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ABSTRACT. The purpose of this paper is to obtain sufficient bound estimates for harmonic func-
tions belonging to the classé$;[A, B], Ky[A, B] defined by subordination, and we give some
convolution conditions. Finally, we examine the closure properties of the opdpéton these
classes under the generalized Bernardi integral operator.
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1. INTRODUCTION

A continuous functionf = u + iv is a complex-valued harmonic function in a complex
domainC' if both v andwv are real harmonic i@ In any simply connected domai C C,
we can writef = h + g, whereh andg are analytic inD. We callh the analytic part ang
the co-analytic part of. A necessary and sufficient condition fpito be locally univalent and
orientation-preserving i is that|¢'(2)| < |/(2)| in D [2].

We denote bySy the family of functionsf = h + g which are harmonic univalent and
orientation-preserving in the open disk= {z : |z| < 1} so thatf = h + g is normalized by
f(0) = h(0) = £.(0) — 1 = 0. Therefore, forf = h + g € Sy, we can express the analytic
functionsh andg by the following power series expansion:

(1.1) h(z) =z + Z 2", g(z) = Z by 2™

Note that the familySy of orientation-preserving, normalized harmonic univalent functions
reduces to the class of normalized analytic univalent functions if the co-analytic parf et
h + g is identically zero.

Let K, S*, C, Ky, S}; andCy denote the respective subclasseS ahdSy where the images
of f(u) are convex, starlike and close-to-convex.
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A function f(z) is subordinate td’(z) in the diskU if there exists an analytic function(z)
with w(0) = 0 and|w(z)| < 1 such thatf(z) = F(w(z)) for |z] < 1. This is written as

f(z) < F(2).
Let K[A, B], S*[A, B] denote the subclasses®fefined as follows:
X z2f'(z) 1+ Az
= -1< <
S*[A, B] {feS, ) 5B 1_B<A_1},
(zf'(2)) 1+ Az
K[A, B {feS, 12) B 1<B<A<1

We now introduce the following subclasses of harmonic functions in terms of subordination.
Let f = h+ g € Sy such that

12) o) = M 200G,
b
(1.3) b(z) = h<z1)——§wi<2) 0<8<on

and let—1 < B < A < 1, then we can construct the class€g|[A, B], S};[A, B] using
subordination as follows:

KH[A, B] = {f < SH,

(z¢'(2)) 1+ Az
O 1+Bz}’

. 29 (2) 14 Az
A, B] = .
Suld, B {fe S, ©(2) = 1+ Bz
Let D" denote thex-th Ruscheweh derivative of a power seriés) = z + >~ _, ¢,z which
is given by
z

D"t = m * 1(2)

=z+ Z C(n,m)t,z™,

m=2

where

Cln,m) = (n+1)m_1 _ m+1)(n+2)---(n+m— 1).
(m —1)! (m —1)!
In [5], the operatorD™ was defined on the class of harmonic functiéfsas follows:
D"f = D"h + Dnyg.

The purpose of this paper is to obtain sufficient bound estimates for harmonic functions be-
longing to the classeS};[A, B], Ky|A, B], and we give some convolution conditions. Finally,
we examine the closure properties of the operatoon the above classes under the generalized
Bernardi integral operator.

2. PRELIMINARY RESULTS
Cluni and Sheil-Small]2] proved the following results:

Lemma 2.1. If h, g are analytic inU with |1'(0)| > |¢/(0)| and h + eg is close-to-convex for
eache, |¢| = 1, thenf = h + g is harmonic close-to-convex.

Lemma 2.2.If f = h + g is locally univalent inU andh + eg is convex for some, |¢| < 1,
then f is univalent close-to-convex.
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A domainD is called convex in the direction (0 < v < =) if every line parallel to the line
through 0 and* has a connected intersection with Such a domain is close-to-convex. The
convex domains are those that are convex in every direction.

We will make use of the following result which may be foundlin [2]:

Lemma 2.3. A functionf = h + g is harmonic convex if and only if the analytic functions
h(z) —eg(z), 0 <~ < 2m, are convex in the directiof and f is suitably normalized.

Necessary and sufficient conditions were foundin[2, 1] ahd [4] for functions to e irb;
andCy. We now give some sufficient conditions for functions in the classgs, B] and
KylA, B], but first we need the following results:

Lemma 2.4 ([7]). If ¢(z) = z+ > ~_, C,,z™ is analytic inU, thenqg maps onto a starlike
domain ify_>>_, m|C,,| < 1 and onto convex domains)f -_, m?|C,,| < 1.

Lemma 2.5([4]). If f = h + g with

o0

Zm\am| + im|bm| <1,

m=2 m=1

thenf € Cy. The result is sharp.
Lemma 2.6([4]). If f = h + g with

x oo
> mllam] + Y m?fbn| <1,
m=2 m=1

thenf € Ky. The result is sharp.

Lemma 2.7([6]). A functionf(z) € Sisin S*[A, B] if
D {m(1+A4)— (14 B)}an| < A-B,

where—1 < B< A <1.

Lemma 2.8([6]). A functionf(z) € Sisin K[A, B] if
> mA{m(1+ A) — (1+ B)}|an| < A- B,

where—1 < B < A<1.

Lemma 2.9([3]). Leth be convex univalent it with 2(0) = 1 andRe(Ah(z)+p) > 0 (A, u €
C). If pis analytic inU with p(0) = 1, then
2y (2)

m%h(Z) (ZEU)

p(z) +

implies
p(z) < h(2) (z€U).
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3. MAIN RESULTS
Theorem 3.1.1If

@1 D {m(A+A) = (1+B)}aml+ Y {m1+A4)— (1+B)}|b.| < A— B,

m=1

thenf € S} [A, B]. The result is sharp.

Proof. From the definition ofS};[A, B], we need only to prove thai(z) € S*[A, B], where
¢(z) is given by [1.2) such that

Using Lemma 2]7, we have

{m1+A (1+B)} Ay, — b {m(1+A)— (14 B)} [|am| + |bm]
> | < > I S B (el k)
<1

if and only if (3.1) holds and hence we have the result.
The harmonic function

1 m
f(z) == +mz::2 A—B{ml+A—1+B} ™

1 — =m

*;Zl A—B){m(l+A) —(1+B)] "
<Where i || + i |Yym| =A— B — 1)

shows that the coefficient bound given py {3.1) is sharp. O

Corollary 3.2. If A = 1, B = —1, then we have the coefficient bound giverjfihwith a
different approach.

Theorem 3.3.1f f = h + g with

> {m(1+ A) — (1+ B)}an|C(n,m)

F 3 (m(1 4 A) — (L4 B} olClnm) < A - B

thenD"f = H + G € S%[A, B). The function

B (1+46)(A—B)
T =2t A r A -0+ BCmm)
shows that the result is sharp.

zZ" 0>0

Corollary 3.4. If A = 1, B = —1, then we have the coefficient bound given in The¢rem 3.1,
a = 0 [5] with a different approach.
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Theorem 3.5.1If

32 > m{m(1+A) =1+ B)}Han|+ > m{m1+A) = (1+ B)}bu| < A- B,

m=2 m=1
thenf € Ky[A, B]. The result is sharp.

Proof. From the definition of the class ;[A, B] and the coefficient bound df [A, B] given in
Lemmg 2.8, we have the result. The function

B (1+0)(A—-B) .
G ==+ mara—army . 7
shows that the upper bound jn (8.2) cannot be improved. O

Theorem 3.6.1f f = h + g with

> m{m(1+ A) = (1+ B)}C(n,m)|ay]

m=2

+ i m{m(1+ A) — (14 B)}C(n,m)[bn| < A — B,

m=1

thenD" f € Ky[A, B]. The function

(1+4)(A-B)
m{m(1+ A) — (1 + B)}C(n,m)

shows that the result is sharp.

f=z+ zZ" >0

Corollary 3.7. If n =0, A=1,B = —1,we have Theorem3[d] andifA=1,B = —1, we
have Theorem 2 ifg].

In the next two theorems, we give necessary and sufficient convolution conditions for func-
tions inS};[A, Bl and Ky [A, B].

Theorem 3.8.Let f = h+ g € Sy. Thenf € Sy [A, B] if

(£=A) 2 5 _ (F1-A9) =2
“+iB*? ——~ (8%~ "B *
(z) » ( = ) +eBY) ( e N R
Proof. Let S(z) = %bgl(z) thenS € S*[A, B] if and only if
Z_S’ - 1+ Az
S 1+ Bz

or
28'(z) 1+ Ae?
# Z'G’
S(z) 1+ Be

0<0<2m z€eU.

It follows that
1+ Aet?

5(2) = SE T paw

£ 0.
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SincezS'(z) = S(z) * the above inequality is equivalent to

A 0
(3.3)  0#5(2) {(1 _Zz)2 - ﬁrBzmiZ]

- /\iit {S(z) * [(ew _(%—)()1 - 2)2] } 1 by = et
1 N\
= W {h(z) * <(—€’9 AB)(l _ Z)2> - g(z)
z4 (—e 0 — A)2? ) §
" ({ (A— B)(e7/B) }/(1_2) (—B—e ))}
1 +LGBA) 2
:X{h(z)*< (1= o)k )

Beify 4 B -A)el
—g(z) * . D :
ezt(_B _ ez@)(l _ Z>2

Now, if 2y — 2o # 0 @and|zy| # |za|, thenz; — ez, 0, |e] =1,1i.e.,

(— e_“9 A
1 Z 4+
- AM—B — e~ ) [h(z) i ( (1—2) e” )

Sincearg(1 — b;) = t # 7, we obtain the result and the proof is thus completed. O

Corollary 3.9. If A =1, B—1ande = 1, then we have Theorem 2.6[&] with a different
approach.

Theorem 3.10.Let f = h +g € Sy. Thenf € Ky[A, B] if and only if
—2+(A+B)¢—
Z+ =1p £z — —1:4—;)5 2] 40

(1-2) 1-%)°

fd=1,1¢=1, 0<ls<1

2§ABQ

h(z) *

-i—e@*

Proof. Lety(z) = M, 0 < v < 2randl — b, = \e't, then from ) an3),

e by

2 (z) € S5 [A, B] if and only if
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i (—e=-A) 2 (—e"™-4) 2
24 55— 24+ 5%
0 # 1. zh * _A-B —ezg * __ A-D .
Aett (—e? — B)(1 — 2)? (—e " — B)(1 — 2)?
1 ) st LA ' " pp e A '
et |V 02— —B) [ DTN U = 2)2(—e - B)

_ 1 h(z) . 2+ —2616)_—;—322 o)« 2+ —Qeze_—BA—B 22
Aett (1—2)3(—e — B) (1—2)3(—e — B)

1 B 2+ —26‘“—14—322 z + —2€_i6—A—Bzz
=5 h(z) * ( w1 3‘473_1,9 &) eg(z) * - - A-B —o
I e'(l —z)3(—e"" = B) eit(1 — 2)3(—B — e~i) <
1 2+ —2e_i9—A—BZZ Beif s, + —2B—(A+B)Be# 52
=—|h(2) * = A8 —€g(z) . A8
A e*(1 — 2)3(—e " — B) e(1 —2)3(—B — e?)
[ 54 —2e7Y-A-B _B)(—e )z + 72Bf(A+B)Be*i9§2
= 1 (2) % — A-B —eg(z) * (=B) : ) ___A-B
A e(1 —2)3(—e " — B) et (—B—e?)(1—-72)3
i 20 _A— —i0\= —24+(A+B)(—e ) 2
1 74 22 —AE — —e )z — c
=—|h(z) * — AB + eBg(z) * ( . ) AB :
A et(1 —z)3(e " — B) e (=B —e ?)(1 —%)3

and we have the result. OJ
Corollary 3.11. If A=1,B = —1,¢ = —1, then we have Theorem 2.7[@f.
Theorem 3.12.1f f = h +7g € Sy with

(3.4) > mC(n,m)|an| + Y mC(n,m)b,| <1,

m=2 m=1
thenD"f = H + G € Cy. The result is sharp.
Proof. The result follows immediately. Using Lemra}]2.5, the function

1+0 _,,
f(Z)—Z+mZ, 0>0
shows that the upper bound jn (3.4) cannot be improved. O

Theorem 3.13.1f f = h + g is locally univalent withy~°_, m?C/(n, m)|a,,| < 1, thenD" f €
Ch.

Proof. Takee = 0in Lemmg 2.2 and apply Lemma 2.4. O
Corollary 3.14. D"f = H+ G € Cy if |G'(2)| < L and>__, m*C(n,m)|a,,| < 1.
Proof. The functionD™ f is locally univalent if H'(z)| > |G'(z)| for z € U. Since

2Zm0(n,m)|am| < ZmZC(n,m)|am| <1,
m=2 m=2

we have

|H'(2)| > 1= mlan|C(n,m)| >

m=2

DN —
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Corollary 3.15. If h(z) € K andw(z) is analytic with|w(z)| < 1, then

F(2) = D™h(z) + /0 () (D h(t))dt € C.

Theorem 3.16.Letf = h+g € Sy. If D" f € R, thenD" f € R, whereR can beS}[A, B]
or Ky[A, B] or Cy.

Proof. We can prove the result whét= S} [A, B]. If D"t f € S%,[A, B], thenD"! [ﬁ;g} €
S*[A, B] and|D""h| > |D"*1g|. Using Lemma 2]9, we have

by

Since

this implies| D"h| > |D"g|, or D™(h) + D"g € S}]

D] =

?

Z<<1—ZVW1* )

li
{ 1—z"+1 h}

, B] and we have the result. O

Theorem 3.17.Let f = h+g € Sy and letF.(f) = &£ [Ft ! f(t)dt. If D"f € R, then
D"F.(f) € R, whereR can beS},[A, B] or Ky[A, B] or Cy.

Proof. If D" f € S} [A, B], thenD" <1h_;b91> € S*[A, B]. Using Lemm9,we hawe"F.(f) €
S*[A,B]. Thatis, D"F, <( 9>> € S*|A, B] or D"F.(h) — D"F.(g) € S*[A, B]. Since

—b1

|D"F.(n)| > | D"F.(g)|, thenD"E.(f) € S} [A, B]. O
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