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Abstract: In this paper, an integral inequality is studied. An answer to an open problem
proposed by Feng Qi and Yin Chen and John Kimball is given.
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1. Introduction

In [6], Qi studied an interesting integral inequality and proved the following result

Theorem 1.1 (Proposition 1.1,6]). Let f(z) be continuous ofu, b, differentiable
on(a,b) and f(a) = 0. If f'(x) > 1forz € (a,b), then

(1.1) /abf3(x)dx2 (/abf(x)dx)2.

If 0 < f'(x) <1, then the inequalityl(.1) reverses.

Qi extended this result to a more general c&e dnd obtained the following
inequality (L.2).

Theorem 1.2 (Proposition 1.3, §]). Letn be a positive integer. Suppogér) has
continuous derivative of the-th order on the intervala, b] such thatf(a) > 0,
where0 <i < n —1,and f™(z) > n!, then

(1.2) /ab £ (2) da > (/abf (z) dw) "

Qi then proposed an open problem (Theorem ¥6J; [Under what condition is
the inequality(1.2) still true if n is replaced by any positive real numbe?

Some new results on this subject can be foundjn[p], [3] and [4]. In[2], Chen
and Kimball proposed a theorem

Theorem 1.3 (Theorem 5,2]). Suppos¢ (x) has derivative of the-th order on the

interval [a, b] such thatf®(a) = 0fori =0,1,2,...,n — 1. If f)(z) > M—;w
and f™ (z) is increasing, then the inequalify.2) holds. If0 < f™(z) < —2—

(n+1)
and " (z) is decreasing, then the inequality.?) reverses.
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N
After proving the theorem, Chen and Kimball proposed a conjecture. The con- I M
jecture is that the above monotony assumption of Thearéhcould be dropped. 3

In this paper, we will prove that this conjecture holds. We use the same technique -
which was introduced by Qi irg]. P

*
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2. Main Results

At the beginning of this section, we consider the case 2 as the first step in the
process.

Lemma 2.1. Supposef(z) has continuous a derivative of tteend order on the
interval [a, b] such thatf (a) = 0, wherei = 0,1, and /¥ (z) > 2, then

2.1) [ £ ( [ 1w dx)?’.

Proof. It follows from £ (z) >

f'(a) = 0 then f'(z) > f'(a)

increasing ifa, b]. Let

H(m):/azf4(m)dx— (/jf(m)dx)g, velal.

Direct calculation produces

H (z) = <f3(x)—3 (/jf(x)dx)Q) F @)= b (@) (@),

which yields

> 0 that f’ is (strictly) increasing ifja, b]. Since
0 for everya < x < b. Thereforef is also

I s

W (2) =3 (f<x>f'<x>—2/jf<x>dx) [ (@) = 3ha () F (1)

Then
Ry (z) = (f () + f (x) f" (x) — 2f ()

Notes on an Open Problem
Quéc Anh Ngb6 and Pham Huy Tung
vol. 8, iss. 2, art. 41, 2007

Title Page
Contents
44 44
< 14
Page 5 of 9
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:bookworm_vn@yahoo.com
mailto:
mailto:Tung.Pham@ms.unimelb.edu.au
http://jipam.vu.edu.au

and

Thus
4

(@) = 2f (2) " (2) = 5" (2)

IR
> 0.

Thereforehs(z), ho(x) andhy(z) are increasing and thefi(z) is also increasing.
HenceH (b) > H(a) = 0 which completes this proof. O

Now we state our main result.

Theorem 2.2. Letn be a positive integer. Suppogér) has a continuous derivative
of then-th order on the intervala, b] such thatf")(a) = 0, where0 < i < n — 1,

andf(")(x) Z (n—&-l?ﬁ' then

2.2) /ab £ (2) da > (/abf (z) dx) "

Proof of Theoren?.2. Letting
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one can easily see thgt” (x) > 1 for all z.
The problem now is to show that the inequality below is true

/abg"”(x)dxz%(/abg(x)dx)

G(:U):/:g”“(t)dt—m—i_n—]i)n_l</:g(t)dt)n+l.

One can find that

@' =o) (0= 7 ([0 )

=g(z) g (2).

n+1

Let

We will prove ¢, () > 0 by induction. According to Lemma.1, the case: = 2 is

proved. Denote
n@) =% ) - [y an

It is easy to see that the functidiiz) := ¢'(x) satisfies the following conditions
a) h™ (a) =0forallk <n-—2,and
b) A"V (2) > 1.

Therefore, by induction

Notes on an Open Problem
Quéc Anh Ngb6 and Pham Huy Tung
vol. 8, iss. 2, art. 41, 2007

Title Page
Contents
44 44
< 14
Page 7 of 9
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:bookworm_vn@yahoo.com
mailto:
mailto:Tung.Pham@ms.unimelb.edu.au
http://jipam.vu.edu.au

or equivalently

Hence,

Thus,

ntl n+1 nn—1 r
: > n .
g (@)= — \/(n_l)!/a g (z)dx

Then, the conclusion, (x) > 0 follows from the fact that

n+1 [ nmt n+l
n (n—1!  nl’

which yieldsg; (z) > 0. ThenG (z) > 0. Our proof is completed.

St @) @02 e ).
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