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ABSTRACT. We consider the Hardy-type %perator
T @) i=v(e) [ uf@dt.  o>a
and establish properties @fas a map fronl.?(a, b) into L(a,b)for1 <p < ¢ <2,2<p <

g < ooandl < p <2 < ¢ < oo. The main result is that, with appropriate assumptions on

andv, the approximation numbers, (T) of T satisfy the inequality
b

[ |uv|"dt < hm 1nf na, (T) <limsupna, (T) < ¢y [ |uv|"dt
n—oo
when1l <p<q<20r2 <p<q<oo andlnthecasda<p<2<q<oowehave
limsup na, (T) < 03/ lu(t)v(t)|"dt
n—oo
and
04/ lu(t)v(t)|"dt < hmmfn (/2= aor+1gr (),

wherer =
of {a,(T )} re also given.

C2,C3,C4. Upper and lower estimates for theand/** norms
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2 J. LANG, O. MENDEZ, AND A. NEKVINDA

1. INTRODUCTION
The operatofl” : L”(a,b) — L%(a,b) (Whered < a < b < d < o) defined by

(1.1) Tf@) = o(x) /Oxu(t)f(t)dt

was studied in[[1] and [5], in the case < p < ¢ < oo, for real-valued functions €
LP(0,¢),v € LP(c,d), for anyc € (0,d) andp’ = p/(p — 1). In the aformentioned works,
the following estimates for the approximation number&l”) of 7' were obtained:

(1.2) aN(e)+3 < OpE,

(2.3) an(e)—1 > Vg(N(e) — 1)%_%5, forp < g < o0
and

(1.4) aN(e)/2-1 = 8/2, forp =g¢,

whereo,, v,, are constants depending grandN (¢) is ane-depending natural number .

In the casep = ¢, these results are sharp and are usedlin [2] @nd [5] to obtain asymptotic
results for the approximation numbers.

Specifically, it was proved in [2] that for = ¢ = 2

(1.5) lim na, (T / lu(t)v(t)|dt
and that forl < p = ¢ < o0,
(1.6) —ap/ lu(t)v(t)|dt <liminfna,(T) < limsupna,(T) < ap/ lu(t)v(t)|dt.
The endpoint cases were studied(in [5]: it was shown there that for; = oo (and similarly
forp=q=1)
d

1.7) / lu(t)vs(t)|dt < liminfna,(T) < limsup na,(T) < / |u(t)vs(t)|dt,

n—0oo n—oo 0
where

0(®) = Jim [0 X-cono o

If p < ¢, the estimates (1.2) and (IL.3) are not sharp.
The estimateg (1.2) and (1.3) were used_in [7] to obtain the following asymptotic results for
the approximation numbers in the cdse p < ¢ < oc:

(1.8) limsup na;, (7) < cpq/ lu(t)v(t)|"dt
and
(1.9) < dpq/ lu(t)v(t)|"dt < liminf n's P ar (T)

wherer = pq'/(q + ).

Since the estimates upon which they are based are not sharp, these results are not sharp either,
in contrast to[(1.5),(1]6). Our research is directed toward finding alternative, refined versions
of (I.2) and[(1.B) in the cage< ¢, aiming to get better asymptotic results thanj(1.8) (2.9).

In this paper, we succeed in showing thatfo£ p < ¢ < oo,

(1.10) an(e)+1 < 2,
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andforl <p<g<20r2<p<g<oo

(1.11) aN(e)/a—1 = CE,

andforl < p<2<g<

(1.12) an(eja > ceN(e) 71,

wherec is a constant independent ofand N (¢). And under some condition om andv we

showthatforl <p<g<2o0r2<p<¢g<o0

b b
cl/ luwv|” < liminfna) (T') < liminf na, (T') < 02/ luv|",

n—oo n—oo

andforl < p<2<g¢g< o0

limsup na;, (T) < cpq/ lu(t)v(t)|"dt

n—oo

and

'I”L
n—oo

pq/ lu(t)v(t)|” dt<111rr11nfn(2 dlas ar (T),

wherer = Zf’—fq We also describ& and(™* norms of{a,, }5° .
Under much stronger conditions enandv in neighborhood of boundary points éfthis
problem was also studied inl[6] by using different techniques.

2. PRELIMINARIES

Throughout this paper we will suppose thHat< p < ¢ < 2. In what follows we shall
be concerned with the operatdrdefined in|[(1.]l) as a map frodr (0, d) into L?(0, d) where
0 < d < o0o. The functionsy, v are subject to the following restrictions: for alle (0, d)

(2.1) we LP(0,z),
and
(2.2) ve Li(z,d).

It is well-known that these assumptions guaranteeZhiatwell defined (seg (1].9)). Moreover,
the norm of this operator is equivalent to:

o d 7
J = sup (/ lu(t)|? dt) (/ |v(t)|th> )
z€(0,d) T
(seel[4], [8] and([5]). We define the operaforby

(2.3) Tyf(2) = v(@)xi(x) / “ufOaltd, >0,

wherel = (a,b) C (0,d), and the quantity

(24) J(I) = J(a —f;g; (/ u(t)[” dt) ’ (/:lv(ze)wdt)é

It is obvious that/(/) ~ ||17||,—4, Where the symbok indicates that the quotient of the two
sides is bounded above and below by positive constants.
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4 J. LANG, O. MENDEZ, AND A. NEKVINDA

Proposition 2.1. There are two positive constank§, K, such that for any = (a,b) C (0, d)
the inequality

KyJ(a,b) < ||T7|| < K3J(a,b)
holds.
We start by proving an important continuity property.of

Lemma 2.2. Suppose thaf (2.1) anfl (2.2) are satisfied. Then the fundtjar) is continuous
and non-increasing ofD, b), for anyb < occ.

Proof. It is easy to verify that/(-, b) is non-increasing o0, b). To prove the continuity of/,
fix x € (0,b) ane > 0. By (2.1) and[(2.R) there exists< hy < min{z, b — x} such that

1
7

(/ |u<t>|f’dt) 1ol < e
z—ho

It follows that forh, 0 < h < hy,
J(z,b) < J(x — h,b)

~ s ([ ora)” e
r—h<z<b z—h
z 1/
:max{ sup (/ |()|pdt) [Vl g,()5
r—h<z<z x—h

RS
Y

s ([, ) wora) s

=

(2.5) <max{e,e+ J(z,d)} = e+ J(x,d),
which yieldsO < J(z — h,b) — J(z,b) < . The inequality) < J(x,b) — J(x + h,b) < e can
be proved analogously. O

For the sake of completeness, we include the following known result/(see [4]land [9]):

Proposition 2.3. The operatorI’ defined by[(1]1), with < p < oo andu, v satisfying [(2.1L),
(2.9) andJ < oo is a compact map from? (0, d) into L%(0, d) if and only if lim._q, J(0,¢) =
lim,_q_J(c,d) = 0.

In what follows A(7) is a function defined on all sub-intervals= (a,b) C (0, d), defined
by
(2.6) A(I) = A(a,b) := sup inf |Tf — av|l,s.

[ £llp, =1 €%

A similar function can be found in [5]. Next, we prove some basic propertiel§ bf. Choosing
a = 0in (2.6) we immediately obtain for any/= (a,b), 0 < a < b < d,

(2.7) A(I) < | Tr -
Lemma 2.4. Let] = (a,b) and||u||y.1 < oo, ||v]|4r < 0. Set

A(l) = sup inf  ||Tf — avlp-

I £llp. =1 lel<2lully 1

ThenA(I) = A(I).
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Proof. Holder’s inequality yields

= on [ (| senaoa]'az)
e o (e )
(/ oz (/ opar)” dx) = el ol

If ||v||,r = 0thenA(I) = A(I) = 0. Assumel|v||,; > 0. Let||f]|,; = 1 and suppose that

la| > 2||ul|,y ;. Then|a| > 2% and using the trivial inequalitjy — b|9 > 2'7%a|? — |b|¢
q,

valid for any real numbers, b we obtain for eaclx € R

Ab<a—laﬂWWMOv@)dx>/‘ "

> 21-t]q)s / ola)de — [ / F(t)ult)t

T,
S ol ( | T7]] ) / |v(2)|%dz — || T7||* = || T7]|9.
[v]lg,z

In conjunction with[(2.]7), the above yields
T q é
(o= [ o) v )",

IT1]] = A(T)
b
= sup min{ inf (/
I £llp,r=1 lal<2flull,y 1 \Ja
b x q %
inf (/ <a—/ f(t)u(t)dt) v(x) ) }
lel>2llully 1 \Ja a
b z q % ~
~ it (/i<a—/mﬂwuwﬁ>m@ )::AUL
lo<2flully ; \Jq a
which finishes the proof. O

Lemma 2.5. Let w and v satisfy(2.1) and (2.2) respectively. Thenl(;) < A(I), provided
I, C I,. Moreover, giver) < b < d the functionA(-, b) is continuous ort0, b).

Proof. Let0 <ar<ag<by<b <d, I, = (al,bl), I, = (CLQ,bz). Then

= oo gt ([ oo ([ tomon o))’
> wxi‘»ffh:li%f% (/ o) ([ oo o) qu);

> ot (/ oo (| (fteyutey - ) qu); — AL)

which proves the first part of Lemma 2.5.

)dt

t)dt

()] =

d:E
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6 J. LANG, O. MENDEZ, AND A. NEKVINDA

For the remaining statement, fixe (0,d) and0 < y < b. Lete > 0. By (2.1) and[(Z2.R)
there exist$) < hq such that) < y — hg and

Yy , Yy
/ lulP < e and/ 0|7 < e.
y—ho y—ho

Set Dy, = 2||lully —np forany0 < h < y. Recall that by[(2]1), one haB, < oo for

0 < h < d. Using the trivial inequality(a + b)é < ai + bi, the triangle inequality and the
Holder inequality, it follows that

A(yv b) < A(y - ha b)

b . 1
B ||f|\p(S:l€b) 101}5% (/y . (O‘_ f)u(t)d )v(x) dyc)
= u inf o —
||fnp,<sy3,b>:1 |a|<Dh{ /y N ( / f(#) ) v(z)

&z
([ rowrn+ [ scra—e)
<t AL e ([ o)’
| :W / rquflw}
N yb|v<g;)|de (/yyh|u(t>|p’dt)” (/yyhlf(tnpdt)z]q
A |

</ £(#) dt—a)v(x)

SinceD, < D), < Dy, we have by Lemmpa 2.4

it (L1 somm o) o )
<, ([ =)

Al D) < Aly = b) < 27 (57 4 Dt + ol + Ay, 0))

) |
( / B \f(t)lpdt) % dx] E

Q=

v(z) ( j FOyut)dt — a)

1

< { 7+ Dyt + [l e

+ sup inf (

”f”p,(yfh’wil |a‘§Dh

qu)i}_

N
dx) = A(y,b)

and thus
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which proves that
lim A(y — h,b) = A(y, b).

h—04
Analogously,
lim A(y + h,b) = A(y, b),
h—04
which finishes the proof of our lemma. O

Lemma 2.6. Suppose:,v > 0 satisfy(2.1) and (2.2) and thatT" : LP(a,b) — L%(a,b) is

compact. Let[1 = (¢,d) and I, = (¢, d’) be subintervals ofa, b), with I, C I, |I5| > 0,

I, — ] > 0, f vi(z)dr < oo. ThenO < A(Ly) < A(Ly).

Proof. Let0 < f € LP(15), 0 < || fllp.o < | fllp.y < 1 withsupp f C I,. Lety € I, then
||T(C’7y)”p712 >0 and ||T(y,d’)”p,lz >0

and then by simple modification of|[5, Lemma 3.5] for the case ¢ we have

min{ || T llg. 12 1 Tty .o} < mint 1T sl ry

which meansA(1,) > 0.

Next, suppose that = ¢ < d’ < d. A slight modification of [5, Theorem 3.8] fgr < ¢,
yieldszy € I, andz; € I; such thatA(ly) = || Tu1llqr, @NAA(L) = [|Th.1llq.r - Since
u,v > 0 on/y, itis then quite easy to see that € Iy andx; € I7.

If o = x, then, sincer, v > 0 onI;, we get

A(Il) - ”Tzh]lHqu > ||T11711||q,1'2 - ||Tr1712||q,1—2 - A(IQ)
On the other hand, ity # 1, then
A(]l) = HT961,11HQ7[1 > HTxl,th,Iz > HTxl,qu,b > HTHC()JQH(]Jz = A(IQ)

The case: < ¢ < d’ = d could be proved similarly and the case: ¢ < d’ < d follows from
previous cases and the monotonicityAf7, ). O

Let I = (a,b) C (0,d) andl; = (a;,b;) C 1,7 = 1,2,..., k. Saythat{;}_, € P(I) if
Ulefz- D I and assume the interva$; }*_, to be non-overlapplng.
Now, for any intervall C (0, d) ande > 0, we define the number® and N, as follows:

(2.8) M(I,e) :=inf{n: J() <e{L;}, € P(I)}
and

(2.9) N(I,e) :=inf{n; A(L;) < e, {L}, € P(I)}.
Since by Proposition 2.14(1) < ||T;|| < K»J(I), we have

(2.10) N(I,e) < M(I, Kse).

PutN(e) = N((0,d),e) andM () = M((0,d), ). From Propositioh 2|3 and the definition of
J(I) one gets the following:

Remark 2.7. Suppose tha{ (2.1) anfl (2.2) are satisfied. Tien L?(0,d) — L%(0,d) is
compact if and only if\/ (¢) < oo for eache > 0.

Lemma 2.8. LetT be a compact operator. Then
lirtr)l A(0,z) = 0and lir}ll A(z,d) = 0.
Tr— + Tr—a—
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Lemma 2.9. Suppose thaf’ is a compact operatorz > 0 andI = (a,b) C (0,d). Let
m = N(I,e). Then there exists a sequence of non-overlapping intefia}$*, covering/,
suchthatA(/;) =efori e {2,...,m —1}, A(L;) <e,andA(l,,) <e.

Proof. From Remark 2]8 and(Z.10), one has< co. Define a systen$ = {I;};c7, I; C I,

of intervals as follows: Sét; = inf{z € I; A(z,b) < }. By Lemmg 2.8 we have < b; < b.

Putl, = [b1,b]. ThenA(l;) < e. If a = b, write S = {I,}, otherwise seb, = inf{z €

I; A(z,by) < e} andl, = [by,by]. Observe that by Lemnja 2.5 we haxél,) = . We can

now proceed by mathematical induction to construct a (finite or infinite) system of intervals
S = {I;}5_,. Note that we have onlyl(/,) < e (not A(l,) = ¢) provideda < oo and
A(Iz) = e for 8 < a. Writing by = bwe can sef; = [b;,b,_1],1 < j < a.

Our next step is to show that = m. By the definition ofm one hasy > m and a finite
sequence of numbetis= a,, < a,,—1 < ...ay = bandintervals/; = [a;,a;_1],i =1,2,...,m
such thatA(J;) < e. Notice thatb; < a4, for if not, we can take\ : 0 < A\ < by, which,
from Lemmg 2.5 and the definition df would yielde < A(X,by) < A(J;) < e, which is
a contradiction. Assume now that for some> 1,b, > a;. If b1 < ai_1, then talking
ar < A < b, Lemmd 2.5 and the definition @f yield e < A(\, b,_1) < A(Ji) < ¢, which is
a contradiction, so that,_; < b;_,. Repeating this reasoning, one arriveg;at- a,, which is
again a contradiction. Thug, < a; forall K = 1,2,...m. Choosingk = m we haveb,, = a
and consequentlyy = m andS covers! which finishes the proof. O

For future reference (see the proof pf (1.11) in the next section) we include the following
lemmas and remarks.

Let X be a Banach space and C X. Recall the definition of the distance function
dist(-, M),

dist(x, M) = inf{||lx — y|;y € M}, z € X.

Lemma 2.10. Let 7" be a compact operatory,v > 0, > 0, I = (a,b) C (0,d) andm =
N(I,¢).

(i) Then there existd < e; < ¢ and a sequence of non-overlapping intervéls}™
covering/, such thatA(I;) = ¢, fori € {1,...,m}.
(il) There exists; : 0 < €5 < e such thatn + 1 = N(7,e9).

Proof. The proof follows from the strict monotonicity and the continuityAxf/). O

Lemma2.11.Let H be an infinite dimensional separable Hilbert space.Yet {u;,. .., us,}
be any orthonormal set withn vectors and letX be anym-dimensional subspace &f with
m < n. Then there exists an integgrl < j < 2n, such that

1
dist(u;, X) > —.
(1, %) 2 7

Proof. Denote the inner product iff by (u,v). ExtendY to an orthonormal topological basis
{u;}s2, of H. Choose an orthonormal basis ®f sayvy, ..., v,. Denote byP the orthogonal
projection of H into X. Then

Pu = Z(u, V) foranyu € H.
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SinceP is a self-adjoint projection we obtain
2n 2n
> luk = Pugl* =Y (1 = 2(ug, Pug) + (Pug, Puy,))
k=1 k=1
2n

=2n— Z(uk, Puy,)

k=1

=2n — Z Z(uk, vj)z

k=1 j=1

=2n — Z Z(uk, v;)?.

j=1 k=1
The Parseval identity yields

(o)
> (u,v5)” = s> =1,
k=1

which implies

Consequently,
2n

Z |up — Pugl]* > 2n —m > n,
k=1
which guarantees the existence of an intggér< j < 2n, with ||u; — Pu,||* > 3. Then

. 1
dist(u;, X) = |lu; — Puyl| = 7
which finishes the proof. O
Lemma 2.12. Let1 < p < 2 and X be anyn-dimensional subspace ¢f. Sete; € [,

e; = {6;;}52, whered,; is Kronecker’s symbol. Then there exists an integér< j < 2n, such

that .
dist(e;, X) > —.
st(e,, X) >

Proof. Denote byj| - ||, the norm and bylist, the distance function if). Since|| - ||;, <[ - [|;,
we can consideX as ann-dimensional subspace 6f Thus, using the previous lemma there
isj, 1 <j <2nwith disty(e;, X) > \/% from which immediately follows that

dist(e;, X') = inf{||e; — z||,;2 € X}
p
> inf{|le; — z||; 2 € X}
1

= déSt(GJ,X) Z E

O

Lemma 2.13.Let2 < p < oo, n € N and X be anyn-dimensional subspace &f. Set
e; = {0;;}72, € 1, whered,; is the Kronecker’'s symbol. Then thergjjd < j < 2n such that

(2.11) dist(e;, X) > 20 'nr 2,
p
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Proof. Let R : [P — [? be the restriction operator given by
R(a) = (a1,a9,...,a2,,0,0,...),

wherea = (ay,as,...) € IP. Chooseu; € X such thadist,(e;, X) = |le; — w;||. Using the
well-known inequality

1R(a)]l2 < (2n)? 7 |[R(a)], forall a e
it follows that for eachl < i < 2n,
d%)St(ez‘aX) = llei — will,
> ||R(e;) — R(uq)l[
[ R(ei) — R(ui)l|2
dist(e;, R(X)).

SinceR(X) is a linear subspace &, by Lemmd 2.1]1 there exisgswith
1

E’

which finishes the proof of the lemma. O

dizst(ej, X)>

It is shown in the appendix that the powerroin (2.11) is the best possibledf< p < occ.

With the aid of the last lemmas we can get a modified version Lemma 2.11Hmigplaced
by L*(0,d) .

We start by recalling some lemmas referring to the properties of the map taking to its
nearest elemenit/,(z) € A C X.

Lemma 2.14. Assume thak is a strictly convex Banach spadé,C X is a finite dimensional
subspace oX andz, € X. SetA = {z, + v;v € V}. Then for anyz € X there exists a
unique element such that

|z — ol = nf{||z —yl;y € A}.
Denote byM 4 the mapping which assigns toc X the nearest element of.

Lemma 2.15.Foranya € R, x € X andv € V, one has

(2.12) My (ax) = aMy(x),
(2.13) My (x 4+ v) = My(x) + v
and

(2.14) oz — ol > 1My (z) ol

The proof of these last two lemmas can be found.in [10].
Recall that” : X — X is called a projection if? is linear,P? = P and|| P|| < oc.

Lemma 2.16. Let X be a strictly convex Banach space and- X be a subspacelim(1') =
v/n is finite. Then there exists a projectiéh: X — V which is onto such thatP|| < /n.

For a proof of the above lemma, seel[10, Ill. B, Theorem 10].

The following lemma, whose proof is included for the sake of completeness, plays a critical
role in the sequel, since it provides an approximation to the Ma@bove by a linear operator
of at most one dimensional range. The proof can also be found in [5].
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Lemma2.17.Let] C (0,d),1 < ¢ < ocoandlet,|g(t)v(t)|dt < co. Set
it [, Jv(t)|%dt = 0;

f; (t)]edt
= if 0 )|9dt
Ld](Q) f] ‘U |th . < f] |U | < 05
it [, Jo(t)]%dt =
Then
(2.15) inf (g = a)vller < (g = wr(g)vller < 2 inf [|(g = @)vlly.r-

Proof. It suffices to prove the second inequality. isuch that/, g(t)[v(t)|%dt < occ.
Assume first thaff, |v(t)|%dt = 0. Thenu(t) = 0 almost everywhere ifi and all members in

(2.18) are equal zero.
Let [, [v(t)]%dt = co. We claim that||avl/,; < [[(o — g)v|lqs. If @ = 0 the inequality

is clear. Leta # 0, otherwise||av|,; = oo and by the triangle inequality, it follows that
(e = g)vllgr > llav|lqr — |lgv]lq,r = oo and hence the claim. Thus, for eaeke R

(g = wi(g)vllgr = Ilg — e+ a)vllgr < 2[(g — a)vllgs
which gives
(g —wr(g)ollor < 2 inf |i(g — @)l

Assume now) < [, |v(t)|%dt < co. By the Holder’s inequality, we obtain, for anyc R

o = wrtapolys = [ |(a = IO oo
— g®lopey [

- Jror | )

- [ st | e st

= ([rora) | [ - sapponeora

< (/|v(m)|qdw) /| o — g(t)o(t)|4dt </|v (1)|7 @ ldt)
- [ = gpuiorra: = @ =gyl

which proves| (a — w;(g))vllqs < [[(a = g)vllg.1-
Now, using this inequality, for any realone has:

(g — wi(g))vllgr < g — @)ollgr + [[(r = wi(g))vllgr < 2[/ (e — wi(g))vll
The lemma follows by taking the infimum overon the right hand side. O

q

dx

dx

q

U

Lemma 2.18.Let X = L?(0,d), p > 1. Letwvy, v, ..., v, be functions inX with pairwise
disjoint supports andlv;||, = 1 fori = 1,2,...,n. SetV = span{vy, v, ..., v,}. Then there
is a projectionPy, with rank P, < n, such that

1f = My (Dllp.a < I1f = Pr(Dllp.oa <2017 = Mv(Hlp0a),
whereMy is as defined in Lemnja 2]14.
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http://jipam.vu.edu.au/

12 J. LANG, O. MENDEZ, AND A. NEKVINDA

Proof. Denote S; = suppuv;, V; = span{v;}. Given anyf € X, with supp f C S;, let

M;(f) = My, (f). PUtP,f = wi(fxs,)xs,, andPf =31 P(fxs,)xs,-
From the definition of\/, and P, we have|| f — My (f)||p.0.0) < |f — Pv(f)|lp,0,0)» Which
is the first inequality. Also

If — My (f)|E = Z 1 £xs, + Mo(f)xslPs,

<Z||sz M;(fxs;)xs:ly s,

<2 ”Z”sz — Pi(fxs;)

p

_1
P

f- ZP Fxs)x

=1

p

<27r|[f = P(f)xsp,
which gives the second inequality and completes the proof. O
Lemma 2.19.Let1 < p < 2 and letuy, ..., us, be a system of functions froff (0, d) with

disjoint supports. LeX C L*(0,d) be a subspacelim X < n. Then there exists an integgr
1 < j < 2n, such that

1
dist(u;, X) > ——=||u;l|,.
it X) 2 sl
Proof. If Huz||p = 0 for some;, it suffices to choosg = i. Let ||w;|[, > 0forall 1 < i < 2n.
Sety; = Tuill H LetV = span{uvy,vs,...,vs,} and letP, be the projection from the previous

lemma. LetY” = Py(X). ThenY C V,dimY < n. Denote byZ the subspace df consisting
of all sequencesa;}:°, such thata, = 0 for all £ > 2n. Lete; be the canonical basis df.
Define a linear mapping : Y — Z by

2n 2n
I E ;U5 = E ;€.
i=1 i=1

Since||v;|| = 1 and the functions); have pairwise disjoint supports, it follows thatis an
isometry betwee” andZ. According to Lemma@ 2.12 there exists< j < 2n such that
1
2.16 dist(e;, [(Y)) > —,
(2.16) istle 1Y) 2 =5

and from Lemma 2.14 there is a uniques X with
(2.17) dist(v;, X) = |lv; — x|,
p
By the definition ofP,, and My, we have
1 1
gl = M(@)p < Sllz = Pr(a)ly < llo = My ()], < [lv; — =,
which yields, with the triangle inequality,
1Py (x) = vjllp < [[Pv(z) = llp + [l = vl
< 2|[z — vy,
< 2fle = wvilly + [l = vill, < 3llz = vjllp-
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This together with[(2.16) and (2[17), gives
dist(vj, X) = [lv; — =l

1
> .
~3v2
Denoting byM; the mapping which assigns to afiyc L?(0, d) the element ofX nearest tof
and using[(2.12) we can rewrite the previous inequality as

dipst(uj,X) = |luy — Mi(uy)ll,
= |lu;llp lv; — Mi(vy)llp

1
= ||u:l|, dist(v;, X) > —||u;
Huj”p ;)S (Ujv ) > 3\/§Hu]”p

which yields the claim. O
Lemma 2.20.Let2 < p < oo and letuy, ..., us, be a system of functions frof¥ (0, d) with

disjoint supports. LeX C L?(0, d) be a subspacelim X < n. Then there exists an integgr
1 < j < 2n, such that

3=
N[

dist(u;, X) [upn
p

1
>
> ﬁ|
Proof. Let V, My, Py, Y, Z and I have the same meanings as in Lenima]2.19. Proceeding as
before, Lemm&a 2.13 yields: 1 < j < 2n such that

1
dist(e;, I(Y)) > —nv 2.
P 2
Letz € X be the element given by Lemrpa 2.14 so that
dist(v;, X) = |lv; — [,
In exactly the same way as in Lemina 2.19, one gets
1 1 1
dist(vj, X) > -nr~ 2,
P 3

which can be written as

1
2

1 1
dist(u;, X) > 2 [lugllpn»
P 3

and the proof is complete. O

3. BOUNDS FOR THE APPROXIMATION NUMBERS

We recall that, given any: € N, them!" approximation number,,(S) of a bounded oper-
ator S from L? into L9, is defined by

am(S) = i%f “S - F”’p—>q7

where the infimum is taken over all bounded linear maps L?(0,d) — L%(0,d) with rank
less thanmn. Futher discussions on approximation numbers may be found in [3]. An opérator
is compact if and only if,,(S) — 0 asm — oo. The first two lemmas of this section provide
estimates for,,(7") with 7" as in [1.1), which are analogous to those obtainedlin [1] &nd [5].
Hereafter, we shall always assurpe [2.1) (2.2).
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Lemma 3.1. Let1 < p < ¢ < oo and suppose that : L?(0,d) — L%(0,d) is bounded. Let
¢ > 0 and suppose that there exidt € N and numbers;,, £ = 0,1,..., N, with0 = ¢4 <
¢ <---<cy=d,suchthatd(l;) <efork=0,1,...,N — 1, wherel, = (cx, cx+1). Then
aNH(T) < 2e.

Proof. Consider forf € L*(a,b) and0 < k < N — 1 one-dimensional linear operators given

by
Py f(@) = i (2)0(z) (/ wfdt + o, (/ ufdt>> |

wherewy, is the functional from Lemm?. We claim th3t is bounded from?(0, d) into
L%(0, d) for eachk.

Assume first that eithedy = ||v||,.s, OF ||v||s7, = co. ThenP, = 0 and consequently, it is
bounded.

Assume now) < ||v||q,r, < oo and fix f, || f||5,0,e) = 1. Then using Holder’s inequality, we
obtain

wr, ( / u(t) f(t)dt) ‘

Ji, Jo u@) f()dt|v(@)|dx
Ji, w(@)|7dx

_ Ji, (@) [2 w@) f(t)dt] ()" dz

- i, Jo(@)|edz

o Ut [ @5 0araz)” (J, )7 az)’

f[ |v(z)|9dx

U

1 Tr fllg _ 1I7]

= wllan  Hvllen

and consequently,

[ @pa:= [ k

< 94—t

dx

o(z) (/ wfdt + wr, (/C:ufdt)) '

</ q—l—w}lk </qudtdx>)
< 29— 1 (’kaHq |T|| )

[Vllg.

1
<7 {1+ ——).
[V[lq,

SetP = Zf:‘ol Py. ThenP is a linear bounded operator frob® (0, d) into L%(0, d). Moreover,
we have by Lemmp 2.17 and the well-known inequality

0 o 00 H
(zw) < (zmkw) |
k=1 k=1
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N-1
ITf - Pfl = SITS — Puflt,
k=0
N-1 T x q
= v(x) [/ ufdt — wy, (/ ufdt)}
k=0 Ck Ck Qvlknu
N—1
<200 inf [Ty, f — aflly,,
k=0 "
N—1
<2t ) AN,
k=0
N-1

< (2 )qz 11157,
(Z Hprzk> (2¢)1

0

)

by Lemmd 2.b. Sinceank P < N, the proof of the lemma is complete. O

Lemma 3.2. Letl < p < ¢ < oo, T be bounded frond?(0, d) to L4(0,d),0 <a<b<c<d
and denotd = [a,b], and.J = [b, ¢|. Further, letf, g € L?(0, d) with supp f C I, suppg C J,

£l = llgll, = 1.
Letr, s be real numbers and set

hz) = v(z) / u(t) (rF(t) + sg(t))d.

Assumef u(t)h(z) = 0. Then

1

q
> q; T, f — q q; T.q — q
[Allg = <|7‘| O{gg” 1f — o ] ;gngll 79 — av| )

Proof. Sincesupp f C I andsupp g C J we have

(3.1) /0

If © € (¢, d) we have (recall thaf u(t)h(z) = 0) that

(3.2) /Cd qu:/cd o(z) /acu(t)h(t)dt

Assume firsts # 0. Then it follows from[(3.1L) and (3]2) that

ol = | o) / Cu() () + sg(t))dt
[
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~ [ [ utrero + sotorar

<
_ /I o(z) /O ) f(b)dt

# [ oo ([ e s+ [ woson)
—irl" [ |oto) [ uttrre

+lstt |

> |r|? inf
acR

q
dx

q
dx

M@AZWWﬂﬂ+w@Mt

q
dx

q

dx

q
t)dt| dx

o) ([u s+ [ ugorar)
o(z) </amu(t)f(t)dt _ a> '
o(@) (/:u(t)g(t)dt _ a) q

— 3 q : q
= rf? inf 1Ty — awlls; + |5l inf [ Tyg — w3,

q

dz

dx

+ |s]? inf dz
aeR

Assume nows = (0. Then

il = [ o) [ sy

_ |r|q/[ o(z) /ju(t)f(t)dtq

> o iut [ o) ([ utsoyie o)

— |pl2 — avll?
7l inf T2 — o]l

q
dx

dx

q

dx

which finishes the proof of the lemma.

O
Lemma 3.3. Letl < p < ¢ < 2, T be bounded fronl?(0,d) to LY(0,d), e > 0, N € N
and0 < dy < d; < -+ < dyy < d. Setl = (dg,di4+1) and assume thaﬁ([k) > e

k=0,1,...,4N — 1. Thenay(T) > 2 v 2c.
Proof. Let0 < v < 1. Then there exist functiong, € L?(I;) such that| fi||,,, = 1 and
(3.3) ik (1T fi = avllgn 2 vA(L) 2 7e.
By definition of the approximation numbers, there is a bounded linear mappingamith? <
N such that

ax1(T) 2 AT = Py
ThenP = Y-V | P, whereP, are one-dimensional operators frd®(0, d) into (0, d). Thus,
we can write(P;f)(x) = ¢;(x)R;(f), WheregbZ € Lq(O d) andR; € (LP(0,d))*. Since
(LP(0,d))* = L¥(0,d), it follows that R; f (x fo Y;(t) f(t)dt and there are functiong; €

L* (0, d) such that
N d
= oo [ w s
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Denote byX the range of?. Notice thatdim(X) < N.
DefineJ; := Iy, U I, fori =0,1,...,2N — 1. Foreach € {0,1,...,2N — 1} let (r;, s;)
be orthogonal to the 2-dim vector such that

(34) |Tz“p + |Si|p >0 andm/ 'U/fQi + Sz‘/ Uf2i+1 = 0.
Io; I2i41
Setg;(t) = 7ifai + Sif2ir1 @ndhy(x x) [ u(t)g;(t)dt. From||f;|| = 1 for eachi: 0 < i <

2N — 1 and by [3.2), one has

|@M-(MP¢\&UW¢+MP[ U@dWWQ = (Il + |s:f?)
2i 2i+1

Consequentlyl| 2|, = | Tgill, < oc- Moreover,fod hi(t)dt = [, hi(t)dt = 0, whence
supp h; C J; forallz’:O,l,...,QN— 1.
Thus, using Lemmia 2.19 one finds that there exists an infegex & < 2N — 1, such that

D=

1
dist(hyg, X) > —=||h
1qs< k> )— 2\/5“ kHQ7

from which it follows that
CLN+1(T) > V||T - P||p—>q

Tf—-P
. wp ATEPA
feLP supp fCJg Hf”p
YNTgr — Parll
lgr Il
_ e~ Pail,
llgrll,
dist, (hy, X) > v N llq
B loell, — — 2v2 llgkllp

Using Lemma 3]2[(3]3) and the inequality
1 11 1
(Irwl” + [sul")r < 2274 ([ref” + |si|”)7,
we obtain
. . 1
||thq (|Tk|q1nfa€§)‘t ||T12kf - OWHZ + |Sk’qlnfa€§R ”TI%H - 0”’”3)‘1
lgell, ~ (|relP + |selP)7
1
q q)q
U+ sl oot
(Irel? =+ [skl?)?

which, together with the previous estimate gives

>

an+1(T) > 2 9247532,
The proof is complete. O

Using the properties of approximation numbers on dual operators we can extend the previous
result.
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Lemma 3.4. Let2 < p < ¢ < oo and suppose thaf' : L?(0,d) — L%(0,d) is bounded. Let
¢ > 0 and suppose that there exidt € N and numbersl,, k = 0,1,...,4N with0 = dy <
dy <---<dyny <dsuchthatA(l;) > efork=0,1,..., N — 1, wherel, = (dy,d1). Then
an(T) > ce wherec is positive and depends only pnd.

Proof. The adjoint of7’, 7", is bounded fron.¢ into L”'. Itis easy to see that Lemma 3.2 holds
for T replaced byl”. Then the proof follows immediately from Lemma 2.5 and Remark 2.6 in
[3]. O

Lemma 3.5. Letl < p < 2 < ¢ < oo and suppose that' : L?(0,d) — L9(0,d) is bounded.
Lete > 0 and suppose that there exists € N and numbersl,, k. = 0,1,...,4N with 0 =
dyg < dy < --- <dyy <dsuchthatA(l;) > ecfork=0,1,..., N — 1, wherel, = (dy, dxs1).

Thenay(T) > cena 2 wherec is positive and depends only pnd.
Proof. Let0 < v < 1. Then there exist functiong, € L?(I;) such that| fi||,,, = 1 and
(35) inf |I7fi = avllys, = 7AL) 2 ve.
By definition of the approximation numbers there is a bounded linear mappingauithP <
N such that
an+1(T) > ~||T — P”p—>q'

Write P = ZZ-N:l P; and letJ; be as in the proof of Lemn@.& In the notation of Le 3.3,
in this case we also havi;||, = || T, < o0 andfod hi(t)dt = [, h(t)dt, so that

supph; C J;foralli=0,1,...,2N — 1,
whence, by Lemmja 2.19, there exists an intégér < £ < 2N — 1, such that

1 1 1
dist(hg, X) > na 2||hillq,
st (i )_3ﬂ 17kl q
which gives
an1(T) Z AT — Pllp—q
Tf—P
. wp  2MTE=PA,
feLP supp fCJy Hf”p
Tk — Paelly _ Ylhe — Pyellq
1951l 1951l
s Bstalh X) o v Pl 2y
g5l 3v2  lgelly

Using Lemma 32[(3]5) and the inequality

(Irel? + |sel?)? < 2073 (jrefP + |sel?)”

we obtain
. . 1
”thq (|T/€|q Hlfa@R ||T12kf - O'/UHZ + ‘Sk|q 1nfOé€§R ||T12k+1 - CWHZ)C’
lgell, = (JrilP + [s4l?) 7
T [sil) -
5 e sl £ Isu[ ) ot

1 =
(Irel? + |s&[?)»
which gives with the previous estimate

N|=

an+1(T) > +* cena
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for fixed ¢ > 0 and completes the proof. O

The following theorem follows immediately from the previous lemmas. It improves results
from [1] and [5].

Theorem 3.6. Suppose thdf’ is compact (see Propositipn 2.3 and Remark 2.7). Then, for small
€>0,1<p<g<o0

ane)+1(T) < 2e,
fori<p<g<20r2<p<g<oo

andforl <p<2<g<

=

a[%@]fl(T) > cgN(g)%_ :
Here N(e) = N ((0,d),¢) is defined in[(2]9) an@:| denotes the integer part af
Proof. The first inequality is an immediate consequence of Lefnnija 3.1 and definitivi=of
The second inequality follows from Lemmjas|2.4,|3.1 3.2. O
4. LOCAL ASYMPTOTIC RESULT

The first part of this section is devoted to proving lemmas that will be needed in the proof of
our local asymptotic results, which we present in the second part.

Lemma 4.1. Let v and v be constant functions on the intervAl= (a,b) C (0,d) and let
1 1
1 <p<q<oo. ThenA(I) := A(I,u,v) = |u||v]|[I|”T7A((0,1),1,1).

Proof. If u = 0 then A(/,u,v) = 0 and the assertion is trivial. Assume that: 0. Using the
substitutiongy = =2 andt = a + s(b — a), we obtain

o [ ustrar-a)

A(l,u,v) = sup inf

1£llp,r=1 “ER a1
X
= |v||u| sup inf /f(t)dt—a
1£1lpr<1 9% (/g ol

1
= sup inf(b—a)' 9
1£llp.r=1 €%

/Oyf(a—l—s(b—a))ds—&

2,(0,1)

Witing g(s) = f(a+ s(b — a)) we havellgll, 0.1) = (b — @) # |/l (us) and thus

AlLao) = ol I+ s | [ gar—a
Iy, 01y =(b—a) " |1 a0
= |v||u vty sup g(t)dt — «
I
||9||p¢(0,1):1 a Q7(071)
= Jol|ul[1]7 7 A((0, 1), 1, 1).
The proof is complete. O

Lemma4.2.Let] = (a,b) C (0,d),1 < p < q < o0, us,uy € LP(I)andv € L(I). Then
| AL, ur,v) — AL, uz, v)| < (ol rllur — ually s
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Proof. Suppose first thatl (1, uy,v) > A(l,us,v). Then
A<Iau1a U) - A<[7 U2, U)

= ||f?:,l}:):1 01(1€1§E v(x) (/a (ur(t) — ua(t) + ug(t)) f(t)dt — oc> . — A(I, ug,v)
< s int ||oto) [ () - we)r 0]
+ [|v(x) (/fﬂ us(t) f(t)dt — a> ) — A(I, ug,v)

1£llp.r=1 %€

(z) (/ us(t) f(t)dt — a)
— A(I, us,v)

< HU”q,IHul - u2||p,1[ + A(I,Ug,’l)) - A(],’LQ,U).

q,I]

The remaining case can be proved analogously. O

< sup inf [||U||q,1||ul—U2||p’,1+

Lemma4.3.Let] = (a,b) C (0,d), 1 <p < q<o0,uc LP(I),andv,,v, € LI(I). Then
|A(I,U7U1
Proof. If A(1,u,vy) > A(1,u, vy

— AL, uw,v2)| < 3for = vallg rlully.z

)
) then by Lemma 2]4 we have

= sup inf ||vi(x) { u(t) f(t)dt — a} — A(1,u,v9)
11y, r=1 >R a 0.1

= su inf v1(x) [/ u(t) f(t)dt — a} — A(1,u,v9)
1 £1lp,r=1 led <2llull 1 a 0.1

< sup inf
1fllp.r=1 led<2llull,y 1

o)~ o ([ wosi-a)

va(z) (/:u(t)f(t)dt _ a)

< sup inf [H(m(a:)—m(x))||q,I||u||p,J||f||pJ+H(vl_w)a”w
£ llp,2=1 lel<2lully 1

Vs ( / ") f()dt a)

< 3[|vr — vallgrllwlly s

q,1

+ - A(]7U7U2)

q,1

+ - A([a u, UQ)

q,1

+ sup inf
1fllp,r=1 |a|SHqu/yI

= 3[|v1 — vallgrllwlly.1-

- A(Ia u, UQ)

va(z) { / ") f)dt — a]

q,1

O

Now we prove a local asymptotic result which in some sense extends those in [2] and [5]:
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Lemma 4.4. Let] = (a, b) (0,
andv € Li(I). Setr = pq . Then

d), |I| < coandl < p < ¢ < co. Assume that, € L¥ (1)

clozpq/|uv| < hmlnfa’"N(&? I) <limsupe"N(e, I) < 0204p7q/|uv|7",
e—0 + I

wherea,, , = A((0,1),1,1).

Proof. Sets = Z + 1. Clearly,

€—>0+

(4.1) rs=1p,rs =q.

Let/ € N be fixed. Then by the absolute convergence of the Lebesque integral and the Luzin
Theorem there exists := m(l) € N, {W;}7L, € P and real numberg;, ; such that setting

m
Uy = E ijWJ-,
j=1

m
v = E NiXw; s
j=1

we have
hu=wlys <70 =il < 7
and
T T 1 T T 1
Il = fal o < 30 Wl = ol e < -
Consequently,
hurvr - |
I 1
< [l [l = 1ol |+ [ e [
I I
< (allpr || T = o]+ || bl = b | 1 onl )
s\ 1 s, I
1
< 71ty + lorle)
1
< 2l + 1o = willy + el
1/1
<7 (7 + s + ol )

Lete > 0. PutN(e) =
{1,375 € P such that

N(e,I). According to Lemma 2|9 there is a system of intervals

A(L) <€, A(Inwe)) <e and A(l;) = ¢ for 2 <i < N(e).

Define,

Ji:[2iUIQi+1, 221,2,

and

JiZIQiUIZH-lv Z:172a

N(e)/2, for evenN (¢)

)

, (N(e) = 3)/2,

JiN@E)-1)2 = IN@E)—2 U IN(e)—1 U I forodd N (e).
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N(e)
In both cases{J-}[ 1 ] € P and according to the definition &f(c), A(J;) > eforall 1 <i <
[W } LetW; = [d;_1, d;], wherea = dy < dy < dy < -+ < dy, = b. Set

K={J;1<i< [@] and there existg € {1,2,...,m} such that/; C W,}.

If J; ¢ K, there exists: € {1,2,...,m — 1} such thatd;, € int(J;). The number of such

intervalsJ; can be estimate by, — 1. Then#K > [N(a ] m + 1. Using Lemma.@ 2
and4.3 one sees that

(1))

< ZAT(Ik;u,v)

keK

< Z (L u, v1) + (AL w,v) — A(Iis ug,v)) + (AL w,v) — AL ug,w) |
keK

< max(1,3"1) Z <AT(Ik;ul,vl) + |A(Ly; u,v) — AL w, )|
keK
+ | A(Ii; w,v) — A(Iksuz,vl)‘r)
< max(1,3"") [a;,q D1 I G+ D = wllywe o llgwe
j=1 j

+ Z [ — UZHCTI,W(j)Hu”;/vW(j)] '
j=1

Using the discrete version of Holder’s inequality

=1

and [4.1) we obtain

N
({ <€>] —m—i—l) e"
2
< max(1,3"") (a;;,qZ 1§17 |ns]™ W5
j=1
+ (ZHUJ—UZHZ"/VJ) (ZHUHqW])
7=1
+<§:Wﬁwﬂﬁm> ( wm;m>
j=1 !

r— 1 T T
< max(13 ) (g, [ ool 1 (34 Tl + ol ) + 3 Ol + 1ol )
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rT— 1 T T
< max(1,37) (af, [l + 7 (34 Dl + Tl ) + 3 (s + ol5) ).
Thus, there is a constant > 0 independent of and/ such that

(4.2) <[N§e>}_m+1>grgcl (/J,UUH%%)

Letl; = [cio1,¢),i=1,2,...,N(e). Thus,a = ¢y < ¢; < - < cny) = b. LetD = {e; :

1 < k < M} stand for the set-theoretic union ff; : 1 <i < N(¢)} and{d; : 1 < j < m},
sothate = e; < ey < - < ey = band writeL;, = [ex_1,ex]. Then{L;}}, € P and for
eachl < k < M there exists, 1 < i < N(¢) such thatl, C I; and, consequently, by Lemma
5 itisA(Ly) < A(L;) < e. Thus,

a;,q/l|uv|’" < max(l,B’"_l)a;q (/I|ulvl|r ~|—/I|u — " o] +/]|ul|r|v — vl|’">

< max(1,3" )al, (Z 651" Ins ™ I
j=1

m 1/s m 1/s
+ (Z lu — Uz||§f,wj> (Z ||U||Z,wj>

=1 =1

m 1/s m 1/s
+ (Z lv = Uz||3,wj> (Z ||u!|§gwj>

=1 =1

rT— r — T 1
<max(L,3 e, | D Y & Il | Lol + 77 (lallyy r + 1ollG.r)

J=1 {k;L,,CW;}

/

m

< max(1,3"1) Z Z A"(Lg, &5, my) + (HUH pr +vlGr)

Jj=1 {k LkCW }
ar
SMML?ﬂON@+mW#ZTWMqHMm0
Thus, there exists, > 0, independent of and/ such that

/Imrs@? <( () +m)e’ +Z1T>.

Lettinge — 0, here and in[(4]2) we obtain for eath

1 1
limsupe"N(e) < 2¢; (/ luv|” + 7 + —)
I

e—04 Ir
and
/I|uv|’" < e lisrg(i)rjf (ETN(E) + %) .
The lemma follows letting — oo. OJ

The latter lemma coupled with Theorém|3.6 yields the following theorem:
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Theorem4.5.Letl <p<g<20r2<p<gq<oolv|], < oo,
Then

ul|, < oo andu,v > 0.

n—oo

d d
cl/ luwv|” < liminfna (T) < limsup na, (T) < 62/ luv|”.
0 e 0

Letl <p<2<g<oolv|y <oo,|ully <ooandu,v > 0. Then

d d
03/ uv|” < liminfn(%_%)rHa;(T) < limsup nay, (T') < 04/ juv]".
0 0

n—oo n—oo

_ 7q
wherer = T

5. THE MAIN RESULT

Throughout this section we assume tlﬁﬂu(t)\?"dt = oo. Furthermore, we sét(z) :=
Iy Ju(t)|P'dt. Let{&} _ ., be a sequence satisfiyng

(5.1) UG) =27,
and
(5.2) or = 2"l 4.2, Zi, = (ks Ekra)-

The sequencéoy } is the analogue of the sequence defined in [2] and [5], which in turn, was
motivated by a similar sequence introduced_in [8].
The following technical lemmas play a central role in this section.

Lemma5.1. Letr > 0, ko, k1 € Z with kg < ky. Let] = (a,b) C UjL, Zx. Then

J'(I) < 4d max of.
ko<k<ki

Proof. Letx € (a,b). Then there exists € Z, ky < n < k; such that: € Z,,. Clearly,

xr
7

x , P §n+1 ,ﬁ
(/ |u|p) ||vx<x,b>||;s</0 |u|p) X ol

k1 a
< 2+ (Z HUX(E%&-H)”Z)

i=n,...,k1
so that i
(1) < 4q .
T <47, max ok
]
Lemma5.2. Letr > ]D’qu I; = (a;,b;), 1 <i<landb; < a;.1,1 <1—1. Letk € Z be such

thatU!_,I; C Z. Then
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Proof. Sets = (p' + q)/7'. ThUSs > landp'/s' = q/s = p'q/(p' + q). Fixz; € (a;,b;).
According to the assumptlcm> - we haver > p '/s',r > q/sand

xr
o’

! - !
S (1) ool < X vl
i=1 i=1
1
1 e l
< (o ) (S )
i=1 i

< (;Hum ii) (Z lox, )Z

< luxzlly loxzlly = (2774 = 1)7 of.

||UX]i Z

Thus,
! T L/ T
S =Y (1) boxcals < @7 - 0¥ o
i1 i—1 T, €l; a;
]
Lemma5.3. LetU!_,I; C U’;? ko 21 @Ndr > ppfq Then
l N
Sy < (@ -7 +29%) 3
i=1 k=ko

Proof. Let

A={ie{1,2,...,l} : there exists € Z such that, € int I;},
B={i€{1,2,...,l} : there exists € Z such thatl; C Z;}.

Clearly, ANB =0, AUB = {1,2,...,1}. By Lemmd 5.2 we obtain

k1
(5.3) ST < @ -1)7 Y o

1€EB k=ko

SetA; = {k € Z;int(I; N Z;,) # 0} fori € A. Let A = {A;;i € A}. Since eachk belongs at
most to two elements ofl, Lemmg 5.1l yields

ZJT <4quaX0k<4q 220,“

€A €A k=ko

which coupled, with[(5]3) yields the assertion of this lemma. O

Lemma 5.4. Let K, K, be the constants from Propositipn R.1. Then
Kisupo, < ||T]| < 4 K, sup oy.
keZ keZ
Moreover, T is compact if and only if

lim supop = lim supoy = 0.
n—00 k>p n——00 p<pn
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Proof. Let (a,b) C (0,d). Set

b—e if b<oo,

ale) =a+e, 5(5):{1 if b= o0.

Define a functionf (e, z) by

1

f@aa(l;uﬂ)“<LW)mﬂ;.

Sincef(e,z) / f(0,z) fore — 0, and any fixedr we have
J(a(e),b(e)) = sup f(e,x) / supbf(O,x) = J(a,b).

a(e)<w<b(e) a<a<

Choosingz = 0, b = d we have by Lemma 5.1
J(a(e), b(e)) < 47 sup oy
kEZ

and consequently,

J(a,b) < A sup oy,.
keZ

By the definition ofoy it is easy to see that, < J(0,d) for eachk € Z which implies

supoy < J(a,b).
keZ

Now, the first part of our lemma follows by applying Lemmal2.1.
The second part can be proved analogously by using Propdsition 2.3. O

Lemma5.5. Let !’ = [d/,b'] C I = [a,b] C [0,d] and lete > 0. Let{]i}ﬁi(f’g) € P(I)and
A(L) <e.Setk ={i;I; C I'}, K = #K. Then
K—-2<N(l,e) < K+2.

Proof. Let {I}NU"9) ¢ P(I), A(I)) < e. Let], = [as,a1), i = 1,2,...,N(I,¢), and
I =[a},a},), 5 =1,2,...,N(I',¢) and putky = min K andk; = max K. Write

_ {[CL’, ako]} if o' < ko 5 _ {[ak1+17 b/]} if Agy 41 < v,
S = Sy =

0 if a' = ay,, 0 if ap,1="0.

Remark that by Lemm@&l(f) < ¢ for eachl ¢ S U Sg~. Take a system of intervals

L=5USU{l;ieK}sothatl € P(I') andA(I) < efor I € L. Thus, by the definition
of N(I’,¢) one has
N(I'je) <H#L<#K+2=K +2.
To prove the inequalitys’ — 2 < N (I’ ¢) set
9_{W%mdﬁ w%ﬂ<w,g_{wm%M} itV < ana,
1 2

0 if ag,_1=d, 0 if b= a0

Clearly, A(I) < e for I € S} U S}. DenoteN,, = {I;;I; C [a,d']}, Ny = {I;;I; C [V/,b]} and
setng = #Ny, n1 = #N;. Take a system of intervals

L'=S5USyUNGUMU{T};5=1,2,...,N(I',¢)}.
Since,A(I) < ¢ foranyI € £’ and by definition ofN (1, ), N(I,) < #£'. Moreover, since
no+n+K < N({,e) <ng+n +K+2
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and
no+ni+ N(I'e) <#L <ng+ny+ N &)+ 2
we obtain
no+mn + K <ng+ny+ N(I' e)+ 2,
which finishes the proof. 0J

Lemma 5.6.Letl < p < g < oo, 7 = ﬁ. Let) . ,0f < oo. ThenT is compact,

fod luv|" < oo and there are positive constants c, such that
d d
c1 [ |uv|” <liminfe"N(e) < limsupe"N(e) < 02/ luv]|".
0

0 e—0+ e—04

Proof. By Lemma 5.4," is compact. Lek € Z and sets = p//q + 1. It follows thatrs = p/,
rs’ = ¢ and using Hoélder’s inequality, we obtain

&kt , ;;L’ &kt 5
/‘wwrs(/ ww) (/‘ wv).
Zy, &k &k

Moreover by the definition of, one has

1

, 1 €k , ﬁ Ek+1 N\ P
@iy ([T) = ([ )
0 &k

x
7

Vo

and consequently,

(5.4) juv]” < (2777 — 1)

Zy,

This provesfod |uv|” < .
Fix 6 > 0. Takeky, k&, € Z such that

/ T r\ 1
Z U;+ZU: < ((2p/q— 1)¥ —|—2l+25> J.

i<ko—1 i>ky

Lete > 0. Let {;}}) € P(0,d), A(I;) < . Remark that according to the definitiondfe),

A(L;Uljyy) >eforj=1,2,...,N(e) — 1. Set] = [&,, &, ] and
NO = {[j;[j C [ngko]}a n0<€> = #-/\[07
N ={I};:I; C &, d]}, ni(e) = #M,
N ={1;1; C 1}, n(e) = #N.
ThenN(e) < ni(e) +no(e) + ni(e) + 2. By Lemmg5.571(c) —2 < N({,¢) < ni(e) +2. Since

€)=
n <2 ([%] + 1) for any positive integen, we obtain
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For jo = min{j; I; € Ni(¢)}, one has

=2 s
~e"(N(e) = N(I,e)=6)< > &+ > &
Jj=1 J=Jo
22 2]
< ) ALULn)+ Y AL UL
Jj=1 Jj=Jo
SinceA(I,e) < J(I,¢) for I C J and according to Lemnja 5.5 we have
1 22 [
5& (N(e) = N(I Z T(LULia)+ Y. (LUl
Jj=Jo
((2p/‘1—1) + 2% ) ( > o +Za>
i<ko—1 >k
which gives

e"N(e) <20 4+¢€¢"N(I,¢e) + 6e"
and consequently,

(5.5) limsupe"N(e) < 2§ + limsupe"N([,¢).
8—>0+ 8—>0+
Again, Lemma 5 gived/(1,¢) <7+ 2 < N(e) + 2 and thus
(5.6) limsupe"N(/,¢) < limsupe"N(e).
€—>0+ €—>0+
By (5.4) we have
d
(5.7) / |uv|” —/]uv]’” < (297 — 1)¥ 4.
0 I

Using Lemma 44 one easily sees that

€—>+

clozpq/|uv| < hmlnfng(] e) <limsupe"N(I,e) < 02ap7q/|uv|T
I

€—>0+

which yields with [5.5),[(5)6) andl (5.7) that for afy> 0,

d
C1%pq (/ luv|” — (279 — 1)?’5) < liminfe"N(e)
0

€—>0+

< limsupe"N(e)

E—>0+

d
< 0y (/ ]uvlr) + 20.
0

Lettingd — 0, we obtain our lemma.

Theorem 5.7. Suppose tha.l) an@ra are satisfied andlet -2 andz
Letl<p<g<20r2<p<g<oo. Then
(5.8) / lu(t)v(t)|"dt < liminfnal (T) < limsupna) (T) < 02/ |u(t)
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Letl <p<2<qg<oo. Then

(5.9) 03/ lu(t)v(t)|"dt < lim inf (2 ¢+ ar (T)
< limsupna, (T) < 04/ lu(t)v(t)|"dt.

6. [” AND WEAK—[" ESTIMATES

In this section we show that the (L™>°)-norms of{a,, (T}, , @and{o,}, ., are equivalent
for r > ming max( il q)

Lemma 6.1. Let/ = [a,b] ande > 0. Set
o(e)=4{ke€eZ :ZyC1l,0o,>¢}.

Suppose that, contains at least four elements. Then

Al > =

q

Proof Let Z;, ,z’ = 1,2,3,4, k1 < ko < k3 < ky, be 4 distinct members of(c), and set
(5]4175]62) £k2+17£k4) Then W|thf0 Xll _'_XIZ’

</ lu(t)|fo(t dt—a) y
/\u (t)|dt — a;

A(I) > inf

[V]lg,2,

|

> mf max { [vllq,z,

/I ()=

mf max {H quk |2k2/q _oki/a _ al; ||U||qZk }ka/q — 9k1/a y gka/a _ g(ka+1)/q _ a}}
> inf max{ ot /a |2k2/q oki/q _ 04| m ‘ka/q _9ki/q + oka/a _ o(k2+1)/q _ ‘}
1
> ks _ gkat1) >
2k4/q+ 1 2 ( ) = 4%

Lemma6.2. Lete > 0. LetK = {k € Z; 0y > 255}. Then
#K < 4N(e) — 1.

Proof. Let I; = [¢;_1,¢;]and i = 1,..., N(¢). Divide K into two disjoint set¥,; andZ, by

Zy = {k € K, there existg € {1,..., N(¢)} suchthat; € Z;},

Zy = {k € K, there existg € {1,..., N(e)} such thatZ, € I;},
Clearly,#7Z, < N(e) — 1.

Say thatk;, k, € Z, are equivalent if there existssuch thatZ,, U Z;, C I;. Denote the
equivalence classes#y by Y; andY;. Assume#Y; > 4 for somei. Thenthere aré,, ko, ks, k4
1

andy such thatZ,, U Zy, U Zy, U Z;, C I;. Using Lemml Wit e instead ofs, we have
A(I) > e which contradicts the definition of (7). Then#Y; < 3foranyi € Z,. Consequently,
the mappingP defined by

P(i)=jif Z; C I, foranyi € Z,

is an injection and, therefore,
#74 < 3N(e).
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Thus,
#K:#Zl+#22 §4N(6) -1
which completes the proof. O

Lemma6.3.Letl < p<qg<2o0r2<p<q< oco. Thenthere are positive constamiscy, c3
depending op andq such that the inequality

#{k; o >t} < c1#{k;ap(T) > ot} + ¢
holds for allt > 0.
Proof. According to Lemma 3]4 there are two positive constants, depending om, ¢ such
that
aferN ()1 (T) > coe
Then
#{k;ar(T) > cee} > 1 N(e) — 2
and, according to Lemnja 6.2, we have
t
#{k,o, >t} <4AN (—) -1

1
24

4 t 4
4 ()i
C1 24q C1

< i# {k‘;ak(T) > C—?t}
C1 q

q

The lemma follows by writing:;, ¢, andc; instead of%, G andé —1. O
249

We recall the following well-known fact: given a countable Setve have for any, 1 <
p < 00

Z la|? = p/ tr 14k € S; lag| > thdt.
keS 0
It is easy to see that also

Z lag|? = p/ P 4k € S; |ag| > thdt.
0

keS
Lemma 6.4. Letr > 0. There are constantg > 0 andc, > 0 such that

{o}lir@) < erl{ar(T) i@y + cal{o} e (z)-
Proof. SetA = [[{o} /|1 (z)- By Lemmg 6.B we have,

A
oMl = r / ULk € Zeoy > thdt
0

A
< 7‘/ t" eyt {k; ar(T) > cot} + cadt
0

A
= / £ 4 ks ap(T) > t}dt + s\
C

2 0

C1 , .
= Cr+1 ||{ak(T)}||lr(N) + Cg/\ ,
2

and hence the proof is complete. O
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Lemma 6.5. Letr > 0. Then there is a positive constansuch that

{oHlir@) < cll{an(T)}Hirm
Proof. By Lemmg?5.5,
[{ox} i@z < CIT| = Cai(T)
< Ol{ar(T)} ller )
The result then follows from Lemnia 6.4. O

Now, we tackle the remaining inequality:

Lemma6.6.Let1<p§q§20r2§p§q<ooands>r=1%1q.Then

{an(T)}

Proof. Let I;,i = 1,2,..., N(e), be the collection of intervals given by (2.8) with= (a,b)
andN(g) = N((a,b),): note that in view of Lemmia 2.2, we havél;) = = for 1 <i < N(e).

We group the interval into familiesF;, j = 1,2, ... such that each; consists of the maximal
number of those intervals,_; in the collection, which satisfy the hypothesis of Lenjma 5.1 and
Lemm' I, C (&g Exyr ), fOr SOMeky, ko, and the next intervaly, intersectsZ, 1 (This
construction is based on our construction from [2], for more see Lemma 5.1. and Section 6 in
[2]). Hence, by Lemmp 5|1 and Leminal5.2, there is a positive constah that

5 =

e'#F; <c¢ max o, =coy .
ko<n<ks

It follows that, withn; = [coy, /€],

N(e) = Y #F,
<;§1:§;j:;n1
22#{% :J Zn}
(6.1) sg#{k:a;z”j}.

Thus, if{o}} € I*(Z) for somes € (r, 00),

S/o tIN(t) dt<s/ Zts 1#{ tr}dt

= scs/’"/ Zn_s/rzs_l# {k:or > z}dz
0 n=1

(6.2) = o} Iz
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where= stands for less than or equal to a positive constant multiple of the right hand side. From
the inequalityN () < M () and Theorer 3|6y ()41 (T) < 2¢ and therefore

#{keN:ak(T)>t}§N(%)+1

t
<M|= 1.
<ar(3)+

This yields
H{an(T)} iy = s/ 51k € N:ay(T) > t}dt
0
I ;
< s/ 51 [N(—)+1] dt
O 2
= o} 7@ + 1IT1°
= [H{ow} sz
by (6.2) and then, in virtue of Lemma 5.1 and Lemima B8 < || {ox(T)} [li~(z) < I {0k} lie(z)-

U
Lemmas 6.4 and .5 imply the following theorem:

Theorem 6.7.Letl <p<g<2and2<p<g<oo,r= p%”fq andk > 0.
(i) Then there exists a positive constapsuch that

{or @) < erll{an(T) M-
(i) Lets > r. Then there is a positive constantsuch that
{ar =y < call{ont i)
(i) Letl < j < oco. Then there exists a positive constansuch that
{orHlmiz) < erll{ar(T) Hlms -
(iv) Lets > randl < j < oco. Then there is a positive constantsuch that

{aw |5 < call{ow}|isi(z)-
Proof. Claims (i) and (ii) follow from Lemma@ 6]4 and Lemrma.5. The assertions (iii) and (iv)
can be obtained from (i) and (ii), by using real interpolation on the dééle O
APPENDIX

In this section we show that the powerofin (2.17) is the best possible far< p < oc.
Given a square matrix of a dimensian

a1 a2 ... aiy,

a921 a2 ... a9y,
(6.3) A=|

ar1 Qro ... Qarr

we will denote, forl < I < L, thei-th column ofA by u;(A) and thei-th row of A by v;(A) ,
ie.
ci(A) = (aw, ag;, - - -, ar;)
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and
ri(A) = (@i, aia, - - ., air).
By h(A) denote the rank aft and by - v the canonical scalar product of vectarando, i. e.

L
u.v = E U; U;
i=1

whereu = (uy, ug, ..., ur) andv = (v, vy, ..., vr).

Lemma 6.8. Letm € N and L = 2™. Then there exists a square matrixgiven by(6.3) such
that

(6.4) jaig| =1 for <i,j <L
and
(6.5) ui(A) - uy(A) =0 for <i,j<L, i#j.

Proof. We use mathematical induction with respectitolf m = 1 it suffices to take

()

Assume that the matrix given by [6.8) with, = 2™ satisfies[(6/4) and (6.5). Le&? be a
square matrix of dimensia?l, = 2™*! given by

ay;pr Qa1 ... aiy, a1 a1y ... aiy,
a1 Q929 ... oy, a921 29 ... oy,
ar1 Qro ... Qarr ar aro ... arr,

5 (A A

o LA —A
a1 a2 ... aiy, —a11 —a12 ... —alr
921 a2 ... asoy, —Qa21 —Q22 ... —Qa9y,
ar1 Qro ... Qarr —aj1 —arz2 ... —arr,

It is easy to see thd® satisfies[(6.4) and (6.5). O

Lemma 6.9. Letn € N and setK = 2", L = K2. Then there exists a square matrix of
dimensior2L,

mipr My ... MiL
M— Mo1 Moz ... MaL 7
mr1 Mr2 ... M[LL
such that
(6.6) h(M) < L,
and
(6.8) |mij] <1 for 1<i,j5<2Li+#j.
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Proof. SinceL = 2" we have by Lemma 6.8 a matrik,

11 a2 ... air
A a?1 A99 ... Q9] 7
ar1 Qro ... arr,
which satisfies (6]4) an@ (6.5). For< i < L, set
0 for 1 <j<L,i#j,
(69) mg; 1= K for j = i,
Qi j—L for L+1 < j < 2L
and letry, ro, ..., r; be2L-dimensional vectors; = (m;i, ma, ..., m;2r). Setforl <i <L
1 L
(610) Tt = ?Zaﬁrj.
j=1
Let M be the matrix consisting of the rows, 7, ..., 751, i.€. v;(M) = r;. Denote the elements
of M by m,;, so that
miy mio cee Maor
M= 21 22 2,2L
Mmor1 Meor2 ... MaL2L

We claim that)/ satisfies[(6J6)] (6]7) and (6.8).

Let L +1 < ¢ < 2L. Thenr; is by (6.10) a linear combination af;, us, ..., u; and then
h(M) < L.

Next, we calculaten;;. If 1 < < L, m; = K by (6.9). LetL +1 < i < 2L and write
s =1 — L. Then by[(6.4) and (6.10) we have

My = Mg+ L s+L

L
1
- E § My s+L My s+ L

j=1
1 L
K Z @js Ajs
j=1
1 1
= —||lus(A)|]P= =L =K.
We now considel] (6]8). Calculate;;, : # j. We have four posibilities:

(i) If 1 <4, < Lthen by[6.9) we have:;; = 0 and thusyn,; = 0 satisfies[(6.8).
(i) If 1<i<L,L+1<j<2Lthenm;; = a;;_; anddue to[(6)4) iti$m,;| < 1.
(i) f L+1<i<2L,1<j< Lthensettingg =i — L we have by[(6]9) and (6.]10)

1 & 1
Mij = MstLj = 77 E Qs Mygj = 7 tas g = js
k=1

which gives by[(6.B)m;;| < 1.
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(V) If L+1<i<2L,L+1<j<2Ldenotes=1i— L,t=j— L.By(6.9) and[(6.10)
we obtain

L L
1 1 1
mMi; = Ms4Lj = E E Aps Mij; = E E Qs At = %us(A) ut(A>7
k=1 k=1

which gives with [(6.5) thatn;; = 0 and proves(6]8).

Let ¢;| denote the sequence which Hasni-th coordinate and on other.

Lemma 6.10.Let2 < p < oo andn € N. SetK = 2" and L = K?. Then there exists a
subspaceX of /7, dim X < L such that for each, 1 < i < 2L.

o

d;st(ei, X) S m

Proof. Let M be the matrix of ranRL from Lemmd 6.p. Set for <i < 2L
x; = (M1, M2, .., My2r,0,0,...),
and
X =lin{xy, 9, ..., 21}
By (6.8),dim X < L.

Next, we estimateist,(ex, X) for 1 < k < 2L.
Assume firspp < co. Then

P 1
dist X) < — —x.||P
is (er, X) < e KIka

p

K 'K UK
2L—1 2L

1 1 1 1
=M1, ooy 75 ME k-1, 0, ?mk,lﬁrla . —MEk2L, 0,0,...
p
~ 1 1 2L 2
DN TR hb b

1
This givesdist, (e, X) < =57
Next, assume = oo, So that

€L — =Tk

dist(ek, X) <

o0

1 1 1 1
B H (fmkl’ T Emkvk—lao» T kL Kmk,QL,0,0, . ) Hoo
1

< —
- K
This concludes the proof. O
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