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Abstract

When we solve an ordinary nonlinear programming problem by the most and
popular sequential quadratic programming (SQP) method, one of the difficulties
that we must overcome is to ensure the consistence of its QP subproblems. In
this paper, we develop a new SQP method which can assure that the QP sub-
problem at every iteration is consistent. One of the main techniques used in our
method involves solving a least square problem in addition to solving a modi-
fied QP subproblem at each iteration, and we need not add bound constraints to
the search direction. we also establish the global convergence of the proposed
algorithm.

2000 Mathematics Subject Classification: 90C30, 90D65.
Key words: Nonlinear Programs, Inequalities and Equalities System, Sequential

quadratic programming.

The work of this author was supported by the Postdoctor Research Funds of Central
South University, P.R. China.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Algorithm and its Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Global Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
References

http://jipam.vu.edu.au/
mailto:wanmath@163.com
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Global Convergence of a
Modified SQP Method for

Mathematical Programs With
Inequalities and Equalities

Constraints

Zhong Wan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 21

J. Ineq. Pure and Appl. Math. 5(2) Art. 37, 2004

http://jipam.vu.edu.au

1. Introduction
We consider the following smooth nonlinear programs:

(1.1)
min f(x)

s.t. g(x) ≥ 0, h(x) = 0.

wheref : Rn → R, g : Rn → Rl, h : Rn → Rm are continuously differen-
tiable. Among all robust methods for (1.1), the sequential quadratic program-
ming method (SQP) is one of the most important and the most popular. The
basic idea of the classical SQP is as follows: at the present iterative pointx,
approximate (1.1) by quadratic programs (QP) of the form:

(1.2)

min Of(x)T d + 1
2
dT Bd

s.t. g
′
(x)d + g(x) ≥ 0,

h
′
(x)d + h(x) = 0,

whereB ∈ Rn×n is symmetric positive definite, andg
′
(x) ∈ Rl×n, h

′
(x) ∈

Rm×n are defined as follows:

g
′
(x) ≡

(
∂gi

∂xj

)
, h

′
(x) ≡

(
∂hi

∂xj

)
.

The iteration then has the form

x̄ = x + td,
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whered solves (1.2) andt is a step length chosen to reduce the value of some
merit function for (1.1). In this paper, the merit function is taken as

θρg ,ρh(x) = f(x) + ρg

l∑
i=1

max{−gi(x), 0}+ ρh‖h(x)‖2
2.

On one hand, one of the major priorities of SQP lies in that it does not require
that the approximate solution obtained at each iteration is feasible for (1.1). On
the other hand, this makes it possible that the subproblem (1.2) is not consistent.
In [1], J.V. Burke and S.-P. Han describe a robust SQP wherein the QP (1.2)
is altered in a way which guarantees that the associated region is nonempty
for eachx ∈ Rn and for which a global convergence theory is established.
Recently, H. Jiang and D. Ralph developed a new modified SQP method in [3]
wherein a similar global convergence result is obtained under the condition that
the following modified QP

(1.3)

min Of(x)T d + 1
2
dT Bd + ρ

∑l
i=1 si

s.t. g
′
(x)d + g(x) ≥ −s,

h
′
(x)d + h(x) = 0,

s ≥ 0

is feasible, whereρ is a penalty parameter, ands is an artificial variable. The
proposed SQP method in this paper is close to [3], but removes the above
condition. Our approach to guarantee the non-emptiness of constraints region
of the QP subproblem comes from the ideas in [1].
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2. Algorithm and its Validity
In this section, we first describe the algorithm, then we verify the validity of the
proposed algorithm.
Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, δ3 > 0, σ ∈ (0, 1),
τ ∈ (0, 1). Choosex0 ∈ Rn and a symmetric positive definite matrixB0. Set
k := 0.
Step 1. (Search direction)With x = xk, solve the following linear least square
problem:

(2.1) min
d∈Rn

1

2
‖h′

(x)d + h(x)‖2
2.

Let d̃ be a solution of (2.1), computer(x) = h
′
(x)d̃ + h(x), and solve the

following modified QP problem withx = xk, B = Bk, ρ = ρk−1:

(2.2)

min Of(x)T d + 1
2
dT Bd + ρ

∑l
i=1 si

s.t. g
′
(x)d + g(x) ≥ −s,

h
′
(x)d + h(x) = r(x),

s ≥ 0.

Let (dk, sk) ∈ Rn+l be a solution of this QP andλk ≡ (λk
g , λ

k
h, λ

k
s) ∈ R2l+m be

its corresponding KKT multipliers vector.
Step 2. (Termination check)If some stopping rule is satisfied, terminate. Oth-
erwise, go to Step 3.
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Step 3. (Penalty update)Let

(2.3) ρ̃k =


ρk−1, if ρk−1 > max

1≤i≤2l+m
|λk

i |;

δ1 + max
1≤i≤2l+m

|λk
i |, otherwise,

(2.4) ρk =

ρ̃k, if
l∑

i=1

si = 0;

δ2 + ρ̃k, otherwise,

(2.5) ρg
k =

ρ̃k, if
l∑

i=1

si = 0;

ρk−1, otherwise,

and

(2.6) ρh
k =


ρ̃k, if r(x) = h(x);

min{(λk
h))

T (r(x)− h(x)), 0}
−2‖(r(x)− h(x))‖2

2

+ δ3, otherwise.

Step 4. (Line search)Let tk = τ ik , whereik is the smallest nonnegative integer
i which satisfies the following inequality:

(2.7) θρg
k,ρh

k
(xk + τ idk) ≤ θρg

k,ρh
k
(xk)− στ i(dk)T Bkd

k.
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Step 5. (Update)Let xk+1 = xk + tkd
k. Choose a symmetric positive definite

matrixBk+1 ∈ Rn×n. Setk := k + 1. Go to Step 1.
It is well-known that the direction search and the step length determination

are two critical steps amongst all SQP methods or its variants. In the direction
search step of our algorithm, we further improve the prospect of feasibility of
the QP subproblem by solving a linear least square problem (2.1), compared
with the modified SQP method in [3]. This idea directly comes from [1].
However, our algorithm, including penalty parameter update and step length
determination, is very different from [1].

SinceBk for eachk is a symmetric positive definite, and QP (2.2) is always
feasible with some vectors ∈ Rl sufficiently large, the search direction and the
corresponding multipliers vector are also well-defined. The following lemma is
useful in proving thatdk is a descent direction of the merit function.

Lemma 2.1. If dk 6= 0 for eachk, wheredk is a solution QP (2.2) with x = xk,
then we have

(2.8) (‖h(x)‖2
2)

′
(xk; dk) = −2‖h′

(xk)dk‖2
2 ≤ 0.

Proof. Sincedk satisfiesh
′
(xk)dk+h(xk) = r(xk), it must solve the least square

problem (2.1). Therefore, it is a solution of the following linear equation:

(2.9) h
′
(x)T h

′
(x)dk = −h

′
(x)T h(x).

From (2.9), we have

(‖h(x)‖2
2)

′
(xk; dk) = 2(dk)T h

′
(xk)T h(xk)
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= −2(dk)T h
′
(x)T h

′
(x)dk

= −2‖h′
(xk)dk‖2

2

≤ 0.

It is easy to see thatr(xk) = h(xk) if and only if the equality holds in (2.8).
The next lemma states that fordk = 0, xk turns out to be the critical point of

the merit function under some condition.

Lemma 2.2. Letdk = 0 be a solution QP (2.2) with x = xk. If h
′
(xk)T λk

h = 0,
thenxk is a critical point ofθρg

k,ρh
k

with ρg
k, ρ

h
k being defined as (2.5) and (2.6),

respectively.

Proof. Sincedk = 0 is a solution QP (2.2) with x = xk, there must exist
a multiplier vectorλk = (λk

g , λ
k
h, λ

k
s) ∈ R2l+m such that the following KKT

conditions hold:

(2.10)

Of(xk)− g
′
(xk)λk

g + h
′
(xk)λk

h = 0,

ρk−1e− λk
g − λk

s = 0,

g(xk) ≥ −sk, λk
g ≥ 0, (λk

g)
T (g(xk) + sk) = 0,

sk ≥ 0, λk
s ≥ 0, (λk

s)
T s = 0,

h(xk) = r(xk).

Recall thatxk is a critical point ofθρg
k,ρh

k
and is equivalent to

θ
′

ρg
k,ρh

k
(xk; d) ≥ 0, ∀d ∈ Rn.
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To prove the required results, we need the following two inequalities:

(2.11) ρg
k

 ∑
gi(xk)<0

−g
′

i(x
k)d +

∑
gi(xk)=0

max(−g
′

i(x
k)d, 0) +

∑
gi(xk)>0

0


≥ −(λk

g)
T g

′
(xk)d;

(2.12) 2ρh
kh(xk)T h

′
(xk)d ≥ (λk

h)
T h

′
(xk)d.

First, we prove the inequality (2.11). In the case thatgi(x
k) < 0, we have

sk
i > 0 and(λk

s)i = 0, henceρk−1 = (λk
g)i from KKT conditions (2.10). Since

for this case,
∑

sk
i 6= 0, we haveρg

k = ρk−1 = (λk
g)i from (2.5). Therefore,

ρg
k

∑
gi(xk)>0

−g
′

i(x
k)d = −

∑
gi(xk)<0

(λk
g)ig

′

i(x
k)d.

In the case thatgi = 0, if g
′
(xk)d < 0, hencemax(−g

′
i(x

k)d, 0) = −g
′
i(x

k)d,
then we have

ρg
k

∑
gi(xk)=0

max(−g
′

i(x
k)d, 0) ≥ −

∑
gi(xk)=0

(λk
g)ig

′

i(x
k)d.

Otherwise,max(−g
′
i(x

k)d, 0) = 0 ≥ (λk
g)ig

′
i(x

k)d.
In the case thatgi(x

k) > 0, sincesk
i ≥ 0, hencegi(x

k)+sk
i > 0 and we have

(λk
g)i = 0.
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From the above argument, we can deduce that inequality (2.11) holds.
The second inequality (2.12) can be proved by using conditionh

′
(xk)T λk

h =
0 and

h
′
(xk)T h(xk) = h

′
(xk)T h

′
(xk)dk = 0.

Moreover, from it we have that the equality holds in (2.12).
By the inequalities (2.11) and (2.12), it follows from the first equality in the

KKT conditions (2.10) that for alld ∈ Rn,

θ
′

ρg
k,ρh

k
(xk; d) ≥ (Of(xk)− g

′
(xk)λk

g + h
′
(xk)λk

h)
T d = 0.

Remark 2.1. The conditionh
′
(xk)T λk

h = 0 actually requires that the vectorλk
h

belongs to the null space of the matrixOh(xk).

The last lemma in this section states that for everydk 6= 0, it must be the
descent direction of the merit function, which is important in making sure that
the proposed algorithm is valid, in particular, the line search step can be finished
in a finite number of times.

Lemma 2.3. Let (dk, sk) be a solution of QP (2.2), andρg
k, ρ

h
k be defined as in

(2.5) and (2.6), respectively. Suppose thatdk 6= 0, then

θ
′

ρg
k,ρh

k
(xk; dk) ≤ (Of(xk)T dk − (λk

g)
T g

′
(xk)dk + (λk

h)
T h

′
(xk)dk(2.13)

≤ −(dk)T Bkd
k < 0.
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Proof. Since(dk, sk) is a solution of QP (2.2) with x = xk, there must exist
a multiplier vectorλk = (λk

g , λ
k
h, λ

k
s) ∈ R2l+m such that the following KKT

conditions hold:

(2.14) Of(xk) + Bkd
k − g

′
(xk)λk

g + h
′
(xk)λk

h = 0,

(2.15) ρk−1e− λk
g − λk

s = 0,

(2.16) g
′
(xk)dk + g(xk) ≥ −sk, λk

g ≥ 0, λk
g)

T (g
′
(xk)dk + g(xk) + sk) = 0,

(2.17) sk ≥ 0, λk
s ≥ 0, (λk

s)
T s = 0,

(2.18) h
′
(xk)dk + h(xk) = r(xk).

Recall that

(2.19) θ
′

ρg
k,ρh

k
(xk; dk) = Of(xk)T dk + ρg

k

 ∑
gi(xk)<0

−g
′

i(x
k)dk

+
∑

gi(xk)=0

max(−g
′

i(x
k)dk, 0) +

∑
gi(xk)>0

0

− 2ρh
k‖h

′
(xk)dk‖2

2.
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We first prove that the following inequalities hold:

(2.20) ρg
k

 ∑
gi(xk)<0

−g
′

i(x
k)dk +

∑
gi(xk)=0

max(−g
′

i(x
k)dk, 0) +

∑
gi(xk)>0

0


≤ −(λk

g)
T g

′
(xk)dk;

(2.21) −2ρh
k‖h

′
(xk)dk‖2

2 ≤ (λk
h)

T h
′
(xk)dk.

It is easy to prove inequality (2.20) by using Lemma2.1 and the penalty
update rule (2.6). Here, we only prove (2.20).

In the case that
∑l

i=1 sk
i = 0, we havesk

i = 0 for eachi ∈ {1, 2, . . . , l}. If
gi < 0, then−Ogi(x

k)T dk ≤ gi(x
k) + sk

i = gi < 0, it follows from ρg
k = ρ̃k ≥

(λk
g)i that

−ρg
kOgi(x

k)T dk ≤ −(λk
g)iOgi(x

k)T dk.

If gi = 0, then−Ogi(x
k)T dk ≤ gi(x

k)+sk
i = 0, hencemax(−Ogi(x

k)T dk, 0) =
0, and

−(λk
g)iOgi(x

k)T dk = −(λk
g)i(gi(x

k) + sk
i ) = 0.

If gi > 0, then−(λk
g)iOgi(x

k)T dk = −(λk
g)i(gi(x

k) + sk
i ) > 0.

In the case that
∑l

i=1 sk
i 6= 0, we haveρg

k = ρk−1. If sk
i > 0, then from (2.17)

we have(λk
s)i = 0, hence from (2.15) we haveρk−1 = (λk

g)i. It directly follows
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that

−
∑

gi(xk)<0

(λk
g)iOgi(x

k)T dk = −
∑

gi(xk)<0

ρk−1Ogi(x
k)T dk

= −
∑

gi(xk)<0

ρg
kOgi(x

k)T dk,

∑
gi(xk)=0

ρg
k max(−Ogi(x

k)T dk, 0) =
∑

gi(xk)=0

max(−(λk
g)iOgi(x

k)T dk, 0)

=
∑

gi(xk)=0

max((λk
g)is

k
i , 0)

= −
∑

gi(xk)=0

(λk
g)iOgi(x

k)T dk.

Forgi > 0, we also have

−(λk
g)iOgi(x

k)T dk = (λk
g)i(gi(x

k) + sk
i ) > 0.

If sk
i = 0, thenOgi(x

k)T dk + gi(x
k) ≥ 0, (λk

g)i ≥ 0 and(λk
g)i(Ogi(x

k)dk +
gi(x

k)) = 0. Therefore,

−Ogi(x
k)T dk < 0, for gi(x

k) < 0;

Ogi(x
k)T dk ≥ 0, for gi(x

k) = 0;

−(λk
g)iOgi(x

k)T dk = (λk
g)igi(x

k) ≥ 0, for gi(x
k) > 0.
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Since from (2.15),we haveρk−1 = (λk
g)i + (λk

s)i ≥ (λk
g)i, and combined with

above argument, we can obtain the inequality (2.20).
Multiply (2.14) by dk, and from (2.20) and (2.21), we obtain that

θ
′

ρg
k,ρh

k
(xk; dk) ≤ (Of(xk)T dk − (λk

g)
T g

′
(xk)dk + (λk

h)
T h

′
(xk)dk

≤ −(dk)T Bkd
k < 0.

From the above argument, we know that our modified SQP method is well-
defined.
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3. Global Convergence
In this section, we study the global convergence of the algorithm. For this, we
assume thatdk 6= 0 for eachk, and let{xk} be a infinite iterate sequence gener-
ated by the algorithm. Moreover, we make the following blanket assumptions:

(A1). For allk, there exist two positive constantsα < β satisfying

α‖d‖2 ≤ dT Bkd ≤ β‖d‖2, ∀d ∈ Rn.

(A2). After finitely many iterations,ρk ≡ ρ∗1, ρh
k ≡ ρ∗2.

Lemma 3.1. Under(A1) and(A2), suppose thatx∗ is a cluster point of{xk},
i.e., for some subsetκ, limk(∈κ)→∞ xk = x∗, then the following conclusions
hold.

1.
∑l

i=1 sk
i = 0, for k ∈ κ large enough;

2. The multiplier sequences{λk
g}k∈κ,{λk

h}k∈κ, {λk
s}k∈κ and the penalty pa-

rameter sequence{ρg
k}k∈κ are bounded;

3. The direction sequence{dk}k∈κ is bounded;

4. If limk(∈κ)→∞ dk = d∗, limk(∈κ)→∞Bk = B∗, limk(∈κ)→∞ ρg
k = ρg

∗,
limk(∈κ)→∞ ρk = ρ∗, limk(∈κ)→∞ ρh

k = ρh
∗ , then(d∗, 0) is the solution of

the (2.2) with x = x∗, r(x) = 0. Moreover, the following inequality holds:

(3.1) θ
′

ρg
∗,ρh

∗
(x∗; d∗) ≤ −(d∗)T B∗d

∗.
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5. If d∗ = 0 andr(x∗) = 0, thenx∗ is feasible for the primary problem, and
is a feasible stationary point.

Proof. Since for allk large enough,ρk ≡ ρ∗1, we can deduce that
∑l

i=1 sk
i = 0

after finite steps by the penalty update rule (2.4), hence from the boundedness
of {ρk} we know that{ρ̃k} is also bounded. By the penalty update rule (2.3), it
follows that after finite steps, we have

ρk−1 ≥ max
1≤i≤2l+m

|λk
i |.

By assumption(A2), we obtain that fork ∈ κ, {λk
g}, {λk

h} and{λk
s} are

bounded.
Since

∑l
i=1 sk

i = 0 after finite steps, so fork(∈ κ) large enough we have
that

ρg
k ≡ ρ̃k,

hence that{ρg
k} is bounded. The first and second conclusions above have been

proved.
Next, we prove that the third conclusion holds.
From the boundedness of{λk

g} and {λk
h}, without loss of generality, we

assume that
lim

k(∈κ)→∞
λk

g ≡ λ∗g, lim
k(∈κ)→∞

λk
h ≡ λ∗h.

Using the KKT conditions (2.14), we obtain that

lim
k(∈κ)→∞

Bkd
k = −Of(x∗) + g

′
(x∗)λ∗g − h

′
(x∗)λ∗h.
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Thus, we can deduce that{Bkd
k : k ∈ κ} is bounded. By assumption(A1), we

have

(3.2) ‖dk‖2 ≤ 1

α
‖dk‖‖Bkd

k‖ ≤ 1

α
‖dk‖M, ∀k ∈ κ,

whereM is a constant scalar large enough.
If we assume that‖dk‖ 6= 0, then from (3.2) we know that‖dk‖ ≤ 1

2
M . i.e.

the direction sequence{dk : k ∈ κ} is bounded.
Then, we prove the forth conclusion.
By the second and the third conclusions, we can assume that

lim
k(∈κ)→∞

dk = d∗, lim
k(∈κ)→∞

Bk = B∗,

lim
k(∈κ)→∞

ρg
k = ρg

∗, lim
k(∈κ)→∞

ρh
k = ρ∗2,

lim
k(∈κ)→∞

ρs
k = ρs

∗, lim
k(∈κ)→∞

ρk = ρ∗1,

then from the KKT conditions (2.14) – (2.18) we have

(3.3)

Of(x∗) + B∗d
∗ − g

′
(x∗)λ∗g + h

′
(x∗)λ∗h = 0,

ρ∗1e− λ∗g − λ∗s = 0,

g
′
(x∗)d∗ + g(x∗) ≥ −s∗, λ∗g ≥ 0,

(λ∗g)
T (g

′
(x∗)d∗ + g(x∗) + s∗) = 0,

s∗ ≥ 0, λ∗s ≥ 0, (λ∗s)
T s = 0,

h
′
(x∗)d∗ + h(x∗) = r(x∗).
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It shows that(d∗, 0) is a solution of the following problem:

(3.4)

min Of(x∗)T d + 1
2
dT B∗d + ρ∗1

∑l
i=1 si

s.t. g
′
(x∗)d + g(x∗) ≥ −s,

h
′
(x∗)d + h(x∗) = r(x∗),

s ≥ 0.

Therefore,d∗ is a solution of the following problem:

(3.5)

min Of(x∗)T d + 1
2
dT B∗d

s.t. g
′
(x∗)d + g(x∗) ≥ 0,

h
′
(x∗)d + h(x∗) = r(x∗).

Also sincelimk(∈κ)→∞ ρh
k = ρh

∗ , so from the penalty update rule (2.6), we obtain
that r(xk) = h(xk) after finite steps. Hence we haver(x∗) = h(x∗) in the
problem (3.5). The inequality (3.1) can be easily proved under assumption(A2).

In what follows, we prove the last conclusion.
If d∗ = 0 andr(x∗) = 0, then fromr(x∗) = h(x∗) proved above we can

obtain thatg(x∗) ≥ 0, h(x∗) = 0. i.e. x∗ is feasible for the primary problem.
Also sinced∗ = 0 is a solution of the QP subproblem (1.2), we can deduce that
x∗ is a feasible stationary point of the original problem.

The following lemma can be proved similar to the corresponding result in
[3].
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Lemma 3.2. Supposing that

lim
k(∈κ)→∞

xk = x∗, lim
k(∈κ)→∞

tk = 0, lim
k(∈κ)→∞

ρg
k = ρg

∗,

lim
k(∈κ)→∞

ρh
k = ρ∗2, lim

k(∈κ)→∞
dk = d∗,

then we have

lim sup
k(∈κ)→∞

θρg
∗,ρ∗2

(xk + tkd
k)− θρg

∗,ρ∗2
(xk)

tk
≤ θ

′

ρg
∗,ρ∗2

(x∗; d∗).

Theorem 3.3. Suppose thatlimk(∈κ)→∞ xk = x∗. Under assumptions(A1)
and (A2), we havelimk(∈κ)→∞ dk = d∗ = 0. Therefore,x∗ is a generalized
stationary point of the primary problem (1.1). If r(x∗) = 0, thenx∗ is a feasible
stationary point.

Proof. From assumption(A2) and Lemma3.1, we know that fork large enough,
the following equality holds:

θρg
k,ρh

k
(xk) ≡ θρg

∗,ρ∗2
(xk).

By Lemma2.3, we know that{θρg
∗,ρ∗2

(xk) : k ∈ κ} is a monotonically decreas-
ing sequence and lower bounded, hence from Lemma3.1, we have the following
limits (if necessary, we can choose some subsequence):

lim
k(∈κ)→∞

dk = d∗, lim
k(∈κ)→∞

Bk = B∗.

Next, we prove thatd∗ = 0.
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If the cluster pointt∗ of step length sequence{tk : k ∈ κ} is nonzero, then
from the line search step of the proposed algorithm, we have

lim
k(∈κ)→∞

tk(d
k)T Bkd

k = 0,

or
t∗(d∗)T B∗d

∗ = 0,

hence by the positive definiteness ofB∗, we can deduce thatd∗ = 0.
If t∗ = 0, then

θρg
∗,ρ∗2

(
xk +

tk
τ

dk

)
− θρg

∗,ρ∗2
(xk) > −σ

tk
τ

(dk)T Bkd
k,

or

−σ
tk
τ

(dk)T Bkd
k <

θρg
∗,ρ∗2

(xk + tk
τ
dk)− θρg

∗,ρ∗2
(xk)

tk
τ

≤ lim
k(∈κ)→∞

sup
θρg

∗,ρ∗2
(xk + tk

τ
dk)− θρg

∗,ρ∗2
(xk)

tk
τ

≤ θ
′

ρg
∗,ρ∗2

(x∗; d∗)

≤ −(d∗)T B∗d
∗,

i.e. (1− σ)(d∗)T B∗d
∗ ≤ 0. So forσ ∈ (0, 1), we have(d∗)T B∗d

∗ ≤ 0. By the
positive definiteness ofB∗, we also obtain thatd∗ = 0.

At last, from the forth and fifth conclusion in Lemma3.1, we can prove the
desired results. (see [3, Proposition A.4]).
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