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p-valently starlike functions of ordet, p-valently close-to-convex functions of
ordera, subordination, hypergeometric series.

The object of the present paper is to drive some properties of certain class
K, (A, B) of multivalent analytic functions in the open unit digk
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1. Introduction

Let A, be the class of functions of the form

(1.1) f(2) =22+ appatt
k=1
Subclasses of p-Valently
which are analytic in the open unit digk= {z € C: |z| < 1}. Afunction f € A, Close-to-convex Functions
is said to bep-valently starlike of ordet of it satisfies the condition Oh Sang Kwon

vol. 10, iss. 3, art. 83, 2009

Re{zf/(z)} >a (0<a<p,z€eER).

z
f< ) Title Page
We denote by5» («). Content
On the other hand, a functiof € A, is said to bep-valently close-to-convex ontents
functions of order if it satisfies the condition <« »
!/
Re{zf(z)}>a 0<a<p,z€EF), ¢ >
g(z) Page 3 of 18
for some starlikg functiog(z). We deno?e by, (). - . . S Bk
For f € A, given by (L.1), the generalized Bernardi integral operaftprs defined
by Full Screen
z Close
F.(z) = C+p/ F)tedt
z¢ Jo - ‘ -
- journal of inequalities
p c+p Ptk in pure and applied
1.2) =P+ ; p— 1 aph (c+p>0,z€FE). mathermatics
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For an analytic functiory, defined inE' by

g(z) = 22 + Z by r2" T,

Flett [3] defined the multiplier transformy” for a real number by

o0

I"g(2) = (p+k+1) b2 (2 € E).
k=0

Clearly, the function/”g is analytic in£' and
I"(I"g(z)) = I""g(z)

for all real numbers) and .
For any integer, J. Patel and P. SahoB][also defined the operatdp”, for an
analytic functionf given by (L.1), by

k+1
D"f(z) = 2" + Z <p i ) ap i’

k+1+p\ "
z—i—Z( T ) Zk“] (z € B),

wherex stands for the Hadamard product or convolution.
It follows from (1.3) that
(1.4) 2D f(2))" 7 f(2) = D" f(2).

We also have

D°f(z) = f(z) and D™'f(z) =

(1.3) = f(2) *x 2P71

() +1(2)
p+1
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If f andg are analytic functions i/, then we say thaf is subordinate tg,
written f < g or f(z) < g(z), if there is a functionv analytic in £, with w(0) = 0,
lw(z)| < 1for z € F, such thatf(z) = g(w(z)), for z € U. If g is univalent then
f < gifandonlyif f(0) = g(0) andf(F) C g(E).

Making use of the operator notatidn, we introduce a subclass 4f, as follows:

Definition 1.1. For any integem and—1 < B < A < 1, a functionf € A, is said
to be in the classy,, ,(A, B) if

Subclasses of p-Valently
Close-to-convex Functions

n ’ Oh Sang Kwon
(1_5) Z(D f(z)) < p(l ™ AZ)’ vol. 10, iss. 3, art. 83, 2009
2P 1+ Bz
where< denotes subordination. )
Title Page
For convenience, we write
Contents
2
K, (1 _ _0‘7 _1) = K, (), X >
p
| >
whereK,, ,(«) denote the class of functiorfse A, satisfying the inequality
Page 5 of 18
Dn !/
Re{z( J;(Z))}>@ (0§a<p,z€E). Go Back
z
Full Screen

We also note thafs, ,(a) = C,(«) is the class op-valently close-to-convex
functions of order. Sl
In this present paper, we derive some properties of a certain €lass4, B) by

. : : L journal of in liti
using differential subordination. JONIME I oo llies
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2. Preliminaries and Main Results

In our present investigation of the general cldss,(A, B), we shall require the
following lemmas.

Lemma 2.1 ({]). If the functionp(z) = 1+ c12 + 22 + - - - is analytic inE, h(z)
is convex inE with h(0) = 1, and~y is complex number such thRe~ > 0. Then
the Briot-Bouquet differential subordination

Subclasses of p-Valently
Close-to-convex Functions

/ Oh Sang Kwon
p(z) + '(z) < h(z) vol. 10, iss. 3, art. 83, 2009
Y
implies :
~ z Ut < 5 Title Page
< = — 7 < €
W) <alz) =L [ oo <a) (e ) e
andg(z) is the best dominant. <« >
For complex numbers, b andc # 0, —1, —2, ..., the hypergeometric series < >
b bbb+ 1
2.1) QFl(a,b;c;z)zlJra—era(aT WO+1) 5, Page 6 of 18
c 2le(c+1) ——
represents an analytic function i It is well known by [L] that Full Screen
Lemma 2.2. Leta, bandcberealc # 0, —1, =2, ... andc > b > 0. Then Close
1
/ tb—l(l — t)c—b—1(1 —tz)dt = Mﬂg@ b;c; 2), journal of inequalities
0 ['(c) in pure and applied
a z mathematics
(2.2) oFi(a,byc;2) = (1= 2)""F (a, c—b;c m) P ——
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and
(2.3) 2F1(a,b; C; Z) = 2F1(b7a; C; Z)-

Lemma 2.3 ([6]). Leto(z) be convex ang(z) is starlike inE. Then forF analytic
in £ with F(0) = 1, ©T¢(E) is contained in the convex hull f(E).

Lemma 2.4 (2]). Letg(z) =1+ i cx2® andp(z) < 42 Then
k=1

1+Bz
ek < (A= B).
Theorem 2.5.Letn be any integerand-1 < B< A< 1.If f € K,,,(A, B), then

H(DHf(2)) p(1+ A2)
where
2Py (1,p+ 1;p+2;—Bz)
(2.5) g = TERAnP(Lp+2p+3-Bz), B#£O;
1 + p+1AZ B = 0’

p+2
andq(z) is the best dominant of(4). Furthermore,f € K, .1 ,(p(p, A, B)), where
poFi(1,p+ 1;p+ 2; B)
(p+1) .
(2.6)  p(p, A, B) = —2et) ARy (Lp+2p+ 3 B), B#0;

ptl 4, B =0.

P+2
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Proof. Let

@7) () = S

pzP

wherep(z) is analytic function withp(0) = 1.
Using the identity {.4) in (2.7) and differentiating the resulting equation, we get

Subclasses of p-Valently

Z(an(Z)), Zp,(Z) 1 + AZ Close-to-convex Functions
2.8 —_ = < =h .
( ) pzp p(Z) + P —|— 1 1 —|— BZ( <Z)) Oh Sang Kwon
Thus, by using Lemma.1 (for v = p + 1), we deduce that el 0 . 8 Gt ), 200
ZtP(1 + At)
p(z) < (p + 1)Z(p+1)/ —dt<5 Q<Z>> Title P
o 1+ Bt Itle Fage
=(p+1) /1 sP(14 Asz) ds Contents
0 1+ Bsz <« Y
2.9 = 1 d 1A ds. < >
(2.9) (p+ )/0 1+ Bsz s+p+1) Z/O 1+BSZS
By using ¢.2) in (2.9), we obtain Page 8 of 18
oFi(L,p+ 1;p+2;—Bz) Go Back
p(z) <q(z)=4 TrpAnRlp+2p+3i-Bz), B#O Full sreen
Close
1+ 22 Az, B=0.
. g journal of inequalities
Thus, this provesA.5). in pure and applied
Now, we show that mathematics
(2.10) Req(z) > q(—r) (|z| =r <1). issn: 1443-575k
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Since—1 < B < A < 1, the function(1 + Az)/(1 + Bz) is convex(univalent) irf

and 1+ A 1—-A

+ Az — Ar
> = 1).
Re(1+Bz)_1—Br>0 (2| =r<1)

Setting
1+ Asz
Z) = — <s<

g(s.2) T Bsz (0<s<1, z€E)

anddu(s) = (p+ 1)sPds, which is a positive measure ¢i 1], we obtain from £.9)
that

1
o) = [ gls.2)duls) (€ B).
0
Therefore, we have

Reg(z) = / Re (s, 2)du(s) > / LT )

which proves the inequality?(10).
Now, using £.10 in (2.9) and lettingr — 1~, we obtain

Re {42711

zp

} > p(p, A, B),

where

poFi(1L,p+1;p+2;B)

p(p, A, B) = _p_gjal)Aﬁl(Ler2;p+3;B), B#0
p— pgg)A? B =0.
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This proves the assertion of Theorend. The result is best possible because of the
best dominant property af(z). ]

PuttingA =1 — 2?0“ andB = —1 in Theorem2.5, we have the following:

Corollary 2.6. For any integem and0 < a < p, we have

Knyp(a) C Kn+1ap(p(p7 a))a Subclasses of p-Valently

Close-to-convex Functions

Wh ere Oh Sang Kwon

vol. 10, iss. 3, art. 83, 2009

(2.11)  p(p,a)=p-2F1(L,p+ 1;p+2;-1)

1
—%(1—2a)2F1(1,p—I—2;p—|—3;—1). Title Page
. . Contents
The result is best possible.
<« >

Takingp = 1 in Corollary 2.6, we have the following:

< »
Corollary 2.7. For any integem and0 < a < 1, we have

Page 10 of 18
K3(0) € Knpa(0()),

Go Back
where Full Screen
=1
2.12 K} =14+4(1 =2 — (—1)k. Close
(2.12) (@) =140 =200 =5 (=)
- journal of inequalities
Theorem 2.8. For any integern and0 < a < p, if f(z) € K,11,(a), thenf € in pure and applied
K, »(«a) for |z| < R(p), whereR(p) = “VIHEED? The result is best possible. r.not-hemohcs
> p+1 issn: 1L443-575k
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Proof. Sincef(z) € K,1,(a), we have

2D (=)

zP

(2.13) =a+(p—a)w(z), (0<a<p),

wherew(z) = 1+ wyz + wyz + - - - is analytic and has a positive real partin
Making use of logarithmic differentiation and using identity4) in (2.13), we get

Z(an(Z))/ |: zw’(z)} Subclasses of p—Vak.entIy
2.14 A A - —a) lw(z) + . Close-to-convex Functions
( ) 2P <p ) ( ) p + 1 Oh Sang Kwon
Now, using the well-known (byd]) vol. 10, iss. 3, art. 83, 2009
|z’ (2)] 2r L—r
Rew(z) = 1—r2 and Rew(z) 2 1+7r (el =r<1), Title Page
in (2.14), we get Contents
D ! 1 R / 44 44
Re{Z( f(2)) —a}Z(p—a)Rew(z){1+ ezw(z)}
2P p+1 Rew(z) < N
1 |Jzw'(2)]
> (p—ao)R 1 ——— Page 11 of 18
> (p— a)Rew(z) { » T 1Rew(2) age 11 0
11— 1 2r Go Back
> (p—a) {1 - . } .
L+r p+1l—r Full Screen
It is easily seen that the right-hand side of the above expression is positiyedf Tlege

R(p) = A VA A A W Hencef € K, ,(«) for |z| < R(p).
To show that the boun®&(p) is best possible, we consider the functipre A,
defined by
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Noting that
2(D"f(z)) 1—=2 {1 1 —2z }

—a=(p—a):

2P 1+z p+1l(p+1)(1-2?)
B l—z((p+1)—(p+1)z* -2z
‘_@_ay1+z{ (p+1)— (p+1)22 }

o 0 Subclasses of p-Valently
- Close-to-convex Functions

Oh Sang Kwon

—14+4/14+(p+1)2
#, we complete the proof of Theorems. O] vol. 10, iss. 3, art. 83, 2009

for z = pa]

Puttingn = —1, p = 1 and0 < a < 1 in Theorem2.8, we have the following:

i
Corollary 2.9. If Re f'(2) > a, thenRe{zf"(z) + 2f'(2)} > a for |2| < =5, Title Page
c
Theorem 2.10. ontents
“ »
(@) If f € K,.,(A, B), then the functiorF, defined by {.2) belongs tak,, ,(A, B).
Y >

(b) f € K, ,,(A, B) implies thatF, € K, ,(n(p,,c, A, B)) where
Page 12 of 18
paFi(Lp+cp+e+1;B)

Go Back
p(pte) . .
77(17707147 B) = —p+c+1A2F1(1,p—|—c+1,p+c—|—2,B), B#0 Full Screen
p— 23{3:314, B =0. Close
Proof. Let journal of inequalities
( )y in pure and applied
zZ(D"F.(z mathematics
(2.15) $(2) = ————, o
pz issn: 1L443-575k
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whereg(z) is an analytic function witlp(0) = 1. Using the identity
(2.16) 2(D"Fu(2))"f(2) — ¢D"F.(2)

in (2.19 and differentiating the resulting equation, we get

2D f(2) _ 2¢'(2)
PP A p+c
Sincef € K,,,(A, B),
1+ Az

2¢'(2)
¢@%+p+c(<1+BZ
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1+ Az Contents
(2.17) $(2) < q(z) < 7
1+ Bz <« >
whereq(z) is given by ¢.5) and is the best dominant af (L7). p N
This proves part (a) of the theorem. Proceeding as in Thearém part (b)
follows. O Page 13 of 18
PuttingA =1 — 2?& andB = —1 in Theorem2.8, we have the following: Go Back
Corollary 2.11. If f € K,,,(A, B) for 0 < a < p, thenF, € K,, ,H(p, ¢, «), where Pl S
Close

H(p,c,a) =p-2Fi(l,p+cp+c+1;-1)
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Corollary 2.12. If f € K,,,(«) for 0 < o < 1, then the function

belongs to the clask, (§(«)), whered(«) is given by £.12).
Theorem 2.13.For any integem and0 < o < pandc > —p, if F,. € K,, ,(«) then

the functionf defined by {.1) belongs tak’, ,(«) for |z| < R(p,c) = _1+\/pi(p+0)2-
The result is best possible.

Proof. SinceF, € K, ,(a), we write

z(D"F,)

2P

(2.18) =a+ (p— aw(z),

wherew(z) is analytic,w(0) = 1 andRew(z) > 0in E. Using .16 in (2.18) and
differentiating the resulting equation, we obtain

ei ML) e ),

Now, by following the line of proof of Theorerm.8 we get the assertion of Theorem
2.13 O

Theorem 2.14.Let f € K,,,(A, B) and¢(z) € A, convex ink. Then
(f*0(2))(2) € Knp(A, B).
Proof. Sincef(z) € K, ,(4, B),

2(D"f(z)) _ 1+ Az
pzP 1+ Bz’
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Now

AD"([fx9)(2) _ o(z) *x 2(D"f)
paP * ¢(2) ¢(2) * pz?

D) p
2) % =222
(2.20) _ ) TS
¢(z) * pzP

Then applying Lemma.3, we deduce that
() # ZZLE o _l+4s
&(z) * pzP 14 Bz
Hence(f * ¢(2))(z) € K, ,(4, B).

Theorem 2.15.Let a functionf (=

) O
) defined by 1.1) be in the clasdy,, ,(A, B). Then

p(A—B)p+k+1)"
(I+p)*(p+k)

(2.21) lap k] < for k=12

PECIRIRE

The result is sharp.
Proof. Sincef(z) € K, ,(A4, B), we have

2(D"f(z)) 1+ Az
R =¢(z) and ¢(z) < 1+ B2

Hence

(2.22) 2(D"f(2))?¢(z) and ¢(z) =1+ i crzt.
k=1
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From (2.22), we have

. Ltp \" /
z(D"f(2)) _Z<Zp+2(p+k’+1> ap+kzp+k>

o0

1+ "
=pP + Z ( b ) (p+ k)ap+kzp+k

p+k+1

k=1
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14+p " Title Page
(2.23) (—) (p + k)ap i = pe.
p+k+1 Contents
By using Lemma&2.4in (2.23), <« >
(5525)" 0+ )l
Pkt Pl ol < A— B, \ >
p Page 16 of 18
Hence
0 < A= Bty Sl
e (I+p)"(p+k) Full Screen
The equality sign in.21) holds for the functiory given by |
Close
N ;L pPt+p(A— B —1)2P
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The functionf(z) defined in £.24) has the power series representatiofin
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