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ABSTRACT. In this work, we give a generalization of Hölder and Minkowski inequalities to
normal sequence algebras with absolutely monotone seminorm. Our main result is Theorem 2.1
and Theorem 2.2 which state these extensions. TakingF = `1 and‖·‖F = ‖·‖1 in both these
theorems, we obtain classical versions of these inequalities. Also, using these generalizations we
construct the vector-valued sequence spaceF (X, λ, p) as a paranormed space which is a most
general form of the spacec0 (X, λ, p) investigated in [6].
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1. I NTRODUCTION

Hölder and Minkowski inequalities have been used in several areas of mathematics, espe-
cially in functional analysis. These inequalities have been generalized in various directions.
The purpose of this paper is to give some extensions of the classical Hölder and Minkowski
inequalities. We discovered that the classical versions are only a type of these extensions in`1

which is a normal sequence algebra with absolutely monotone seminorm‖·‖1.
We now recall some definitions and facts.
A Frechet space is a complete total paranormed space. IfH is an Hausdorff space then an

FH-space is a vector subspaceX of H which is a Frechet space and is continuously embedded
in H, that is, the topology ofX is larger than the relative topology ofH. Moreover ifX is
a normed FH-space then it is called a BH-space. An FH-space withH = w, the space of all
complex sequences, is called an FK-space, so a BK-space is a normed FK-space. We know

ISSN (electronic): 1443-5756

c© 2006 Victoria University. All rights reserved.

177-06

http://jipam.vu.edu.au/
mailto:yyilmaz@inonu.edu.tr
mailto:kozdemir@inonu.edu.tr
mailto:isolak@inonu.edu.tr
http://www.ams.org/msc/


2 YILMAZ Y ILMAZ , M. KEMAL ÖZDEMIR, AND İHSAN SOLAK

that `∞, c, c0 and`p (1 ≤ p < ∞) are BK-spaces. The following relation exists among these
sequence spaces:

`p ⊂ c0 ⊂ c ⊂ `∞.

A basis for a topological vector spaceX is a sequence(bn) such that everyx ∈ X has a
unique representationx =

∑
tnbn. This is equivalent to the fact thatx −

∑m
n=1 tnbn → 0

(m → ∞) in the vector topology ofX. For example,c0 and`p have(en) as a basis (en is a
sequencex wherexn = 1, xk = 0 for n 6= k). If X has a basis(bn) the functionalsln, given by
ln(x) = tn whenx =

∑
tnbn, are linear. They are called the coordinate functionals and(bn) is

called a Schauder basis if eachln ∈ X ′, the continuous dual ofX. A basis of a Frechet space
must be a Schauder basis [7]. An FK-spaceX is said to have AK, or be an AK-space, ifX ⊃ φ
(the space of all finite sequences) and(en) is a basis forX, i.e. for eachx, x[n] → x, where
x[n], thenth section ofx is

∑n
k=1 xkek; otherwise expressed,x =

∑
xkek for all x ∈ X [8].

The spacesc0 and`p are AK-spaces butc and`∞ are not. We say that a sequence spaceF is an
AK-BK space if it is both a BK and an AK-space.

An algebraA over a fieldK is a vector spaceA overK such that for each ordered pair of
elementsx, y ∈ A a unique productxy ∈ A is defined with the properties

(1) (xy)z = x(yz)
(2a)x(y + z) = xy + xz
(2b) (x + y)z = xz + yz
(3) α(xy) = (αx)y = x(αy)

for all x, y, z ∈ A and scalarsα [4].
If K = R (real field) orC (complex field) thenA is said to be a real or complex algebra,

respectively.
LetF be a sequence space andx, y be arbitrary members ofF . F is called a sequence algebra

if it is closed under the multiplication defined byxy = (xiyi), i ≥ 1, and is called normal or
solid if y ∈ F whenever|yi| ≤ |xi|, for somex ∈ F . If F is both a normal and sequence
algebra then it is called a normal sequence algebra. For example,c is a sequence algebra but
not normal.w, `∞, c0 and`p (0 < p < ∞) are normal sequence algebras.

A paranormp on a normal sequence spaceF is said to be absolutely monotone ifp(x) ≤ p(y)
for x, y ∈ F with |xi| ≤ |yi| for eachi [3].

The norm‖x‖∞ = sup |xk| which makes the spaces̀∞, c, c0 a BK-space, is absolutely
monotone. Forp ≥ 1, the norm‖x‖ = (

∑∞
k=1 |xk|p)1/p over`p is absolutely monotone. Also,

for 0 < p < 1, thep-norm‖x‖p =
∑∞

k=1 |xk|p over`p is absolutely monotone.
An Orlicz function is a functionM : [0,∞) −→ [0,∞) which is continuous, non-decreasing

and convex withM (0) = 0, M (x) > 0 for x > 0 andM (x) → ∞ asx → ∞. We say
that the Orlicz functionM satisfies the∆́-condition if there exist positive constantsa andu
such thatM (xy) ≤ aM (x) M (y) (x, y ≥ u). By means ofM , Lindenstrauss and Tzafriri [2]
constructed the sequence space

`M =

{
x ∈ w :

∑
M

(
|xk|
ρ

)
< ∞ for someρ > 0

}

with the norm‖x‖M = inf
{

ρ > 0 :
∑

M
(
|xk|
ρ

)
≤ 1

}
. This norm is absolutely monotone

and`M is normal sinceM is non-decreasing. Also ifM satisfies the∆́-condition theǹ M is a
sequence algebra.

Now we give a useful inequality from classical analysis.
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HÖLDER AND M INKOWSKI INEQUALITIES 3

Lemma 1.1. Letf be a function such thatf ′′(x) ≥ 0 for x > 0. Then for0 < a < x < b

f(x)− f(a)

x− a
=

1

x− a

∫ x

a

f ′(t)dt

≤ f ′(x)

≤ 1

b− x

∫ b

x

f ′(t)dt

=
f(b)− f(x)

b− x
.

Hence

f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b)

[7].

Apply this to the functionf(x) = − ln x with θ = (b− x)/(b− a). Then for alla, b positive
numbers and0 ≤ θ ≤ 1, we have

(1.1) aθb1−θ ≤ aθ + (1− θ)b.

Next, we give a lemma associated with the theorems in Section 2.

Lemma 1.2.
a) LetF be a normal sequence algebra,u = (un) ∈ F andp ≥ 1. Thenup = (up

n) ∈ F .
b) If F is a normal sequence space,‖·‖F is an absolutely monotone seminorm onF and

u = (un) ∈ F then|u| = (|un|) ∈ F and‖|u|‖F = ‖u‖F .

Proof. a) We define two sequencesa = (an) andb = (bn) such that

an =

{
un if |un| ≥ 1

0 if |un| < 1
and bn =

{
0 if |un| ≥ 1

un if |un| < 1
.

Soun = an + bn andup
n = ap

n + bp
n. Obviously,a, b ∈ F . Sincep < [p] + 1, we have

|an|p ≤ |an|[p]+1 ,

where[p] denotes the integer part ofp. SinceF is a sequence algebra, the sequencea[p]+1 is a
member ofF by induction, and soap ∈ F . Furthermore, sinceF is normal and|bn|p ≤ |bn|,
we havebp ∈ F . Henceup ∈ F .
b) It is a direct consequence of normality and absolute monotonicity. �

2. GENERALIZATIONS

Our main results are the following theorems which state the extensions of Hölder and Minkowski
inequalities. TakingF = `1 and‖·‖F = ‖·‖1 in both Theorem 2.1 and Theorem 2.2, we get
classical versions of these inequalities. Moreover, if we change the choices ofF and‖·‖F then
we can obtain many different inequalities corresponding to these generalizations. Therefore,
the following results are quite productive.

Theorem 2.1.LetF be a sequence algebra and‖·‖F be an absolutely monotone seminorm on
F . Supposeu = (un) , v = (vn) ∈ F . Then

‖uv‖F ≤ ‖up‖1/p
F ‖vq‖1/p

F ,

wherep > 1 and 1
p

+ 1
q

= 1.
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Proof. Assume thatxn = |un|p and yn = |vn|q. It is immediate from Lemma 1.2(a) that
x = (xn) andy = (yn) are members ofF . Let M = ‖x‖F andN = ‖y‖F . Then it follows
from inequality (1.1) that for eachn,(xn

M

)θ (yn

N

)1−θ

≤ θ
xn

M
+ (1− θ)

yn

N

as0 ≤ θ ≤ 1. Because‖·‖F is an absolutely monotone seminorm we write∥∥∥∥((xn

M

)θ (yn

N

)1−θ
)∥∥∥∥

F

≤
∥∥∥(

θ
xn

M
+ (1− θ)

yn

N

)∥∥∥
F

.

Hence
1

M θN1−θ

∥∥(
xθ

ny
1−θ
n

)∥∥
F
≤ 1,

so that ∥∥(
xθ

ny
1−θ
n

)∥∥
F
≤ ‖(xn)‖θ

F‖(yn)‖1−θ
F .

Settingθ = 1/p, we get ∥∥(
x1/p

n y1/q
n

)∥∥
F
≤ ‖(xn)‖1/p

F ‖(yn)‖1/q
F ,

and puttingxn = |un|p andyn = |vn|q, we obtain

‖(|unvn|)‖F ≤ ‖(|un|p)‖1/p

F
‖(|vn|q)‖1/q

F
.

So, it follows from Lemma 1.2(b) that

‖uv‖F ≤ ‖up‖1/p

F
‖vq‖1/q

F
.

�

Theorem 2.2.LetF be a normal sequence algebra and‖·‖F be an absolutely monotone semi-
norm onF . Then for everyu = (un) , v = (vn) ∈ F andp ≥ 1,

‖(u + v)p‖1/p
F ≤ ‖up‖1/p

F + ‖vp‖1/p
F ,

where(u + v)p = ((un + vn)p).

Proof. Forp = 1, it is obvious.
Let p > 1. Proceeding with the manner of the proof in the classical version, we write

(u + v)p = u (u + v)p−1 + v (u + v)p−1 .

It follows from Theorem 2.1 that

‖(u + v)p‖F ≤ ‖up‖1/p
F

∥∥∥(u + v)(p−1)q
∥∥∥1/q

F
+ ‖vp‖1/p

F

∥∥∥(u + v)(p−1)q
∥∥∥1/q

F

=
(
‖up‖1/p

F + ‖vp‖1/p
F

) ∥∥∥(u + v)(p−1)q
∥∥∥1/q

F
,

where1
p
+ 1

q
= 1. Hence, dividing the first and last terms by

∥∥∥(u + v)(p−1)q
∥∥∥1/q

F
= ‖(u + v)p‖1/q

F ,

we obtain the inequality. �

Example 2.1. Taking F = `∞ and‖·‖F = ‖·‖∞ in both Theorem 2.1 and Theorem 2.2, we
obtain the inequalities

sup
n
|unvn| ≤

{
sup

n
|un|p

} 1
p

·
{

sup
n
|vn|q

} 1
q
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and {
sup

n
|un + vn|p

} 1
p

≤
{

sup
n
|un|p

} 1
p

+

{
sup

n
|vn|p

} 1
p

,

whereu, v ∈ `∞ and 1
p

+ 1
q

= 1 asp > 1. Hence, in fact, these elementary inequalities are
extended Hölder and Minkowski inequalities respectively.

Example 2.2.Now putF = `M and‖·‖F = ‖·‖M in Theorem 2.1 and Theorem 2.2, whereM
satisfies the∆́-condition. In this case, we write the inequalities

inf

{
ρ > 0 :

∑
M

(
|xkyk|

ρ

)
≤ 1

}
≤

{
inf

{
ρ > 0 :

∑
M

(
|xk|p

ρ

)
≤ 1

}} 1
p

·
{

inf

{
ρ > 0 :

∑
M

(
|yk|q

ρ

)
≤ 1

}} 1
q

and{
inf

{
ρ > 0 :

∑
M

(
|xk + yk|p

ρ

)
≤ 1

}} 1
p

≤
{

inf

{
ρ > 0 :

∑
M

(
|xk|p

ρ

)
≤ 1

}} 1
p

+

{
inf

{
ρ > 0 :

∑
M

(
|yk|p

ρ

)
≤ 1

}} 1
p

as Hölder and Minkowski inequalities respectively.

3. AN APPLICATION

Now let us introduce the classF (X, λ, p) of vector-valued sequence spaces which includes
the spacec0 (X, λ, p) investigated in [6] with some linear topological properties. Theorem 2.2
makes it possible to improve some topological properties of the spaceF (X, λ, p).

Let F be an AK-BK normal sequence algebra such that the norm‖·‖F of F is absolutely
monotone andX be a seminormed space. Also suppose thatλ = (λk) is a non-zero complex
sequence andp = (pk) is a sequence of strictly positive real numbers. Define the vector-valued
sequence class

F (X, λ, p) = {x ∈ s(X) : ([q (λkxk)]
pk) ∈ F} ,

whereq is the seminorm ofX ands(X) is the most generalX-termed sequence space.F (X, λ, p)
becomes a linear space under natural co-ordinatewise vector operations if and only ifp ∈ `∞
(see Lascarides [1]). TakingF = c0 andX as a Banach space we get the spacec0 (X, λ, p) in
[6].

Lemma 3.1. Let0 < tk ≤ 1. If ak andbk are complex numbers then we have

|ak + bk|tk ≤ |ak|tk + |bk|tk

[5, p.5].
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Lemma 3.2. Let (X, q) be a seminormed space, andF a normal AK-BK space with an abso-
lutely monotone norm‖·‖F . Supposep = (pk) is a bounded sequence of positive real numbers.
Then the map

x̃n : [0,∞) → [0,∞) ; x̃n (u) =

∥∥∥∥∥
n∑

k=1

[uq (λkxk)]
pk ek

∥∥∥∥∥
F

defined by means ofx = (xk) ∈ F (X, λ, p) and a positive integern, is continuous, where(ek)
is a unit vector basis ofF .

Proof. Since the norm function is continuous it is sufficient to show that the mappings defined
by

gk : [0,∞) → F, gk (u) = [uqk (λkxk)]
pk ek

are continuous. Letui → 0 (i →∞), then

gk (ui) → (0, 0, . . .) (i →∞)

for eachk. Hence, eachgk is sequential continuous (it is equivalent to continuity here). �

Theorem 3.3.Define the functiong : F (X, λ, p) −→ R by

g (x) = ‖([q (λkxk)]
pk)‖1/M

F ,

whereM = max (1, sup pn). Theng is a paranorm onF (X, λ, p).

Proof. It is obvious thatg(θ) = 0 andg(−x) = g(x). From the absolute monotonicity of‖·‖F ,
Lemma 3.1 and Theorem 2.2, we get

g(x + y) =

∥∥∥∥((
[q (λkxk + λkyk)]

pk/M
)M

)∥∥∥∥1/M

F

≤
∥∥∥∥((

[q (λkxk)]
pk/M + [q (λkyk)]

pk/M
)M

)∥∥∥∥1/M

F

≤ ‖([q (λkxk)]
pk)‖1/M

F + ‖([q (λkyk)]
pk)‖1/M

F

= g(x) + g(y)

for x, y ∈ F (X, λ, p).
To show the continuity of scalar multiplication assume that(µn) is a sequence of scalars

such that|µn − µ| → 0 (n →∞) and g (xn − x) → 0 (n →∞) for an arbitrary sequence
(xn) ⊂ F (X, λ, p). We shall show that

g (µnxn − µx) → 0 (n →∞) .

Sayτn = |µn − µ| and we get

g (µnxn − µx) = ‖([q (λk (µnxn
k − µxk))]

pk)‖1/M
F

= ‖([q (λk (µnxn
k − µnxk + µnxk − µxk))]

pk)‖1/M
F

≤ ‖([|µn| q (λk (xn
k − xk))) + τnq (λkxk)]

pk)‖1/M
F

≤
∥∥∥∥({

[A (k, n)]pk/M + [B (k, n)]pk/M
}M

)∥∥∥∥1/M

F

,
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whereA (k, n) = Rq (λk (xn
k − xk)), B (k, n) = τnq (λkxk) andR = max {1, sup |µn|}. Again

by Theorem 2.2 we can write

g (µnxn − µx) ≤ ‖(A (k, n))‖1/M
F + ‖(B (k, n))‖1/M

F

≤ R

∥∥∥∥([
A

R

]pk
)∥∥∥∥1/M

F

+ ‖(B (k, n))‖1/M
F

= Rg(xn − x) + ‖(B (k, n))‖1/M
F .

Sinceg (xn − x) → 0 (n →∞) we must show that‖(B (k, n))‖1/M
F → 0 (n →∞). We can

find a positive integern0 such that0 ≤ τn ≤ 1 for n ≥ n0. Saytk = [q (λkxk)]
pk . Since

t = (tk) ∈ F andF is an AK-space, we get∥∥∥∥∥t−
m∑

k=1

tkek

∥∥∥∥∥
F

=

∥∥∥∥∥
∞∑

k=m+1

[q (λkxk)]
pk ek

∥∥∥∥∥
F

→ 0 (m →∞) ,

where(ek) is a unit vector basis ofF . Therefore, for everyε > 0 there exists a positive integer
m0 such that ∥∥∥∥∥

∞∑
k=m0+1

[q (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

<
ε

2
.

For n ≥ n0 write [(τnq (λkxk))]
pk ≤ [f (q (λkxk))]

pk for eachk. On the other hand, we can
write ∥∥∥∥∥

∞∑
k=m0+1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

≤

∥∥∥∥∥
∞∑

k=m0+1

[q (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

<
ε

2
.

Now, from Lemma 3.2, the function

x̃m0 (u) =

∥∥∥∥∥
m0∑
k=1

[(uq (λkxk))]
pk ek

∥∥∥∥∥
F

is continuous. Hence, there exists aδ (0 < δ < 1) such that

x̃m0 (u) ≤
(ε

2

)M

,

for 0 < u < δ. Also we can find a number∆ such thatτn < δ for n > ∆. So forn > ∆ we
have

(x̃m0 (τn))1/M =

∥∥∥∥∥
m0∑
k=1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
F

<
ε

2
,
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and eventually we get

‖([τnq (λkxk)]
pk)‖1/M

F =

∥∥∥∥∥
∞∑

k=1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

=

∥∥∥∥∥
m0∑
k=1

[τnq (λkxk)]
pk ek +

∞∑
k=m0+1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

≤

∥∥∥∥∥
m0∑
k=1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

+

∥∥∥∥∥
∞∑

k=m0+1

[τnq (λkxk)]
pk ek

∥∥∥∥∥
1
M

F

<
ε

2
+

ε

2
= ε.

This shows that‖(B (k, n))‖1/M
F → 0 (n →∞). �

Theorem 3.4. Let (X, q) be a complete seminormed space. ThenF (X, λ, p) is complete with
the paranormg. If X is a Banach space thenF (X, λ, p) is an FK-space, in particular, an
AK-space.

Proof. Let (xn) be a Cauchy sequence inF (X, λ, p). Therefore

g(xn − xm) = ‖([q (λk (xn
k − xm

k ))]pk)‖1/M
F → 0 (m, n →∞) ,

also, sinceF is an FK-space, for eachk

[q (λk (xn
k − xm

k ))]pk → 0 (m, n →∞)

and so|λk| q (xn
k − xm

k ) → 0 (m, n →∞). Because of the completeness ofX, there exists an
xk ∈ X such thatq (xn

k − xk) → 0 (n →∞) for eachk. Define the sequencex = (xk) with
these points. Now we can determine a sequenceηk ∈ c0 (0 < ηn

k ≤ 1) such that

(3.1) [|λk| q (xn
k − xk)]

pk ≤ ηn
k [q (λkx

n
k)]pk

sinceq (xn
k − xk) → 0. On the other hand,

[q (λkxk)]
pk ≤ D {[q (λk (xn

k − xk))]
pk + [q (λkx

n
k)]pk} ,

whereD = max
(
1, 2H−1

)
; H = sup pk. From (3.1) we have

[q (λkxk)]
pk ≤ D (1 + ηn

k ) [q (λkx
n
k)]pk

≤ 2D [q (λkx
n
k)]pk .

So we getx ∈ F (X, λ, p). Now, for eachε > 0 there existn0 (ε) such that

[g(xn − xm)]M < εM for n, m > n0.

Also, we may write from the AK-property ofF that∥∥∥∥∥
m0∑
k=1

[q (λk (xn
k − xm

k ))]pk ek

∥∥∥∥∥
F

≤

∥∥∥∥∥
∞∑

k=1

[q (xn
k − xm

k )]pk ek

∥∥∥∥∥
F

=
[
g(xn − xm)M

]
.
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Lettingm →∞ we have∥∥∥∥∥
m0∑
k=1

[q (λk (xn
k − xm

k ))]pk ek

∥∥∥∥∥
F

→

∥∥∥∥∥
m0∑
k=1

[q (λk (xn
k − xk))]

pk ek

∥∥∥∥∥
F

< εM for n > n0.

Since(ek) is a Schauder basis forF ,∥∥∥∥∥
m0∑
k=1

[q (λk (xn
k − xk))]

pk ek

∥∥∥∥∥
F

→ ‖([q (λk (xn
k − xk))]

pk)‖F

< εM asm0 →∞.

Then we getg(xn − x) < ε for n > n0 sog(xn − x) → 0 (n →∞).
For the rest of the theorem; we can say immediately thatF (X, λ, p) is a Frechet space,

becauseX is a Banach space. Also, the projections

P̂k : F (X, λ, p) −→ X; P̂k (x) = xk

are continuous sincePk = |λk|
(
q ◦ P̂k

)
for eachk. WherePk’s are coordinate mappings onF

and they are continuous sinceF is an FK-space.
Let x[n] be thenth section of an elementx of F (X,λ, p). We must prove thatx[n] → x in

F (X, λ, p) for eachx ∈ F (X, λ, p). Indeed,

g
(
x− x[n]

)
= g (0, 0, . . . , 0, xn+1, xn+2, . . .)

=

∥∥∥∥∥
∞∑

k=n+1

[q (λkxk)]
pk ek

∥∥∥∥∥
F

→ 0

sinceF is an AK-space. HenceF (X, λ, p) is an AK-space. �
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