose results are a considerable y
. . ) Integral Inequalities and

generallzatlon of previous work. Computer Algebra Systems

Most of these results can be obtained via manipulation of the appropriate
Peano kernel and nearly all of the algebra required to establish these results
require partial integration, differentiation and some simplification - all of which
may be done by modern computer algebra systems (CAS’s) such as Néple [ e P
Mathematica and MuPad. The algebraic techniques employed here are inspired Contents
by the early work of Dragomir and Wang][

In this paper we begin by detailing the manual steps required to prove the
Ostrowksi inequality. In Sectiond and4 we show, with considerable detalil, < >
how Maple can be used to prove the Ostrowksi and corrected trapezoidal in-

John Roumeliotis

<4< 44

. . . . Go Back
equalities. In Sectiorb, Maple is used to establish a new corrected trape-
zoidal rule whose upper bound is 1.7 times smaller than the canonical cor- Close
rected trapezoidal rule. In Sectidih Maple is used to recapture a recently Quit
published modified Simpson rulé{]. Each of Section8 — 6 are independent
Page 4 of 44

Maple worksheets which the reader is encouraged to download Higm
Ilimwvww.roumeliotis.com.au/john/maple
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Ostrowski’s inequality, a generalized mid-point inequality, is quite simple to
establish. The proof involves partial integration of a piecewise linear Peano
kernel to obtain the rule and integration of the absolute value of the kernel to
obtain the bound.

The proof of Ostrowski’s inequality is well known and has been reproduced
many times in the literature. See for example the bobi] ¢r the paper 1.

‘Theorem. 2.1 (Qstrqwski). Letf: ITCR—-R pe a differentiable mapping Cér;g%%rtilrlgzqeubagig;g?n .
in [° (I° is the interior of), and leta,b € I° witha < b. If f' : (a,b) —
R is bounded ona,b), i.e., ||f']|o = tes(t:%]f’(tﬂ < oo, then we have the Ll (RO it
inequality: 2 Title Page
ey |f Fe) = (- a)f)| < [(6_4@)2 * ( - “;b) £l Contents
‘ <« »
forall = € (a,b). P >
Proof. Let the Peano kernelbe given by Go Back
o(t) = {t—a, a<t<u, Close
t—b, z<t<b, Quit
for somex € [a, b]. Integrating the produgi(t) f'(¢) gives Page 5 of 44
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(2.2) szmwmﬁ

T b
(2.3) =/mvmw+/mwmﬁ

(2.4) =(x—a)f /f t)ydt — (x —b)f /f dt

(2.5) (b—a) / F(t)

Integral Inequalities and
Computer Algebra Systems

Holder’s inequality is used to obtain the bound. John Roumeliotis

b
(2.6) f@)dt —(b—a)f(z)| = || Title Page
b Contents
2.7) _ / of dt‘
a . 44 >
(2.8) <17l [ ol « |_»
; x b Go Back
9) 11 ([t ads [o-car) Close
b— a)? a+b Quit
@10 _[<4>+@_ ) (171
Page 6 of 44

From a computer algebra perspective, the important steps are the integration DY meroe s s v 66 A 14z, 2005
parts in .3) to (2.4) and integration of the positive kernel i.8) to (2.10. http://jipam.vu.edu.au
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For complex kernels, it is often difficult to ascertain whether a kernel is positive
(as in equation4.9)), and certainly cannot be automatically determined by a

CAS. -

In the next section we show the Maple steps used to estaldigh (It is
helpful to compare each step with those2n2j—(2.10) above.
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In this section, we will use the Maple computer algebra system to derive the well
known Ostrowski inequality. This section is an actual Maple worksheet called
ostrowski.mwswhich you can download fromnttp://www.roumeliotis.
com.au/john/maple

> restart;

> with( student ):

The Ostrowski inequality is a first order approximation for a finite integral
using a general interior point Hence the kernel is of first order and vanishes
at the pointg = a andt = b. Define the general kernelt, ) = t — = where
a<zandz <b

> p = (tx) -> t-Xx;

p=(tz)—t—x

Integrating the produgt(¢) (< £(¢)) by parts and simplifying produces the
approximation.

> Ostr_rule intparts( Int(

p(t.a)*D(f)(t) , t=a.x ) , p(ta) ) +
intparts( Int( p(t,b) * D(f)({t) , t=x..b ) ,

p(t.b) );
Ostr_rule :== (v — a) f(z) — /xf(t) dt — (x — b) f(z) — / f(t) dt

collect( combine( Ostr_rule ) , f);

vV VvV Vv

> Ostr_rule :

Ostr_rule :== (b — a) f(z) + /b —f(t) dt
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To obtain the bound, via Holder’s inequality, we need to integiate |.

>
>

Completing the square and factorizing the constant term produces the result

>
>
>

Ostr_bound := int( p(t,a) , t=a..x )
- int( p(t,b) , t=x..b );
a® b?
Ostr_bound := z* — 5 - a(x —a)— 5+ b

Ostr_bound

op( 1, completesquare

(—x+b)

(Ostr_bound , x )) + factor ( Ostr_bound -
op ( 1, completesquare ( Ostr_bound , x )) );

Ostr_bound := (v — = — =)?> +

a b
2 2

2

(a—b)*
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In this section, we will use the Maple computer algebra system to derive the
corrected trapezoidal rule using a Peano kernel approach. This section is an
actual Maple worksheet callembrrected_trap.mwswhich you can download
from http://www.roumeliotis.com.au/john/maple

The corrected rule is fourth order and is defined over one mt@mya] this
contrasts with the Ostrowski kernel which has separate definitions for [a,x] and
(x,b]. Recall that the corrected trapezoidal rule is

(4.1) / fo b—c;)f(a) N (b—c;)f(b)
(b—a)*D(f)(a) (b—a)>D(f)()
* 12 N 12 +E
where

max(|(D)(N))® — a)®

El <
Bl < 720

Define an arbitrary fourth order polynomial as our Peano kernel and solve
for the coefficients of the kernel by specifying the required coefficients of the
rule. To beginyrestart  the Maple kernel and load theudent package
which is required for the following calculations.

> restart; with( student ):
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Define the general fourth order Peano kerpél).

oD o=t > UAMEA[DE-ALR])
> *(t-AB]D*(t-Al4]);
(t = Ay) (t— Ag) (t — A3) (t — Ay)

pi=t— 1

Definel_rule to be the integral of the produt®™)(f)(¢) p(t).
> Lrule := Int( (D@@4)H () * p(t) , t=a.b );

"1
I_rule ;:/aﬂ(n V)L (E— Ay (E— As) (£ — Ag) (t — Ay) dt

This is integrated by parts four times. The Maple commapglyop is
used to integrate the required part of the expression.

intparts( |_rule , p(t) ):

applyop( intparts , nops(%) |,

% , diff( p(t),t ) ):

applyop( intparts , nops(%) |,

% , diff( p(t),t$2 ) ):

Corr_Rule := applyop( intparts , nops(%) ,
% , diff( p(t),t$3 ));

vV V.V V V V V
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1

Corr_Rule := 51 (b— Ay (b— Ag) (b— A3) (b— Ay) (DO)Y(f)(b)
= 2—14 (a— A1) (a— Az) (a = A3) (a — As) (DP)(f)(a) — (
5 (b= As) (b= A3) (b— Au) + 5 (b— A1) (b— A3) (b~ A
b (0= A (b= As) (b= A) + 52 (b= A) (b= A2) (b — 43)(D2)(/)(0)
Integral Inequalities and
4 (i (a _ A2) (a _ A3) (a _ A4) + 2_14 (a . Al) (a . Ag) (a . A4) Computer Algebra Systems
John Roumeliotis
¥ (0= A) (0~ As) (a— A2 + o2 a — Ay (a— 49) (a— 4)) (D) (F)(a)
(2 (b= Ag) (b= Ay) + = (b= Ap) (b— A) + — (b— Ay) (b— As) L L
12 ’ Y12 2 Y12 ? ° Contents
b (b= A (b= A b5 (b= A) (b= Ag) + 75 (0= A) (b— A)D(A)B) 4 | »
(o5 (0= Ag) (0= A4) + = (0~ Ay} (a— As) 2 (a — A2) (a — Ay) ‘ >
Go Back
—|—1—12(a—Al)(a—A4)+1—12(a—A1)(a—A3) Close
1 1 1 1 1 ”
+E (a— A1) (a— A2))D(f)(a) — (b— 1A4 - 1A3 - ZA2 - ZAl)f(b) Quit

] ] ) ] b Page 12 of 44
—I—(a——A4——A3——A2——A1)f(a)+/f(t)dt
4 4 4 4 a J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
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A17 A27 A37 A4
such that the coefficients g, £(¢) and < f(t) vanish at = a andt = b.

> eql := coeff( Corr_Rule , (D@@2)(f)(a) ) = O;
eql = i(a—Ag)(a—Ag)(a—A4)+i(a—Al)(a—Ag)(a—Azl)
"‘i(CL—Al)(CL—Ag)(CL—Azl)‘F2—14((1—141)((1—142)((1—143) =0
> eqg2 := coeff( Corr_Rule , (D@@2)(H)(b) ) = 0O;

1 1
1 1
_2_4(5—/41)(5_142)(57—144)_2_4<b—A1)<b—A2)(b—A3):0

> eqg3 := coeff( Corr_Rule , (D@@3)(H)(a) ) = O;
eqs = —2—14 (a—Ay)(a—As)(a—Asz)(a—Ay) =0

> eq4 := coeff( Corr_Rule , (D@@3)(f)(b) ) = O;
eq :_2—14(b—Al)(b—A2)(b—A3)(b—A4)_0

> solve( {eql,eq2,eq3,eqd} , {A[1],A[2],A[3],A[4]}
);
{A4:a’7 A3:ba A1:b7 A2:a}7 {A4:a7 A3:b7 A2:b7 Alza}7
{A4:CL, Alzb, Agzb, A3:G}7 {Alzb, AQZCL, A3:a7 A4:b},
{Agzb, Alza, Agza, A4:b}, {Agzb, AQZCL, A1:CL, A4:b}
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Without loss of generality we can choose the first solution anaésssgn
the variablesd,, A,, A3, A4 to this.

> assign( %[1] );
The integration rule is
> Corr_Rule;

1 ) 1
— (b—a)*D —— (- 2D
= (b—a)?D(f)(b) - 7 (~b+a)* D(f)(a)
b a a b b Integral Inequalities and
_<§ _ 5) f(b) + (5 — §> f(a) + / f(t) dt Computer Algebra Systems
To obtain the error bound, we employ a Holder inequality 201 RS
b b
4) 4)
/a [p(t) (DD)(£)(1)] dt < max(|(DD)(f)]) / p(t)] dt it Page
which requires calculation gp| . It is easy to see that< p R
t);
> PO <4< 44
(t—0)(t—a)’
24 < 4
so calculation of the bound is a simple matter of integration G
_ o Back
> int( p(t) , t=a..b );
Close
booa ., 1, 1 1,8 4 Quit
i_a_5_|_( T 12)(b a)+(24b +6ba+24a)(b a’)
120 120 4 3 Page 14 of 44
1 1
N (_E b2a — E a? b) (b2 _ a2) N b2 a2 (b _ a) J. Ineﬁ{t:?/rzig:rf\%%ﬁz_gﬁ) Art. 141, 2005
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> factor( % );
(=b+a)’
720
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In this section, we will use the Maple computer algebra system to derive a new
corrected trapezoidal rule using a Peano kernel approach. This section is an ac-
tual Maple worksheet calledew_corrected_trap.mwswhich you can down-
load fromhttp://www.roumeliotis.com.au/john/maple

The corrected trapezoidal rule in Section 4 was obtained by determlnlng the
coefficients of the Peano kernel so that ggéef and jt:,, f(t) terms vanish in
the integration rule. Thg’g f(¢) terms are equal in magnitude and opposite in Integral Inequalities and
sign, so that they cancel everywhere except at the boundary in a composite rule. computer Algebra Systems
There is an opportunity to create a further correction to the corrected trapezoidal
rule by imposing the condition that all three derivatives cancel for a composite
rule. This would leave one free parameter which can be used to minimize the

John Roumeliotis

error bound. Care must be taken when integrating the positive kernel to produce e P
the error bound, since determining the sign of the kernel cannot be automated. Contents
>  restart; « dd
> with(student): < >
- - . . . - Go BaCk
Call in special plotting packages for 3D plots to be produced in this section. |
Close
> with( plots ): with( plottools ): Quit
Warning, the name changecoords has been redefined Page 16 of 44
Warning, the assigned name arrow now has a global binding 3. Ineq, Pure and Appl. Math. 6(5) Art, 141, 2005
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As with the corrected rule, the kernel is a fourth order polynomial since this

rule will have fourth order accuracy.

> p o= SUAREA[L)*(EAL2])

> *(CALB])*(t-AL4]);
o, = AN — A (E— As) (E— Ay
pi=t— m

Define Corr_Rule to be the integral of the produ@®®)(f)(t) p(t).

> Corr_Rule = Int( (D@@4)(f)(t) * p(t) ,
> t=a..b );

b1
Corr_Rule := / o (DUWY(f)(E) (t — Ay (t — Ag) (t — A3) (t — Ay) dt

Integrate by parts four times.

intparts( Corr_Rule , p(t) ):

applyop( intparts , nops(%) |,

% , diff( p(t),t ) ):

applyop( intparts , nops(%) |,

% , diff( p(t),t$2 ) ):

Corr_Rule := applyop( intparts , nops(%) ,
% , diff( p(t),t$3 ));

vV V.V V V V V
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1

Corr_Rule := 51 (b— Ay (b— Ag) (b— A3) (b— Ay) (DO)Y(f)(b)
= 2—14 (a— A1) (a— Az) (a = A3) (a — As) (DP)(f)(a) — (
5 (b= As) (b= A3) (b— Au) + 5 (b— A1) (b— A3) (b~ A
b (0= A (b= As) (b= A) + 52 (b= A) (b= A2) (b — 43)(D2)(/)(0)
Integral Inequalities and
4 (i (a _ A2) (a _ A3) (a _ A4) + 2_14 (a . Al) (a . Ag) (a . A4) Computer Algebra Systems
John Roumeliotis
¥ (0= A) (0~ As) (a— A2 + o2 a — Ay (a— 49) (a— 4)) (D) (F)(a)
(2 (b= Ag) (b= Ay) + = (b= Ap) (b— A) + — (b— Ay) (b— As) L L
12 ’ Y12 2 Y12 ? ° Contents
b (b= A (b= A b5 (b= A) (b= Ag) + 75 (0= A) (b— A)D(A)B) 4 | »
(o5 (0= Ag) (0= A4) + = (0~ Ay} (a— As) 2 (a — A2) (a — Ay) ‘ >
Go Back
—|—1—12(a—Al)(a—A4)+1—12(a—A1)(a—A3) Close
1 1 1 1 1 ”
+E (a— A1) (a— A2))D(f)(a) — (b— 1A4 - 1A3 - ZA2 - ZAl)f(b) Quit

] ] ) ] b Page 18 of 44
—I—(a——A4——A3——A2——A1)f(a)+/f(t)dt
4 4 4 4 a J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
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t = a andt = b vanishes.
> eql := coeff( Corr_Rule , D(f)(a) )
> = -coeff( Corr_Rule , D(f)(b) );
> eg2 := coeff( Corr_Rule , (D@@2)(f)(a) )
> = -coeff( Corr_Rule ,(D@@2)(f)(b) );
> eq3 := coeff( Corr_Rule , (D@@3)(f)(a) )
> = -coeff( Corr_Rule ,(D@@3)(f)(b) );
1 1 1
eql = —ﬁ(a—A3)(a—A4)—E(a—Ag)(a—le)—E(a—Ag)(a—Ag)
e A (a = A~ 5 (0= A) (o~ As) — o (a— A) (- 4)
= 5 (b= A5) (b= A4) — 15 (6= Ax) (5= Ad) — 35 (b 42) (b 49

1 1 1
— 15 (0= AN (0= A) = 5 (0= A) (b= Ay) = 5 (b= A1) (b= As)
1 1
eq? ::ﬁ(a—Ag)(a—A3)(a—A4)+ﬂ(a—Al)(a—Ag)(a—A@
1

+i(a—A1)(a—A2)(a—A4)+ﬂ(a—Al)(a—Ag)(a—Ag)

:i(b—A2)(b—A3>(b—A4)+i(b—Aﬁ(b_A?))(b_Azl)

1 1
+ﬂ(b—A1)(b—A2)(b_A4)+ﬂ(b—fh)(b_fb)(b_fla)

Integral Inequalities and
Computer Algebra Systems
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1

eq3 = ~31 (a—Ay) (a— Az) (a— A3) (a — Ay)
1
Y (b— Ay) (b—Az) (b— As) (b— As)

Solve the non-linear system to find the first three terms,As, Az of p(t).
> solve( {eq||i'$i=1..3} , {A[i]$i=1..3} );

{A3:%1,Alza—%1+b,A2:(l+b—A4}, B
{As=a+b— Ay, Ay =a—%1+b Ay = %1}, o S R e
(A3 =%1, Ao =a— %1 +b, Ay =a+b— A}

%1 := RootOf (_Z*+ (—a —b)_Z —a Ay + A —bAs+2ba)
Without loss of generality we can choose the first solution. The three solu-

John Roumeliotis

tions here appear since we have not imposed any ordering betiyeely and Title Page
As. Contents
> Sols := allvalues( %[1] ); <« >
b 1 b 1 < >
Sols = {Ay = S 4 24 ~ %1, A =242 2%, Ay=a+b— Ay},
2 2 2 2 2 2 Go Back
a b 1 a b 1
{A3:§+§_§%1,A2:a+b_A4,A1:§+§+§%1} Close
%1 :=+a®—6ba+0*+4a A, —4A2+4bA, Quit
> assign( %[1] ); Page 20 of 44

Thus the new corrected trapezoidal rule appears below. Note that the sec-
ond derivative has vanished. This is typical of rules of this type and it can D€ ; ineq Pure and Appl. Math. 6() Art. 141, 2005
shown that all even derivatives vanish in "corrected" rules. The Maple command  "ttp/iipam.vu.edu.au
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collect isusedto collectall th¢ terms together, i.d(a), f(b), D(f)(a), D(f)(b),
etc. map(factor, applies thdactor  function across each of these terms.

> map(factor,collect(Corr_Rule , f));
1

5 (a—B)E(B) + 5 (a— ) () + 75 (a — B D))

+ % (=b+a—%1)(a— Ay) (—b+a+%1) (—=b+ Ay) (DO)(f)(b)

+ % (=b+a+%1)(b— As) (=b+a—%1)(a— As) (DD)(f)(a)

— 5 (@ =b)D(f)a) + /abf(t) it

%1 :=+/a2—6ba+b2+4ad, —4A>+4bA,
The kernel is.

> p();

1 b 1
ﬂ(t—g—§+§\/&2—6ba—|—62+4a/14—4A42+4bA4)(t—a—b+A4)

1
(t—5—5- 5\/a2—6ba+b2+4aA4—4A42+4bA4) (t — Ay)

The term under the radical imposes a restricted domaif,0We can select
this term and complete the square to determine this domain.

Select the term.
> op([2,4,2,1],p(1));
(12 — 6ba+b2 —|—4CLA4 —4A42 +4bA4
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Complete the square.
> completesquare( % , A[4] );
b
—4(Ay — g - 5)2 +2a*—4ba+2b?
Notice that the remaining term is a perfect square, so we factor this.

> factor(subsop(1=0,%));

2(a—b)?
> fac = op(1,%%)+%; Integral Inequalities and
a b ) ) Computer Algebra Systems
= —4(Ay—=— =) +2(a—0b
fac ( 4 2 2) + (a ) John Roumeliotis

It is obvious, by inspection, that the above expression is non-negative on a
domain larger thaifu, b]. We can find this domain.

Title Page
> solve( fac=0 , A[4] );
) . | 1 1 1 1 1 Contents
a4 -b—=vV2a+-V2b —a+-b+-v2a—=2b
@t gb=gV2at5V2ab sat bt ov2a—- 52 « 3
> Adsol := map( factor , [ % ] ); < >

(V2—1)(a—3b—2v2b) (1++v2)(a—3b+2+2b)

Agsol = [~ 9 , 9 ) Go Back
>  Admin = A4sol[2]; Admax = A4sol[1];

Close
Amin = (1+v2) (a—23b+2\/§b) -
_ _ _ Page 22 of 44
Ama - (V2-1)(a 236 2/2b)
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The domain of4, is [A/min, A4maz] whereA/min < a andb < A/maz.

We can now inspect the nature of the kernel over the unit interval.
>  A4min0l := expand(subs( a=0,b=1, Admin ));

A4min01 = % — \/75
>  Admax0l1l := expand(subs( a=0,b=1, Admax ));
V2

1
A 01 .= -+ —
4mazx 5 + 5

The following animated and 3D plots reveal thatenerally changes sign
twice asA, increases fromddminto Admax We already know the roots of
p, they are the termd, A,, A; andA, and so to determine the sign of the
kernel for anyt we require knowledge of how thé;, i = 1..4 relate to each
other and the intervak, b|.

> animate( plot , [ subs(a=0,b=1,p(t)) , t=0..1 ],

> A[4]=A4min01..A4dmax01 , frames=60 );

A[4] = -.20711

1.002

1.001

0 02 04 o 0.8 1
001 -

.002
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3D plot of the kernel.

> plotl := contourplot( subs(a

0, b =1 p®),

t=0..1, A[4] = A4min0l1l..A4max01 , contours = 15 ):

t=0. 1,

vV V.V V V V

The following plot reveals that the kernel coefficients change

four regions. They are:

plot2 := plot3d ( subs ( a=0, b=1, p(t) ),
A[4] = A4min01 ..
boxed ) :

Admax01,
grid = [ 30, 30 ],
ptrans := transform((x,y) -> [X,y,-0.006]):
display ( { ptrans ( plotl) , plot2} ,
orientation = [ -135 , 65 ] ) ;

ordering across
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Ald]<a<A[1l] <A[3]<b< A[2], for AdmincAl4]<a
All]<a<Al4] <Al2]<b< A[3], for a<Al4]<(at+b)/2
All]l<a<Al2] <Al4]<b< Al3], for (atb)/2<A[4]<b

Al2]<a<Al1] <A[3]<b< A[4], for b<Al4]<Ad4max
> plot( subs(a=0,b=1,[A[i]$i=1..4]) ,
A[4]=A4min01..A4max01 ,
thickness=4,color=[blue,black,yellow,red]);

Integral Inequalities and
Computer Algebra Systems

John Roumeliotis

1 Title Page
0.8 Contents
0.6 44 44

21
Go Back
0.2 02 04 06 08 —1N_12
7 Al Close
Quit
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A more descriptive plot than the Maple graphic above is shown in Figyure

The upper boundb, which is the integral of the positive kernel, requires four  ; feq pure and Apl. Math. 65) Art. 141, 2005
separate calculations according to the regions defined above. AL S| IR R T



http://jipam.vu.edu.au/
mailto:John.Roumeliotis@vu.edu.au
http://jipam.vu.edu.au/

Ald]<a<Al1] <A[3]<b< A[2], for AdmincAl4]<a
> bl := factor( -int( p(t) , t=a..A[1] )
+ int( p(t) , t=A[1]..A[3] )
- int( p(t) , t=A[3]..b ) ):

All]<a<Al4] <Al2]<b< A[3], for a<A[4]<(a+b)/2
> b2 := factor( -int( p(t) , t=a..A[4] )
+ int( p(t) , t=A[4]..A[2] )
- int( p(t) , t=A[2]..b ) ):

All]<a<Al2] <Al4]<b< A[3], for (a+b)/2<A[4]<b
> 1b3 := factor( -int( p(t) , t=a..A[2] )
+ int( p(t) , t=A[2]..A[4] )
- int( p(t) , t=A[4]..b ) ):

Al2]<a<A[1l] <A[3]<b< A[4], for b<Al4]<Ad4max
> b4 := Ibl:

Hence, we can defin® in a piecewise fashion.

> b := piecewise( A[4]<a , Ibl , A[4]<(a+b)/2 ,

Ib2 , A[4] < b, Ib3 , Al4]J<Admax , Ib4 , 0 ):
As a function of A4, the upper bound reveals four minimum points. We will
explore the first minimum point and the new corrected rule resulting from eval-
uating A, at this point. The results are the same for all four minima.

> plot( subs(a=0,b=1,Ib) , A[4]=A4min01..A4max01 );
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//\\
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\\\ | Integral Inequalities and
\ “\ / “\\ “ Computer Algebra Systems
VA N : \’/‘ S John Roumeliotis
-0.2 0 02 04 06 08 1 1.2
Al4]
The first minimum point is a stationary point &f7. Title Page
> assume( b>a ); SNt
> solve(diff( 1b1,A[4]) , A[4)]); 44 44
1 1 1 1 < | 2
b, b +=-a —=Ta +-VT7b",
1 2 1 2 X 4 ' 4 - Go Back
- ~ ~ ~ a -
§b +§a +Z\/7a _Zﬁb,7+7,a Close
Quit

Select the correct point since fé7 we must havel ymin < A, andA, < a.

> soll :=[ % ][3];

1 1 1 1

soll . ==b"+=a" +-V7a — =7

2 2 4 4 J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
http://jipam.vu.edu.au

Hence the upper bound is
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> factor( subs(A[4]=soll , Ibl ) );

5(a”—b7)°
6144

and the new corrected trapezoidal rule is

> map( factor@expand , subs(A[4]=soll,Corr_Rule) );

3 3

__°2 (D® Vo  —b V4 2 (DO V(a~ — b)4
5035 DO (@ = b7) 4 552 (DD)(f)(a7) (a7 = b7)
1 5 B 5 1 N 5 - iti
+E D(f)(b) (¢ = b7)2 = 5 D(f)(a”) (a” = b)? Computer Algebra Systems
b” John Roumeliotis
+— f(b)(cf—b) f( N(a”=b7)+ / f(t) dt
When compared to the generlc corrected trapezoidal rule Title Page
/ fo)de = E=0S@ | G—a)f @ ——
2 2 44 44
L b=’ D)@ (b=a’DAB) «
12 12
Go Back
where
) < 2O ¢ = o)? Close
720 Quit
we can see that the new rule has two added third derivative function evaluations Page 28 of 44

(which will cancel on composition) and an upper bound coefficient of 5/6144.
Thls IS apprOXImately 17 tlmes better J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005

> evalf( (1/720) / (5/6144) ); http://jipam.vu.edu.au
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1.706666667

In practice, if we had knowledge of the 3rd derivative on the boundary then we
would use the 6th order corrected trapezoidal rule

_(a =0 (DD(AHB)  (a=b)(D)(f)(a) , (a- b)2D(f)(b)

720 i 720
—b)2D — —
_ (CL b) (f> (a) +(a b) f<b) + a b / f dt Integral Inequalities and
12 2 Computer Algebra Systems
< maX(‘(D ) (b - CL) John Roumeliotis
- 30240 ‘
Title Page

Nevertheless, we have shown that Maple is a useful tool for exploring quadra-

) Contents
ture rules and their error bounds.

44 44
< | 2
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Quit
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4,min

4,max |

Figure 1. A graphic showing the ordering of;, A,, A3, A4 in regions

R17 R27 R37 R4-

Integral Inequalities and
Computer Algebra Systems

John Roumeliotis

Title Page

Contents
44 44
| | 2
Go Back
Close
Quit
Page 30 of 44

J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:John.Roumeliotis@vu.edu.au
http://jipam.vu.edu.au/

In this section, we will use the Maple computer algebra system to derive a
modified Simpson rule that was recently established. This section is an ac-
tual Maple worksheet calleshod_simp_6.mwswhich you can download from
http://www.roumeliotis.com.au/john/maple

Ujevit and Roberts (2004) recently established the foIIowmg modified Simp-
son type rule:

Integral Inequalities and

/ f b — a) (7f(a) + 16f(%) + 7f( )) Computer Algebra Systems
30 John Roumeliotis
_ 0= (D)) = D(f)(@) E
60 Title Page
max (6> —a 7 . .
where|E| < (|(D604)é£2)|)(b " . We can see that the weights are different to SO

those of the well known Simpson inequality and that the end-point derivative <« >
correction produces a rule of order 6.

Using Maple, we will recapture this result by employing a split 6th order < >
Peano kernel. In order to eliminate the presence of higher derivatives at the Go Back
end-points, the kernel will require the correct smoothnessagb. Close

> restart; ,

Quit

> with( student ):

The (t — a)* and (t — b)* terms will ensure no derivatives higher than one
exist at the endpoints. Since this will be a sixth order rule, the kernel needs to
be a sixth order polynomial. Thus we have four free parametgrsl, c2, c3.

Page 31 of 44
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> pl = 1/6P(t-a)M*(th2+c0*t+cl);
> p2 = /6P (t-b)M*(th2+c25t+c3);
(t—a)* P+ c0t+cl)
pl:= 720
_7\4 (42
02 (t—0b)*(t 7;002t+ c3)
> 11 = Int( p1 * (D@@6)(H)(t) , t=a..(atb)/2 );
> 12 = Int( p2 * D@@6)N() , t=(a+b)/2..b );
a b
23 1
11 ::/ m(t—a)‘* (t2+ cOt+ c1) (DO)(F)(t)at

b

1 ,

12— /a b (£ — D) (2 + 2t + c3) (DO)(F)(1) dt
S5 720

Integrate by parts six times.

> 11 := intparts( 11 , pl ):

> 12 = intparts( 12 , p2 ):
> for i from 1 to 5 do

> 11 := applyop( intparts , nops(Il) ,
> 11, diff(pl,t$i) ):
>

>

>

12 := applyop( intparts , nops(12) ,
12 , diff(p2,t$i) )
end do:

We can see that the integration rule contains sampling up to order one at the
endpoints and sampling up to order 5 at the midpoint. The midpoint sampling
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is due to the fact that the Peano kernel is discontinuous here.
> | _MS := map( factor , collect( combine( 11+I2 ) ,

£
1
I_MS = 53010 (a—b)*(—c2a+cl0a—2c3+2cl
b 1
— DG @ 2 —b)3(4 a2
+c0b— c2b)( )(f)(2+2)—|—11520(a b)*(4a*+3c0a+5c2a
a b
+8ab+8cl +8¢c3+5c0b+4b*>+3c2 b)(D(4))<f)(§ + 5) Integral Inequalities and
1 Computer Algebra Systems
—1440(a —b0)?(4a®>—cla+5c2a—6¢cl —5c0b+6¢3+ c2b John Roumeliotis
a b 1
—41?) (D(?’))(f)(§ + 5) + %(a —b)(4a®>—cOa Title Page
b

+5c2a+5c0b+4c¢3 — c2b+ 4 +4 cz)(D@))(f)(g +3) Contents

1 «“ 3
——(5¢2a—3c2b+2c3+8a*—8b*+3c0a—5c0b

60 < | 2

b 1

—261)D(f)(%+§)—%((IQ-FCOCL—FCI)D(]C)(CL) Go Back

1 1 b Close
+— (B2 + c2b+ c3)D(F)(b) + = (da—4b— cO + c2)f(> + 2)

30 6 272 Quit

b 1 1

+/ f(t) dt — G (2b+ ¢2)f(b) + 6 (2a+ ¢0)f(a) Page 33 of 44

ChoosecO, c1, c2, c3so that all sampling of derviatives at the midpoint
. J. Ineq. Pure and Appl. Math. 6(5) Art. 141, 2005
vanish. http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:John.Roumeliotis@vu.edu.au
http://jipam.vu.edu.au/

> egl := map( factor , collect( coeff( I_MS |,
> D(f)((at+b)/2) ) , [cO,c1,c2,c3] ) ) = O;

> eqg2 := collect( coeff( I_MS |,
> (D@@2)(H)((a+b)/2) ) , [c0,cl,c2,c3] ) = O;

(a—0b)(—a+5b)cO a b (a—0b)(5a—"0)c2
= 42y
€42 240 o)t 240
a b (a—0)(4a®>+40%)
oo 600 T 240 =0

> eq3 := collect( coeff( |_MS ,
> (D@@3)(f)((atb)/2) ) , [c0,cl,c2,c3] ) = O;

03 — _(a=0)*(-a—=5b)cO N (a=0)ct  (a—0)(5a+Db)c2
1440 240 1440
(a—b)?c3 (a—b)2(4a2—462)_0
240 1440
> eqg4 := collect( coeff( I_MS ,

> (D@@4)M)((a+b)/2) ) ,  [c0,c1,c2,c3] )

I
Q

(a—b*Ba+5b)cO0 (a—0b)Pcl (a—b)?*(Ba+3b)c2
11520 + 1440 + 11520
(a—b)*c3 (a—10)(4a®>+8ab+4b?)
1440 + 11520
> eg5 := collect( coeff( I_MS ,
> (D@@5)(H)((a+b)/2) ) , [c0,c1,c2,c3] ) = O;

€44 =

=0
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(a—b)4(a+b)00+(a—b)4cl

€ = 23040 11520
(a—=b)*(—a—0b)c2 (a—0b)*c3 _0
23040 11520

Solve to obtain the coefficients
> solve( {eql,eq2,eq3,eq4} , {c0,c1,c2,c3} );

Ta  3b 1 2 1
{e 55 T g@ Attt

30 Th 1 2 1
A T R Ry
¢ 5 g =g tgaebt gty

> assign( % );
Hence, the integration rule is:
> |_MS := map( factor , I_MS );

I_MS = — X (a— 1) D(f)(a) + = (a— bD(})(D)

60 60
8

a b
TS (a —b) f(5 + g) +/a f(t) dt

7 7
— (a—0)f — (a —b)f
+ 20 (a—0)f(b) + 30 (a —b)f(a)
and the split kernel is

> pl := factor( pl );

(—t+a)* (101> —6ta— 14tb+a®>+4ab+ 5b?)

1 :=
P 7200
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> p2 := factor( p2 );
(t—0b)*(10t2 —14ta—6tb+5a>+4ab+ b?)

p2 =
7200
Completing the square in bopil andp2 shows that the kernel is positive
> pl := applyop( completesquare , , pl , t);
3a Tb a’> ab b
—t 0t =)+ ——- =4+ —
pI:::( B TR LA RS 1
7200

> pl := subsop( 3 = op([3,1],p1) + factor(op(3,pl)
> - Op([311]’p1)) ) pl )a
3a Tb (a — b)?

p¢+a)uoa—I6—TW + 10 )

1:=
P 7200
> p2 := applyop( completesquare , 3 , p2 , t ),
Ta 3b a> ab b
t=b)rA0(t— —— —=)P+———+—)
P2 = 10 10
7200
> p2 := subsop( 3 = op([3,1],p2) + factor(op(3,p2)

- 0p([3,1],p2)) ) p2 ):
Ta 3b (a —b)?

@_b)uou_36_15)+ 10

7200

Thus the upper bound is calculated directly from the integral of the kernel
> factor( int( pl , t=a..(a+b)/2 )

> + int( p2 , t=(atb)/2..b ) );

vV

)

p2 =
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(a—b)"
604800
We have used this Maple session to show how one may apply a computer
algebra system such as Maple to easily recpature known results and extend to
new integration rules.
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In this section we briefly state other results obtained using the technique out-
lined in Section?2 — 6. For each result, we state the general Peano kernel
complete with free parameters and an outline of the steps taken to produce the
integral inequality.

1. Fourth Order Modified Simpson Inequality. The kernel below will pro-
duce a fourth order rule with sampling of all derivatives at the discontinu-

ous pointz and only sampling of at the endpoints = a, b. Integral Inequalities and
Computer Algebra Systems

John Roumeliotis

1
—(t—a)’(t —ap), tE€]la,x),
4!
p(t) =19 _
Gl —(t=0)3(t — by), t€E [z Title Page
Contents
Given this kernel the motivation is to produce an optimal rule. That is,
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2. Sixth Order Modified Simpson Inequality. Multiply each branch of the
well known Simpson kernel with an arbitrary quadratic polynomial.

1
6<t —a)¥(t — LYV + art + ap), € [a, )

1 “ a

a(t — b)3(t — 22E) (2 4 byt + b), t €[22, 0]

Find the coefficients so that rule is corrected, that is end-point derivatives
are equal and opposite, and as many midpoint evaluations vanish as possi- C(')rr‘;ep%'é'r'ngqe“bar';“g;g?ns
ble. The resultis

p(t) =

John Roumeliotis
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3. Eighth Order Modified Simpson Inequality - I. Multiply each branch of Close
the well known Simpson kernel with an arbitrary quartic polynomial. -
ul
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Find the coefficients so that rule is corrected, that is end-point derivatives
are equal and opposite, and as many midpoint evaluations vanish as possi-
ble. The resultis

b . )
(7.2) / f(t)dt — [b294 (59f(a)+176f( ;b) +59f(b)>
+ %(b - a)Q(f/(&) - f/(b)) + %(b _ CL)Sf” (%‘Fb)
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(b —a)" (b - )]l

T O R Nl(‘l))] ‘ = 19914854400
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. Eighth Order Modified Simpson Inequality - IIl. In an effort to elimi- Title Page
nate thef”((a + 0)/2) term in (7.2), we replace the kernel above with the -
. ontents
following
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: Close
This kernel eliminates sampling ¢f?, i = 8,7,6,5 att = a,b. Solve Quit

for coefficients so that rule is corrected and as many midpoint evaluations
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vanish as possible. The integration rule is

(7.3) / £t di — [bm (31f( )+ 64f (“;b> +31f(b)>
) / (b B CL)4 " "
+ 55 0= (@) = £'(0) + =0 (£(0) = f <a>)]
b—a)P
- 101606400Hf( HOO Integral Inequalities and

Computer Algebra Systems
. Order Ten Corrected Trapezoidal Rule Multiply the corrected trape-

zoidal kernel of Section 4 (see 3rd last equation in this section) with an
arbitrary sixth order polynomial.
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