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ABSTRACT. Sufficient conditions are established for the boundedness of all solutions of (1.1),
and we also present some sufficient conditions, which ensure that the limits of first and second
order derivatives of the solutions of (1.1) tend to zero ast→∞. Our results improve and include
those results obtained by previous authors ([3], [5]).
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1. I NTRODUCTION

We consider the third order non-linear and non-autonomous ordinary differential equation

(1.1)
...
x + f(x,

.
x,

..
x)

..
x+ g(x,

.
x) + h(x,

.
x,

..
x) = p (t, x,

.
x,

..
x)

or its equivalent system

(1.2)

.
x = y,

.
y = z,

.
z = −f(x, y, z)z − g(x, y)− h(x, y, z) + p(t, x, y, z).

It is assumed thatf, g, h and p are continuous functions which depend only on the argu-
ments displayed explicitly, and the dots denote differentiation with respect tot. The derivatives
∂f(x,y,z)

∂x
≡ fx(x, y, z),

∂f(x,y,z)
∂z

≡ fz(x, y, z),
∂h(x,y,z)

∂x
≡ hx(x, y, z),

∂h(x,y,z)
∂y

≡ hy(x, y, z),
∂h(x,y,z)

∂z
≡ hz(x, y, z) and ∂g(x,y)

∂x
≡ gx(x, y) exist and are continuous. Moreover, the existence

and the uniqueness of the solutions of (1.1) will be assumed.
In recent years, the boundedness properties of solutions of certain non-linear differential

equations of the third order have been investigated by a large number of mathematicians, and
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2 CEMIL TUNÇ

they have obtained many results for some special cases of the equation (1.1) withh ≡ h(x), see
([1], [4], [5], [7] – [10]) and references therein. However, in the caseh ≡ h(x,

.
x,

..
x), the results

about third order nonlinear differential equations are relatively scarce.
In ([5], [6]), Ezeilo discussed the ultimate boundedness and the existence of the periodic

solutions of equations of the form
...
x + ψ(

.
x)

..
x+ ϕ(x)

.
x+ v(x,

.
x,

..
x) = p(t).

Later, in a recent paper, Bereketoğlu and Györi [3] considered the differential equation de-
scribed as follows

(1.3)
...
x + f(x,

.
x)

..
x+ g(x,

.
x) + h(x,

.
x,

..
x) = p(t, x,

.
x,

..
x),

and the author established sufficient conditions under which all solutions of the non-autonomous
differential equation (1.3) are bounded and the limits of first and second order derivatives of
the solutions of (1.3) tend to zero ast → ∞. In this paper, we shall be concerned with the
boundedness results of the solutions of third-order non-linear differential equations of the form
(1.1).

The motivation for the present work has come from the papers of Ezeilo ([5], [6]), Bereke-
toğlu and Györi [3] and the paper mentioned above. The results obtained herein are comparable
in generality to the works of Bereketoğlu and Györi [3] and Ezeilo [5], and our results also
include and improve the results in ([3], [5]). It should also be noted that the first result obtained
here is proved without using the boundedness ofh(x,

.
x,

..
x).

2. M AIN RESULTS

The main results of this paper are the following.

Theorem 2.1. Further to the basic assumptions on the functionsf, g, h andp assume that the
following conditions are satisfied (a, b, c, l,m andA- some positive constants):

(i) f(x, y, z) ≥ a andab− c > 0 for all x, y, z;

(ii) g(x,y)
y

≥ b for all x, y 6= 0;

(iii) h(x,0,0)
x

≥ c for all x 6= 0;

(iv) 0 < hx(x, y, 0) ≤ c for all x, y;

(v) hy(x, y, 0) ≥ 0 for all x, y;

(vi) hz(x, y, 0) ≥ m for all x, y;

(vii) yfx(x, y, z) ≤ 0, yfz(x, y, z) ≥ 0 andgx(x, y) ≤ 0 for all x, y, z;

(viii) yzhy(x, y, 0) + ayzhz(x, y, z) ≥ 0 for all x, y, z;

(ix) |p(t, x, y, z)| ≤ e(t) for all t ≥ 0, x, y, z, where
∫ t

0
e(s)ds ≤ A <∞.

Then given any finite numbersx0, y0, z0 there is a finite constantD = D(x0, y0, z0) such that
the unique solutionx(t) of (1.2) which is determined by the initial conditions

(2.1) x(0) = x0, y(0) = y0, z(0) = z0

satisfies
|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D

for all t ≥ 0.
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BOUNDEDNESS OFSOLUTION OF A 3RD-ORDER NONLINEAR D.E. 3

Theorem 2.2. Let all the conditions of Theorem 2.1 be satisfied; in addition, we assume that
e(t) is bounded fort ≥ 0 , that is, there is a positive constantM such that |e(t)| ≤M for all
t ≥ 0. Then every solutionx(t) of (1.2) determined by the initial conditions (2.1) satisfies

.
x(t) → 0,

..
x(t) → 0 as →∞.

Remark 2.3. Theorem 2.1 and Theorem 2.2 contain far less restrictive conditions than those
established in Bereketoğlu and Györi [3, Theorem 1, Theorem 2]. Because the result established
in [3] can be proved here without the assumptionshy(x, y, 0) ≥ 1

4
> 0 andab+ al

4
> a2m+ c.

Remark 2.4. It should be noted that the functionh satisfying conditions (iii)-(vi) essentially
reduces to something likeh(x, y, z) = cx + h0(x, z). For example, the functionh(x, y, z) :=
cx+ z(x2 +m) satisfies the above conditions.

The proofs of Theorem 2.1 and Theorem 2.2 depend on some certain fundamental properties
of a continuously differentiable Lyapunov functionV = V (x, y, z) defined by:

(2.2) V (x, y, z) = a

∫ x

0

h(ξ, 0, 0)dξ + h(x, 0, 0)y

+

∫ y

0

g(x, η)dη + a

∫ y

0

f(x, η, 0)ηdη + ayz +
1

2
z2.

Namely, this function and its time derivative satisfy some fundamental inequalities.
In the subsequent discussion we require the following lemmas.

Lemma 2.5. Subject to the assumptions (i)-(vi) of Theorem 2.1,V (0, 0, 0) = 0 and there is a
positive constantK depending only ona, b andc such that

(2.3) V (x, y, z) ≥ K(x2 + y2 + z2)

for all x, y, z.

Proof. It is clear thatV (0, 0, 0) = 0. Sincehx(x, y, z) ≤ c, g(x,y)
y

≥ b (y 6= 0) andf(x, y, z) ≥
a, the functionV (x, y, z) can be rearranged as follows (fory 6= 0):

V (x, y, z) ≥ a

∫ x

0

h(ξ, 0, 0)dξ + h(x, 0, 0)y +
b

2
y2 +

1

2
a2y2 + ayz +

1

2
z2(2.4)

=
1

2b
[by + h(x, 0, 0)]2 +

1

2
[ay + z]2

+
1

2by2

{
4

∫ x

0

h(ξ, 0, 0)

[∫ y

0

(ab− hξ(ξ, 0, 0))ηdη

]
dξ

}
≥ 1

2b
[by + h(x, 0, 0)]2 +

1

2
[ay + z]2

+
1

2by2

{
4

∫ x

0

h(ξ, 0, 0)

[∫ y

0

(ab− c)ηdη

]
dξ

}
, (for y 6= 0) .

Now, it is obvious from (2.4) that the functionV (x, y, z) defined in (2.2) is a positive definite
function which has infinite inferior limit and infinitesimal upper limit. Hence, there is a positive
constantK such that

V (x, y, z) ≥ K(x2 + y2 + z2).

The proof of this lemma is now complete. �

J. Inequal. Pure and Appl. Math., 6(1) Art. 3, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 CEMIL TUNÇ

Lemma 2.6. Under the assumptions of Theorem 2.1, there are positive constantsD1 andD2

depending only ona andm such that, if(x(t), y(t), z(t)) is any solution of (1.2), then

(2.5)
.

V =
d

dt
V (x(t), y(t), z(t)) ≤ −D1(y

2 + z2) +D2(|y|+ |z|)e(t).

Proof. An easy calculation from (2.2) and (1.2) yields that

(2.6)
.

V = y2hx(x, 0, 0) + y

∫ y

0

gx(x, η)dη + ay

∫ y

0

fx(x, η, 0)ηdη

+ az2 − f(x, y, z)z2 − ayg(x, y)−W1 −W2 −W3 + (ay + z)p(t, x, y, z),

where

W1 = af(x, y, z)yz − af(x, y, 0)yz,

W2 = −h(x, 0, 0)z + h(x, y, z)z,

W3 = −ayh(x, 0, 0) + ayh(x, y, z).

By (vii), we get

y

∫ y

0

gx(x, η)dη ≤ 0, y

∫ y

0

fx(x, η, 0)ηdη ≤ 0.

It also follows from (vii), forz 6= 0, that

W1 = ayz2

[
f(x, y, z)− f(x, y, 0)

z

]
= yz2fz(x, y, θ1z) ≥ 0, 0 ≤ θ1 ≤ 1,

butW1 = 0 whenz = 0. Hence

W1 ≥ 0 for all x, y, z.

Similarly, it is clear that

W2 = yzhy(x, θ2y, 0) + z2hz(x, y, θ3z) , 0 ≤ θ2 ≤ 1, 0 ≤ θ3 ≤ 1

W3 = ay2hy(x, θ4y, 0) + ayzhz(x, y, θ5z), 0 ≤ θ4 ≤ 1, 0 ≤ θ5 ≤ 1.

Then, combining the estimates forW1,W2,W3 with (2.6) we obtain
.

V ≤ y2hx(x, 0, 0)− yzhy(x, θ2y, 0)− z2hz(x, y, θ3z)− ay2hy(x, θ4y, 0)

− ayzhz(x, y, θ5z) + az2 − f(x, y, z)z2 − ayg(x, y) + (ay + z)p(t, x, y, z).

The assumption (viii) shows that

(2.7)
.

V ≤ −ay2hy(x, θ4y, 0) + y2hx(x, 0, 0)− z2hz(x, y, θ3z)

+ az2 − f(x, y, z)z2 − ayg(x, y) + (ay + z)p(t, x, y, z).

Also under the assumptions of the theorem we have

−ay2hy(x, θ4y, 0) ≤ 0 for all x, y;

y2hx(x, 0, 0) ≤ cy2 for all x, y;

−z2hz(x, y, θ3z) ≤ −mz2 for all x, y, z;

−f(x, y, z)z2 ≤ −az2 for all x, y, z;

−ayg(x, y) ≤ −aby2 for all x, y;
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BOUNDEDNESS OFSOLUTION OF A 3RD-ORDER NONLINEAR D.E. 5

(ay + z)p(t, x, y, z) ≤ |ay + z| |p(t, x, y, z)|
≤ (a |y|+ |z|)e(t)
≤ max {a, 1} (|y|+ |z|)e(t).

Now, letD1 = min {ab− c,m} andD2 = max {a, 1} .
From the estimates just stated above and (2.7) we obtain

.

V ≤ −(ab− c)y2 −mz2 + max {a, 1} (|y|+ |z|)e(t)
≤ −D1(y

2 + z2) +D2(|y|+ |z|)e(t).
This completes the proof of the lemma. �

Lemma 2.7. Let f be a non-negative function defined on[0,∞) such thatf is integrable on
[0,∞) and uniformly continuous on[0,∞). Then

lim
t→∞

f(t) = 0.

Proof. See ([2]). �

3. PROOF OF THEOREMS

Proof of Theorem 2.1.Consider the Lyapunov functionV (x, y, z) defined by (2.2). By Lemma
2.5, it is obvious that

V (x, y, z) = 0, atx2 + y2 + z2 = 0,

V (x, y, z) > 0, if x2 + y2 + z2 6= 0,

V (x, y, z) →∞, asx2 + y2 + z2 →∞.

Next suppose(x(t), y(t), z(t)) is any solution of (1.2) which satisfies the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0.

Set
V (t) ≡ V (x(t), y(t), z(t)).

Then just as in Lemma 2.6,
.

V ≤ −D1(y
2 + z2) +D2(|y|+ |z|)e(t),

so that .

V ≤ D2(|y|+ |z|)e(t).
It follows from the obvious inequalities

|y| < 1 + y2, |z| < 1 + z2

and

y2 + z2 ≤ 1

K
V (x, y, z)

that
.

V (t) ≤ D2(2 + y2 + z2)e(t)

≤ D2

K
e(t)V (t) + 2D2e(t).

Integrating both sides of this inequality between0 and t (t ≥ 0) and using Gronwall-Reid-
Bellman inequality, we obtain

V (t) ≤ 1

χ(t)

(
V (0) + 2D2

∫ t

0

χ(s)e(s)ds

)
,
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where

χ(t) = exp

(
−D2

K

∫ t

0

e(s)ds

)
.

Sinceχ(t) ≤ 1, and using (ix) we have

V (t) ≤ (V (0) + 2D2A) exp

(
D2

K
A

)
for t ≥ 0.

As V (0) = V (x0, y0, z0), this completes the proof. �

Proof of Theorem 2.2.The proof of this theorem is similar to that of Bereketoğlu and Györi [3,
Theorem 2] and hence it is omitted. �
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