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ABSTRACT. In this work, we give a generalization of Hélder and Minkowski inequalities to
normal sequence algebras with absolutely monotone seminorm. Our main result is Theprem 2.1
and Theorer 2|2 which state these extensions. Taking ¢, and|-|| = |||, in both these
theorems, we obtain classical versions of these inequalities. Also, using these generalizations we
construct the vector-valued sequence spac¢e&, \, p) as a paranormed space which is a most
general form of the spaeg (X, A, p) investigated in[[5].
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1. INTRODUCTION

Holder and Minkowski inequalities have been used in several areas of mathematics, espe-
cially in functional analysis. These inequalities have been generalized in various directions.
The purpose of this paper is to give some extensions of the classical Holder and Minkowski
inequalities. We discovered that the classical versions are only a type of these extengjons in
which is a normal sequence algebra with absolutely monotone semjpfpym

We now recall some definitions and facts.

A Frechet space is a complete total paranormed spack.isfan Hausdorff space then an
FH-space is a vector subspakeof H which is a Frechet space and is continuously embedded
in H, that is, the topology ofX is larger than the relative topology &f. Moreover if X is
a normed FH-space then it is called a BH-space. An FH-spaceHAvith w, the space of all
complex sequences, is called an FK-space, so a BK-space is a normed FK-space. We know
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that/.., c,co and?, (1 < p < oo) are BK-spaces. The following relation exists among these
sequence spaces:

l, CcyCecClx.

A basis for a topological vector spacé is a sequencéb,) such that every: € X has a
unique representation = > ¢,b,. This is equivalent to the fact that— >  t,b, — 0
(m — o0) in the vector topology ofX. For example¢, and/, have(e,) as a basise, is a
sequence wherez,, = 1, z;, = 0 for n # k). If X has a basigbh,,) the functionald,,, given by
l,(x) =t, whenz = > t,b,, are linear. They are called the coordinate functionals(&pndis
called a Schauder basis if eaghe X', the continuous dual oK. A basis of a Frechet space
must be a Schauder basis [7]. An FK-spacés said to have AK, or be an AK-space Xf D ¢
(the space of all finite sequences) dig) is a basis forX, i.e. for eachr, 2" — 2z, where
z[" thenth section ofz is > r_, zkey; otherwise expressed, = > e, for all z € X [8].
The spaces, and/, are AK-spaces butand/, are not. We say that a sequence spéas an
AK-BK space if it is both a BK and an AK-space.

An algebraA over a fieldK is a vector spacel over K such that for each ordered pair of
elementse, y € A a unique producty € A is defined with the properties

(1) (zy)z = z(y2)

a)z(y + 2) = zy + a2

2b) (z +y)z =22+ yz

(3) a(zy) = (ax)y = z(ay)
forall x,y, 2 € A and scalars [4].

If K = R (real field) orC (complex field) thenA is said to be a real or complex algebra,
respectively.

Let F' be a sequence space ang be arbitrary members df. F'is called a sequence algebra
if it is closed under the multiplication defined by = (z;y;),7 > 1, and is called normal or
solid if y € F wheneverly;| < |z;|, for somex € F. If F'is both a normal and sequence
algebra then it is called a normal sequence algebra. For examigle, sequence algebra but
not normal.w, ¢, ¢, and?,, (0 < p < oo) are normal sequence algebras.

A paranornp on a normal sequence spacés said to be absolutely monotoneifr) < p(y)
for z,y € F with |z;| < |y;| for eachi [3].

The norm|z| . = sup|zx| which makes the spacés,, ¢, c, a BK-space, is absolutely
monotone. Fop > 1, the norm||z| = (3,2, |2 [?) P over/, is absolutely monotone. Also,
for 0 < p < 1, thep-norm||z||, = "2, |v4|” overt, is absolutely monotone.

An Orlicz function is a function\/ : [0, oo) — [0, oo) which is continuous, non-decreasing
and convex withM (0) = 0, M (z) > 0forz > 0 and M (z) — oo asz — oo. We say
that the Orlicz functionV/ satisfies theA=-condition if there exist positive constantsand «
such thatV/ (zy) < aM (x) M (y) (z,y > u). By means ofM/, Lindenstrauss and Tzafrifil[2]
constructed the sequence space

EM:{wa:ZM<@> <oof0l’80mep>0}

p

with the norm||z||,, = inf {p >0:Y M ("”—;‘) < 1. This norm is absolutely monotone

and/,; is normal sinceV! is non-decreasing. Also it/ satisfies the\-condition therv,, is a
sequence algebra.
Now we give a useful inequality from classical analysis.
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Lemma 1.1. Let f be a function such that”(z) > 0 for x > 0. Thenford < a <z <b

LG Iy

< f'(x)
< 1w
_f0) — f(=)
Hence b
f) < g fla) + 5—f(b)

[7].

Apply this to the functionf(z) = — Inz with § = (b — ) /(b — a). Then for alla, b positive
numbers an® < 6 < 1, we have

(1.1) a’b' =% < ab + (1 - 0)b.
Next, we give a lemma associated with the theorems in Sedtion 2.

Lemma 1.2.

a) Let ' be a normal sequence algebra= (u,) € F andp > 1. Thenu? = (u?) € F.
b) If Fis a normal sequence spadg||,. is an absolutely monotone seminorm Brand
u = (un) € Fthenlu| = (lun|) € Fand|[[ul|| , = [[u]| 5.

Proof. a) We define two sequences= (a,,) andb = (b,,) such that
Up 0f |u,| > 1 0 if |u,| >1
ay, = and b, = .
0 if Ju,| <1 up, I |u,| <1
Sou, = a, + b, andu? = a? + b?. Obviously,a,b € F'. Sincep < [p] + 1, we have
|a,|P < \an\[p]ﬂ,

where[p] denotes the integer part pf SinceF is a sequence algebra, the sequerite! is a
member ofF’ by induction, and se” € F. Furthermore, sincé’ is normal andb,|” < |b,
we havel’ € F. Henceu? € F.

b) It is a direct consequence of normality and absolute monotonicity. O

2. GENERALIZATIONS

Our main results are the following theorems which state the extensions of Hélder and Minkowski
inequalities. Taking” = ¢, and|-|| . = [|-||; in both Theoren 2]1 and Theor¢m 2.2, we get
classical versions of these inequalities. Moreover, if we change the choi¢eardd |- || .. then
we can obtain many different inequalities corresponding to these generalizations. Therefore,
the following results are quite productive.

Theorem 2.1. Let F' be a sequence algebra aifjd| . be an absolutely monotone seminorm on
F. Suppose: = (u,),v = (v,) € F. Then

1 1
uv] < [lu|| 70| £,

wherep > landl + 1 =1.
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Proof. Assume thatr, = |u,|” andy, = |v,|%. It is immediate from Lemma 1.2(a) that
r = (x,) andy = (y,) are members of’. Let M = |jz||, andN = ||y||.. Then it follows
from inequality [(1.1) that for each,

) (%) =oipra-of

as0 < # < 1. Because|-|| . is an absolutely monotone seminorm we write
Tn\? (Yn\ 170 Tn Yn
E) ! (Y| < (0% 4 a0y
(@w><N> > F—H( *

1
MONI- QH( TnYn )HF L

Hence

so that
(@) o < @)1 )l

Settingd = 1/p, we get
1 1

[ @2y || o < @) 1 ) 1

and puttinge,, = |u,|” andy,, = |v,|?, we obtain
1 1
(v < Qa2 o D1,
So, it follows from Lemma 1]2(b) that
1 1
[uv| - < [|u|| 2P| .
]

Theorem 2.2. Let ' be a normal sequence algebra ajfd . be an absolutely monotone semi-
norm onF'. Then for every: = (u,) ,v = (v,) € Fandp > 1,

1w+ )PP < P |27+ P12,
where(u + v)* = ((u, + v,)").

Proof. Forp = 1, itis obvious.
Letp > 1. Proceeding with the manner of the proof in the classical version, we write

(u+v) =ulu+o)’ +oulut+o)l .
It follows from Theoreni 211 that

_ 1/‘1 _ 1/q
It < a7 o) o )
_ 1/q
= (I3 + 12137 e+

1/

where; +- = 1. Hence, dividing the first and last termsHm + )P . I (w+ v)?|139,
F

we obtain the inequality. O

Example 2.1. Taking F' = (. and|-||, = ||-||, in both Theoren 2|1 and Theor¢m 2.2, we
obtain the inequalities

1

1 1
p q
sup|upv,| < {sup|un]p} : {sup\vn\q}
n n n
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and

1 1 1
p P P
Lsuplu +0} " < fsuplia} + fsuplenp}

whereu,v € (4 and}j + % = 1 asp > 1. Hence, in fact, these elementary inequalities are
extended Holder and Minkowski inequalities respectively.

Example 2.2. Now putF" = /,; and||-|| . = |-, in Theorenj 2./l and Theorgm P.2, whére
satisfies the\~condition. In this case, we write the inequalities

inf{p>O:ZM(M) §1}

p

< fusfo 0T () <}y 1
fuefo=o Sar () <1}

and

fuf-o- £ (520) )

as Holder and Minkowski inequalities respectively.

3. AN APPLICATION

Now let us introduce the clads (X, \, p) of vector-valued sequence spaces which includes
the space; (X, A, p) investigated in[[6] with some linear topological properties. Thedrem 2.2
makes it possible to improve some topological properties of the Spéade A, p).

Let F' be an AK-BK normal sequence algebra such that the nipfp of £ is absolutely
monotone andX be a seminormed space. Also suppose that (1)) is a non-zero complex
sequence ang = (py) is a sequence of strictly positive real numbers. Define the vector-valued
sequence class

F(X,Ap) =A{z es(X): (lg(\wze)]™) € F},

whereg is the seminorm ok ands(X) is the most general -termed sequence spade( X, A, p)
becomes a linear space under natural co-ordinatewise vector operations if andzoaly/if
(see Lascaride$s|[1]). Takinfj = ¢, and X as a Banach space we get the spadeX, A, p) in
[6].

Lemma 3.1. Let0 < ¢, < 1. If a;, andby, are complex numbers then we have
\ak + bk‘tk S ‘Clk|tk + ’bk’tk
[, p.5}
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Lemma 3.2. Let (X, ¢q) be a seminormed space, ahtda normal AK-BK space with an abso-
lutely monotone norm)-|| .. Suppose = (p;) is a bounded sequence of positive real numbers.
Then the map

> [ug (Az))™ e

k=1

T 1 [0,00) = [0,00); Ty (u) =

F

defined by means of= (z;) € F' (X, A\, p) and a positive integen, is continuous, wherg;,)
iS a unit vector basis of'.

Proof. Since the norm function is continuous it is sufficient to show that the mappings defined
by
gk - [07 OO) - F7 gk (u) = [UQk (Akxk)]pk €k
are continuous. Let; — 0 (i — o0), then
gk (u;)) — (0,0,...) (1 — o0)
for eachk. Hence, eacly, is sequential continuous (it is equivalent to continuity here). [J
Theorem 3.3. Define the functio : F' (X, \,p) — R by
g (x) = |l(la Quze) )
whereM = max (1,supp,). Theng is a paranorm on#’ (X, A, p).

Proof. It is obvious thay(#) = 0 andg(—x) = g(x). From the absolute monotonicity ¢ ,.,
Lemmg 3.1 and Theoreim 2.2, we get

AN (1M
g(z +y) H ( (A + )\kyk)}pk/M> )
P
N [11/M
H( (Arxr)] PR/M lq (Akyk)]pk/M) )
F

<||([Q()\kl’k)] )||1/M+||([q()\kyk)] )Hl/M
= g(z) + g(y)

forz,y € F (X, A\, p).

To show the continuity of scalar multiplication assume thaét) is a sequence of scalars
such thatju™ — u| — 0 (n — o0) andg (z" — z) — 0 (n — oo) for an arbitrary sequence
(™) C F (X, A, p). We shall show that

g (p*a" = pz) — 0(n — oo).

Sayr, = | — u| and we get

g (ua” — pz) = |[(lq O (1" — pa))P) Y
= ([ O\ (" — g+ pg — pa))P) [
< 11" q O (@ = 2))) + g Qi) P
M 2w\ M M
SH({[A(k;,n)]”/ + (B (k)™ ) ) o
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whereA (k,n) = Rq (A (2} — xx)), B (k,n) = T,q (Arxr) andR = max {1, sup |p"|}. Again
by Theorenj 2]2 we can write

g (e = px) < [[(A (k, )|+ 1B (e, n) |

(.

+ (B (k,n)) |l
= Rg(a" — z) + ||(B (k,n))| ™.

Sinceg (¢ — ) — 0(n — oo) we must show thaff(B (k,n))H}/M — 0 (n — 00). We can

find a positive integen, such that) < 7, < 1forn > ng. Sayt, = [q(M\exy)]”*. Since
t = (tx) € F andF is an AK-space, we get

t— Z trek|| = Z l[q Mze)Fex]| — 0 (m— o00),
k=1 F k=m-+1 rF

where(ey,) is a unit vector basis af'. Therefore, for every > 0 there exists a positive integer
mg such that

o0 M
3
Z [ (Aezi)™ er|| < 3
k=mo+1 F

Forn > ng write [(1,q (\exi))]™* < [f (¢ (\exy))]P* for eachk. On the other hand, we can
write

1
M

o M o0
£
S g™ er| < | D0 laOwa)er|| < 3"
k=mo+1 F k=mo+1 F

Now, from Lemmad 3.2, the function

mo

> [lug () e

k=1

T (1) =

F

is continuous. Hence, there exist§ €& < § < 1) such that
- e\M
o (1) (3)

for 0 < u < 6. Also we can find a numbek such thatr,, < 6 forn > A. So forn > A we
have

mo

D [ Qi) ex

k=1

(Zrmg (Tn))l/M = 5

F
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and eventually we get

1
e8] M

(rng ez P = {1 [Fag (M) e

o
—_

F
L
M

= z(): (Tng (Nexi)|P* er + Z [7q Aezi)|P* e

k=1 k=mo+1

F
mo ﬁ o0 M
< I lmg )™ ex|| + || D0 (g i)™ e
k=1 F k=mo+1 F
< € i £ .
2 Ty
This shows thal|(B (k, n))||}/* — 0 (n — o). O

Theorem 3.4.Let (X, q) be a complete seminormed space. ThgX, A, p) is complete with
the paranormg. If X is a Banach space thef (X, A, p) is an FK-space, in particular, an
AK-space.

Proof. Let (™) be a Cauchy sequencefn(X, A, p). Therefore
gla" = ™) = [[([g O (@} — )" =0 (m,n — o0),
also, sincef’ is an FK-space, for eadh
g (A (2 —2g)I™ = 0 (m,n — o)

and so|\,| ¢ (z} — z}') — 0 (m,n — oo0). Because of the completeness)f there exists an
x, € X such thaty (2} — z,) — 0 (n — oo) for eachk. Define the sequence= (z;) with
these points. Now we can determine a sequencec, (0 < 7 < 1) such that

(3.1) Akl g (2 — )™ < g [q wy) )"
sinceq (z} — x) — 0. On the other hand,

[g (M) < D{{g (Ae (2 — z)]™ + [q (i)™},
whereD = max (1,297'); H = sup p;. From [3.1) we have

¢ o) < D (1+ 1) [g ()]
< 2D [q (v}

Sowe getr € F' (X, A, p). Now, for eache > 0 there exist (¢) such that
[g(a™ — ™M <M forn,m > n,.

Also, we may write from the AK-property aof' that

Do la O (@ = e en| < |D la(af — 2™ e
= [g(a" —2™)"]
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Lettingm — oo we have

mo

> la O (af — 2 )™ en

k=1

mo

> Lo O (af — 2n))™ e

k=1
<M forn > no.

—

F F

Since(ey) is a Schauder basis far,

mo

> g (O (2 — )™ e

k=1

— [[([g (A& (2 — 20)) ") |
<eM

asmg — 0o0.

Then we gey(z" — x) < e forn > ny sog(z™ — ) — 0 (n — o0).
For the rest of the theorem; we can say immediately fhak, A\, p) is a Frechet space,
becauseX is a Banach space. Also, the projections

pkiF(Xa)\ap)—>X; pk(x):xk

are continuous sincE, = || (q o Pk> for eachk. WhereP,’s are coordinate mappings dn

and they are continuous sinééis an FK-space.
Let 2 be thenth section of an element of F (X, A, p). We must prove that™) — x in
F (X, A\ p) foreachs € F (X, A\, p). Indeed,

g (‘IE - w[n]) = g(ovoa s 707$n+17xn+2a e )

o0

> lawe))™ e

k=n+1

— 0

F
sinceF is an AK-space. Hencg (X, \, p) is an AK-space. O
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