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1. Introduction

In [6], Qi studied an interesting integral inequality and proved the following result

Theorem 1.1 (Proposition 1.1, [6]). Letf(x) be continuous on[a, b], differentiable
on (a, b) andf(a) = 0. If f ′(x) ≥ 1 for x ∈ (a, b), then

(1.1)
∫ b

a

f 3 (x) dx ≥
(∫ b

a

f (x) dx

)2

.

If 0 ≤ f ′(x) ≤ 1, then the inequality (1.1) reverses.

Qi extended this result to a more general case [6], and obtained the following
inequality (1.2).

Theorem 1.2 (Proposition 1.3, [6]). Let n be a positive integer. Supposef(x) has
continuous derivative of then-th order on the interval[a, b] such thatf (i)(a) ≥ 0,
where0 ≤ i ≤ n− 1, andf (n)(x) ≥ n!, then

(1.2)
∫ b

a

fn+2 (x) dx ≥
(∫ b

a

f (x) dx

)n+1

.

Qi then proposed an open problem (Theorem 1.6, [6]): Under what condition is
the inequality(1.2) still true if n is replaced by any positive real numberr?

Some new results on this subject can be found in [1], [2], [3] and [4]. In [2], Chen
and Kimball proposed a theorem

Theorem 1.3 (Theorem 5, [2]). Supposef(x) has derivative of then-th order on the
interval [a, b] such thatf (i)(a) = 0 for i = 0, 1, 2, . . . , n− 1. If f (n)(x) ≥ n!

(n+1)(n−1)

andf (n)(x) is increasing, then the inequality(1.2) holds. If0 ≤ f (n)(x) ≤ n!
(n+1)(n−1)

andf (n)(x) is decreasing, then the inequality(1.2) reverses.
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After proving the theorem, Chen and Kimball proposed a conjecture. The con-
jecture is that the above monotony assumption of Theorem1.3 could be dropped.
In this paper, we will prove that this conjecture holds. We use the same technique
which was introduced by Qi in [6].
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2. Main Results

At the beginning of this section, we consider the casen = 2 as the first step in the
process.

Lemma 2.1. Supposef(x) has continuous a derivative of the2-nd order on the
interval [a, b] such thatf (i)(a) = 0, wherei = 0, 1, andf (2)(x) ≥ 2

3
, then

(2.1)
∫ b

a

f 4 (x) dx ≥
(∫ b

a

f (x) dx

)3

.

Proof. It follows from f (2)(x) ≥ 2
3

> 0 thatf ′ is (strictly) increasing in[a, b]. Since
f ′(a) = 0 then f ′(x) > f ′(a) = 0 for everya < x ≤ b. Thereforef is also
increasing in[a, b]. Let

H (x) =

∫ x

a

f 4 (x) dx−
(∫ x

a

f (x) dx

)3

, x ∈ [a, b] .

Direct calculation produces

H ′ (x) =

(
f 3 (x)− 3

(∫ x

a

f (x) dx

)2
)

f (x) =: h1 (x) f (x) ,

which yields

h′
1 (x) = 3

(
f (x) f ′ (x)− 2

∫ x

a

f (x) dx

)
f (x) =: 3h2 (x) f (x) .

Then
h′

2 (x) = (f ′ (x))
2
+ f (x) f ′′ (x)− 2f (x)
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and

h′
2 (x) = (f ′ (x))

2
+ f (x) f ′′ (x)− 2f (x)

≥ (f ′ (x))
2
+

(
2

3
− 2

)
f (x) =: h3 (x) .

Thus

h′
3 (x) = 2f ′ (x) f ′′ (x)− 4

3
f ′ (x)

≥ 2f ′ (x)

(
f ′′ (x)− 2

3

)
≥ 0.

Thereforeh3(x), h2(x) andh1(x) are increasing and thenH(x) is also increasing.
HenceH(b) ≥ H(a) = 0 which completes this proof.

Now we state our main result.

Theorem 2.2.Letn be a positive integer. Supposef(x) has a continuous derivative
of then-th order on the interval[a, b] such thatf (i)(a) = 0, where0 ≤ i ≤ n − 1,
andf (n)(x) ≥ n!

(n+1)(n−1) , then

(2.2)
∫ b

a

fn+2 (x) dx ≥
(∫ b

a

f (x) dx

)n+1

.

Proof of Theorem2.2. Letting

g (x) =
(n + 1)n−1

n!
f (x) ,

http://jipam.vu.edu.au
mailto:
mailto:bookworm_vn@yahoo.com
mailto:
mailto:Tung.Pham@ms.unimelb.edu.au
http://jipam.vu.edu.au


Notes on an Open Problem
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one can easily see thatg(n) (x) ≥ 1 for all x.
The problem now is to show that the inequality below is true∫ b

a

gn+2 (x) dx ≥ (n + 1)n−1

n!

(∫ b

a

g (x) dx

)n+1

.

Let

G (x) =

∫ x

a

gn+2 (t) dt− (n + 1)n−1

n!

(∫ x

a

g (t) dt

)n+1

.

One can find that

G′ (x) = g (x)

(
gn+1 (x)− (n + 1)n

n!

(∫ x

a

g (t) dt

)n)
= g (x) g1 (x) .

We will proveg1(x) ≥ 0 by induction. According to Lemma2.1, the casen = 2 is
proved. Denote

g2 (x) = g
n+1

n (x)− (n + 1)
n
√

n!

∫ x

a

g (t) dt.

It is easy to see that the functionh(x) := g′(x) satisfies the following conditions

a) h(k) (a) = 0 for all k ≤ n− 2, and

b) h(n−1) (x) ≥ 1.

Therefore, by induction

hn (x) ≥ nn−1

(n− 1)!

(∫ x

a

h (t) dt

)n−1
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or equivalently

g′ (x) ≥ n

√
nn−1

(n− 1)!
g

n−1
n (x) .

Hence,

n + 1

n
g

1
n (x) g′ (x) ≥ n + 1

n
n

√
nn−1

(n− 1)!
g (x) .

Thus,

g
n+1

n (x) ≥ n + 1

n
n

√
nn−1

(n− 1)!

∫ x

a

g (x) dx.

Then, the conclusiong2 (x) ≥ 0 follows from the fact that

n + 1

n
n

√
nn−1

(n− 1)!
=

n + 1
n
√

n!
,

which yieldsg1 (x) ≥ 0. ThenG (x) ≥ 0. Our proof is completed.
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