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ABSTRACT. Several new perturbed Ostrowski-like type inequalities are established. Some re-
cently results are generalized and other interesting inequalities are given as special cases. Fur-
thermore, the first inequality we obtained is sharp.
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1. INTRODUCTION

In recent years a number of authors have considered error inequalities for some known and
some new quadrature rules. Some have considered generalizations of these inequalities and es-
timates for the remainder term of the midpoint, trapezoid, and Simpson formulae. For example,
Ujević [7] obtained the following double integral inequality.

Theorem 1.1. Let f : [a, b] → R be a twice differentiable mapping on (a, b) and suppose that
γ ≤ f ′′(t) ≤ Γ for all t ∈ (a, b). Then we have the double inequality:

(1.1)
3S − Γ

24
(b− a)2 ≤ f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt ≤ 3S − γ
24

(b− a)2,

where S = (f ′(b)− f ′(a))/(b− a).

Ujević [8] derived the following perturbation of the trapezoid type inequality.
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Theorem 1.2. If f : [a, b] → R is such that f ′ is an absolutely continuous function and C is a
constant, then

(1.2)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2
+
C

12
(b− a)2

∣∣∣∣ ≤ ‖f ′′ − C‖18
(b− a).

Liu [6] established the following generalization of Ostrowski’s inequality.

Theorem 1.3. Let f : [a, b] → R be (l, L)-Lipschitzian on [a, b]. Then for all x ∈ [a, b], we
have

(1.3)
∣∣∣∣12
[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣
≤ 1

2

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]min{(S − l), (L− S)},

where S = (f(b)− f(a))/(b− a).

In this paper, we will derive several new perturbed Ostrowski-like type inequalities, which
will not only provide generalizations of the above mentioned results, but also give some other
interesting perturbed inequalities as special cases. Furthermore, the first inequality we obtain is
sharp. Similar inequalities are also considered in [1] – [5] and [9] – [11].

2. MAIN RESULTS

Theorem 2.1. Under the assumptions of Theorem 1.1, we have

Γ[(x− a)3 + (b− x)3]

12(b− a)
+

1

8

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

(S − Γ)(2.1)

≤ 1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
− 1

b− a

∫ b

a

f(t)dt

≤ γ[(x− a)3 + (b− x)3]

12(b− a)
+

1

8

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

(S − γ),

for all x ∈ [a, b], where S = f ′(b)−f ′(a)
b−a

. If γ,Γ are given by

γ = min
t∈[a,b]

f ′′(t), Γ = max
t∈[a,b]

f ′′(t)

then the inequality given by (2.1) is sharp in the usual sense.

Proof. Let K(x, t) : [a, b]2 → R be given by

(2.2) K(x, t) =

{
1
2
(x− t)(t− a), t ∈ [a, x],

1
2
(x− t)(t− b), t ∈ (x, b].

Then we have

(2.3)
∫ b

a

K(x, t)dt =
(x− a)3 + (b− x)3

12
.

Integrating by parts, we obtain (see [5])

(2.4)
∫ b

a

K(x, t)f ′′(t)dt =
1

2
{(b− a)f(x) + [(x− a)f(a) + (b− x)f(b)]} −

∫ b

a

f(t)dt.
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Then for any fixed x ∈ [a, b] we can derive from (2.3) and (2.4) that

(2.5)
∫ b

a

K(x, t)[f ′′(t)− γ]dt = −
∫ b

a

f(t)dt+
1

2
{(b− a)f(x)

+ [(x− a)f(a) + (b− x)f(b)]} − γ[(x− a)3 + (b− x)3]

12
.

We also have∫ b

a

K(x, t)[f ′′(t)− γ]dt ≤ max
t∈[a,b]

|K(x, t)|
∫ b

a

|f ′′(t)− γ|dt(2.6)

=
1

8
max{(x− a)2, (b− x)2}(S − γ)(b− a),

and

max{(x− a)2, (b− x)2} = (max{x− a, b− x})2(2.7)

=
1

4
[x− a+ b− x+ |x− a− b+ x| ]2

=

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

.

From (2.5), (2.6) and (2.7) we have

(2.8)
1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
− 1

b− a

∫ b

a

f(t)dt

≤ γ[(x− a)3 + (b− x)3]

12(b− a)
+

1

8

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

(S − γ).

On the other hand, we have

(2.9)
∫ b

a

K(x, t)[Γ− f ′′(t)]dt =

∫ b

a

f(t)dt− 1

2
{(b− a)f(x)

+ [(x− a)f(a) + (b− x)f(b)]}+
Γ[(x− a)3 + (b− x)3]

12
and ∫ b

a

K(x, t)[Γ− f ′′(t)]dt ≤ max
t∈[a,b]

|K(x, t)|
∫ b

a

|Γ− f ′′(t)|dt(2.10)

=
1

8
max{(x− a)2, (b− x)2}(Γ− S)(b− a).

From (2.7), (2.9) and (2.10) we have

(2.11)
1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
− 1

b− a

∫ b

a

f(t)dt

≥ Γ[(x− a)3 + (b− x)3]

12(b− a)
+

1

8

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

(S − Γ).

From (2.8) and (2.11), we see that (2.1) holds.
If we now substitute f(t) = (t − a)2 in the inequalities (2.1) then we find that the left-hand

side, middle term and right-hand side are all equal to (x−a)3+(b−x)3

6(b−a)
. Thus, the inequality (2.1) is

sharp in the usual sense. �
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Remark 2.2. We note that in the special cases, if we take x = a or x = b in (2.1), we get (1.1).
Therefore Theorem 2.1 is a generalization of Theorem 1.1.

Corollary 2.3. Under the assumptions of Theorem 2.1 with x = a+b
2
, we have the following

sharp averaged mid-point-trapezoid type inequality

3S − Γ

96
(b− a)2 ≤ 1

2
f

(
a+ b

2

)
+

1

2

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt(2.12)

≤ 3S − γ
96

(b− a)2.

Theorem 2.4. Under the assumptions of Theorem 1.2, we have

(2.13)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− 1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
+
C[(x− a)3 + (b− x)3]

12(b− a)

∣∣∣∣ ≤ 1

8(b− a)

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]2

‖f ′′ − C‖1

for all x ∈ [a, b].

Proof. Let K(x, t) be given by (2.2). From (2.3) and (2.4), it follows that

(2.14)
∫ b

a

K(x, t)[f ′′(t)− C]dt = −
∫ b

a

f(t)dt+
1

2
{(b− a)f(x)

+ [(x− a)f(a) + (b− x)f(b)]} − C[(x− a)3 + (b− x)3]

12
.

We also have ∫ b

a

K(x, t)[f ′′(t)− C]dt ≤ max
t∈[a,b]

|K(x, t)|
∫ b

a

|f ′′(t)− C|dt(2.15)

=
1

8
max{(x− a)2, (b− x)2}‖f ′′ − C‖1.

From (2.7), (2.14) and (2.15), we easily obtain (2.13). �

Remark 2.5. We note that in the special cases, if we take x = a or x = b in (2.13), we get
(1.2). Therefore Theorem 2.4 is a generalization of Theorem 1.2.

Corollary 2.6. Under the assumptions of Theorem 2.4 with x = a+b
2
, we have the following

perturbed averaged mid-point-trapezoid type inequality

(2.16)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− 1

2
f

(
a+ b

2

)
− 1

2

f(a) + f(b)

2
+
C

48
(b− a)2

∣∣∣∣
≤ ‖f

′′ − C‖1
32

(b− a).

Theorem 2.7. Let the assumptions of Theorem 2.1 hold. Then we have the following perturbed
Ostrowski type inequality

(2.17)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− 1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
+

(Γ + γ)

24

(x− a)3 + (b− x)3

b− a

∣∣∣∣ ≤ Γ− γ
8

[(
x− a+ b

2

)2

+
(b− a)2

12

]
for all x ∈ [a, b].
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Proof. Let K(x, t) : [a, b]2 → R be given by (2.2) and C = (Γ + γ)/2. From (2.3) and (2.4), it
follows that

(2.18)
∫ b

a

K(x, t)[f ′′(t)− C]dt = −
∫ b

a

f(t)dt+
1

2
{(b− a)f(x)

+ [(x− a)f(a) + (b− x)f(b)]} − C[(x− a)3 + (b− x)3]

12
.

We also have∣∣∣∣∫ b

a

K(x, t)[f ′′(t)− C]dt

∣∣∣∣ ≤ max
t∈[a,b]

|f ′′(t)− γ|
∫ b

a

|K(x, t)|dt(2.19)

≤ Γ− γ
8

[(
x− a+ b

2

)2

+
(b− a)2

12

]
(b− a).

From (2.18) and (2.19), we easily obtain (2.17). �

Corollary 2.8. Under the assumptions of Theorem 2.7 with x = a or x = b we have the
following perturbed trapezoid type inequality

(2.20)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2
+

Γ + γ

24
(b− a)2

∣∣∣∣ ≤ Γ− γ
24

(b− a)2.

Corollary 2.9. Under the assumptions of Theorem 2.7 with x = a+b
2

we have the following
perturbed averaged mid-point-trapezoid type inequality

(2.21)
∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− 1

2
f

(
a+ b

2

)
− 1

2

f(a) + f(b)

2
+

Γ + γ

96
(b− a)2

∣∣∣∣
≤ Γ− γ

96
(b− a)2.
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