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Abstract

In this paper we present inequalities for integrals of functions that are the com-
position of nonnegative convex functions on an open convex set of a vector
space Rm and vector-valued functions in a weakly compact subset of a Banach
vector space generated by m Lp

µ-spaces for 1 ≤ p < +∞ and inequalities when
these vector-valued functions are in a weakly* compact subset of a Banach
vector space generated by m L∞µ -spaces.
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1. Introduction
When studying extremum problems and integral estimates in many areas of ap-
plied mathematics, we may require the convexity of functions and the weak
compactness of sets. Many properties of convex functions and weakly compact
sets can be found in the literature (e.g., see [2], [3], [4], [5] and [7]). In some re-
search fields such as the existence of solutions of differential equations (e.g., see
[1] and [6]), we usually enconter some problems on the estimates of integrals
of functions that are the composition of convex functions on an open convex set
of a vector space and vector-valued functions in a weakly (or weakly*) compact
subset in a Banach space. The estimates of integrals of this kind of compos-
ite function is interesting and important in many application areas. Inequalities
for integrals of composite functions are necessary, therefore, for solving many
problems in applied mathematics.

Let us first introduce some notations which will be used throughout this pa-
per. R denotes the real number system,Rn is the usual vector space of real
n-tuplesx = (x1, x2, . . . , xn), µ is a nonnegative Lebesgue measure ofRn,
Lp

µ(Rn) represents a Banach space where each measurable functionu(x) has
the following norm

(1.1) ‖u‖p =

(∫
Rn

|u(x)|pdµ

) 1
p

for any p ∈ [1, +∞), (Lp
µ(Rn))m denotes a Banach vector space where each

measurable vector-valued function hasm components inLp
µ(Rn), L∞µ (Rn) rep-

resents a Banach space where each measurable functionu(x) has the following
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norm

(1.2) ‖u‖∞ = esssup
x∈Rn

|u(x)| (or say‖u‖∞ = inf
E⊆Rn

µ(EC)=0

sup
x∈E

|u(x)|),

whereEC represents the complement set ofE in Rn, and(L∞µ (Rn))m denotes
a Banach vector space where each measurable vector-valued function hasm
components inL∞µ (Rn).

Below, we give the definition of weak convergence of a sequence inLp
µ(Rn),

wherep ∈ [1, +∞). Assume thatq = p/(p−1) asp ∈ (1, +∞) and thatq = ∞
asp = 1. If u ∈ Lp

µ(Rn) and it is assumed that a sequence{ui}+∞
i=1 in Lp

µ(Rn)
satisfies

(1.3) lim
i→+∞

∫
Rn

uivdµ =

∫
Rn

uvdµ

for all v ∈ Lq
µ(Rn), then the sequence{ui}+∞

i=1 is said to be weakly convergent
in Lp

µ(Rn) to u as i → +∞. Similarly, we introduce the definition of weak*
convergence of a sequence inL∞µ (Rn). If u ∈ L∞µ (Rn) and it is assumed that
a sequence{ui}+∞

i=1 in L∞µ (Rn) satisfies the equality (1.3) for all v ∈ L1
µ(Rn),

then the sequence{ui}+∞
i=1 is said to be weakly* convergent inL∞µ (Rn) to u

asi → +∞. Then we define the weak (or weak*) convergence of a sequence
in (Lp

µ(Rn))m (or (L∞µ (Rn))m). If 1 ≤ p < +∞ and{uji}+∞
i=1 is weakly con-

vergent inLp
µ(Rn) to ûj for all j = 1, 2, . . . ,m asi → +∞, then a sequence

{ui = (u1i, u2i, . . . , umi)}+∞
i=1 is called weakly convergent in a Banach vector

space(Lp
µ(Rn))m to û = (û1, û2, . . . , ûm) asi → +∞. Similarly, if {uji}+∞

i=1 is
weakly* convergent inL∞µ (Rn) to ûj for all j = 1, 2, . . . ,m asi → +∞, then
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a sequence{ui = (u1i, u2i, . . . , umi)}+∞
i=1 is said to be weakly* convergent in a

Banach vector space(L∞µ (Rn))m to û = (û1, û2, . . . , ûm) asi → +∞.

We now recall the definition of a convex function. Iff(x) is a function
with its values being real numbers or±∞ and its domain is a subsetS of an
m dimensional vector spaceRm such that{(x, y)|x ∈ S, y ∈ R, y ≥ f(x)}
is convex as a subset of anm + 1 dimensional vector spaceRm+1, thenf(x)
is called a convex function onS. It is known thatf(x) is convex fromS to
(−∞, +∞] if and only if

(1.4) f(λ1x1 + λ2x2 + · · ·+ λkxk) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λkf(xk)

wheneverS is a convex subset ofRm, xi ∈ S (i = 1, 2, . . . ) λ1 ≥ 0, λ2 ≥ 0,
. . . , λk ≥ 0, λ1 + λ2 + · · · + λk = 1. This is called Jensen’s inequality when
S = Rm.

There are inequalities for integrals of functions that are the composition of
convex functions on a vector spaceRm and vector-valued functions in a weakly*
compact subset of(L∞µ (Rn))m (see [6] or Theorem3.2in Section3). If F (x, y)
is a special nonnegative convex function defined byF (x, y) = (x−y) log(x

y
) for

(x, y) ∈ (0, +∞)× (0,∞) and{(ai, bi)}+∞
i=1 is a nonnegative sequence weakly

convergent in(L1
µ(Rn))2 to (a, b), then similar inequalities for integrals of the

composite functions can also be obtained (see [1]), as follows:

lim
i→+∞

∫
Rn

F (ai, bi)dµ ≥
∫

Rn

F (a, b)dµ.

Below, we extend the two results mentioned above to a more general case. More
precisely, this paper aims to show inequalities for integrals of functions that are

http://jipam.vu.edu.au/
mailto:
mailto:mcsjzl@mail.sysu.edu.cn
mailto:
mailto:mcsfxy@mail.sysu.edu.cn
mailto:
mailto:hongjiongtian@263.net
http://jipam.vu.edu.au/


Convex Functions and
Inequalities for Integrals

Zhenglu Jiang, Xiaoyong Fu and
Hongjiong Tian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 15

J. Ineq. Pure and Appl. Math. 7(5) Art. 184, 2006

http://jipam.vu.edu.au

the composition of nonnegative convex functions on an open convex set of a
vector spaceRm and vector-valued functions in a weakly compact subset of a
Banach vector space generated bym Lp

µ-spaces for1 ≤ p < +∞. We also show
inequalities for integrals of functions when these vector-valued functions are in
a weakly* compact subset of a Banach vector space generated bym L∞µ -spaces.
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2. Inequalities for Weakly Convergent Sequences
Some basic concepts have been introduced in the previous section. In this sec-
tion we show inequalities for integrals of functions which are the composition of
nonnegative convex functions on an open convex set of a vector spaceRm and
vector-valued functions in a weakly compact subset of a Banach vector space
generated bym Lp

µ-spaces for any givenp ∈ [1, +∞). That is the following

Theorem 2.1.Suppose that a sequence{ui}+∞
i=1 weakly converges in(Lp

µ(Rn))m

to u as i → +∞, wherep ∈ [1, +∞) andm andn are two positive integers.
Assume that all the values ofu andui (i = 1, 2, 3, . . . ) belong to an open convex
setK in Rm and thatf(x) is a nonnegative convex function fromK to R. Then

(2.1) lim
i→+∞

∫
Ω

f(ui)dµ ≥
∫

Ω

f(u)dµ

for any measurable setΩ ⊆ Rn.

In order to prove Theorem2.1, let us first recall the following lemma:

Lemma 2.2. Assumeun → u weakly in a normed linear space. Then there
exists, for anyε > 0, a convex combination

∑n
k=1 λkuk (λk ≥ 0,

∑n
k=1 λk = 1)

of {uk : k = 1, 2, . . . } such that‖u−
∑n

k=1 λkuk‖ ≤ ε where‖v‖ is a norm of
v in the space.

This is called Mazur’s lemma. Its proof can be found in [5] and [7]. Using
this lemma, we can give a proof of Theorem2.1.

Proof of Theorem2.1. Let ΩR be a bounded set defined byΩR = Ω ∩ {w :
|w| < R, w ∈ Rn} for all R > 0. Put αi =

∫
ΩR

f(ui)dµ (i = 1, 2, . . . )
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andα = lim
i→+∞

∫
ΩR

f(ui)dµ for all the bounded setsΩR. Then there exists a

subsequence of{αi}+∞
i=1 such that this subsequence, denoted without loss of

generality by{αi}+∞
i=1 , converges toα asi → +∞.

Take Kl = {x : x ∈ K, |x| ≤ l, ρ(∂K, x) ≥ 1/l} and Dl(u) = {ω :
ω ∈ Rn, u(ω) ∈ Kl} for any fixed positive integerl, whereρ(∂K, x) is defined
as a distance between the pointx and the boundary∂K of K. Then all the
setsKl are bounded, closed and convex subsets ofK such that lim

l→+∞
Kl = K

and Kl ⊂ Kl+1 for any positive integerl. It can also be easily proven that
lim

l→+∞
Dl(u) = Rn and thatDl(u) ⊆ Dl+1(u) for any positive integerl. Since

f(x) is a convex function defined on an open convex setK, f(x) is continuous
in K (see [3]). Thusf(x) is uniformly continuous inKl+1, that is, for any given
positive numberε, there exists a positive numberδ such that

(2.2) |f(x)− f(y)| < ε/µ(ΩR)

as|x− y| < δ for anyx andy in Kl+1.

Sinceui weakly converges in(Lp
µ(Rn))m to u, using Lemma2.2, one know

that for any natural numberj, there exists a convex combination
∑N(j)

k=j λkuk of

{uk : k = j, j + 1, . . . } such that
∥∥∥u−

∑N(j)
k=j λ

(j)
k uk

∥∥∥ p ≤ 1
j
, whereN(j) is a

natural number which depends onj and{uk : k = j, j+1, . . . }, ‖v‖p represents
a norm ofv in (Lp

µ(Rn))m, λ
(j)
k ≥ 0 and

∑N(j)
k=j λ

(j)
k = 1. Putvj =

∑N(j)
k=j λ

(j)
k uk.

Then, asj tends to infinity,vj converges in(Lp
µ(Rn))m to u. Thus there exists

a subsequence of{vj}+∞
j=1 such that this subsequence, denoted without loss of

generality by{vj}+∞
j=1, converges almost everywhere inRn to u as j goes to
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infinity. In particular, for any givenR > 0, vj converges almost everywhere in
ΩR tou asj goes to infinity. By Egorov’s theorem, it is known that for any given
positive numberσ, there exists a measurable setER in ΩR with µ(ER) < σ such
thatvj converges uniformly inΩR\ER to u. Therefore for the above numberδ,
there exists a natural numberN such that

(2.3) sup
ω∈(ΩR\ER)∩Dl(u)

|u(ω)− vj(ω)| < δ

for all j > N. Since all the values ofu in Dl(u) are in the closed setKl and
Kl ⊂ Kl+1, δ can be chosen to be sufficiently small such that all the values of
vj in (ΩR\ER)∩Dl(u) fall in Kl+1 and (2.2) and (2.3) still hold for this choice
of δ. Combining (2.2) and (2.3), we know that for any given positive numberε,
there exists a natural numberN such that

(2.4) f(u) < f(vj) + ε/µ(ΩR)

in (ΩR\ER) ∩Dl(u) for all j > N. Since all the values of{ui}+∞
i=1 andu are in

K andf(x) is convex and nonnegative, integrating (2.4) gives

(2.5)
∫

ΩR∩Dl(u)

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k

∫
ΩR

f(uk)dµ + σ max
x∈Kl

f(x) + ε.

(2.5) can be equivalently written as

(2.6)
∫

ΩR∩Dl(u)

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k αk + σ max

x∈Kl

f(x) + ε.
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Notice thatαk → α ask → +∞. By first letting j → +∞ and thenε → 0,
(2.6) gives

(2.7)
∫

ΩR∩Dl(u)

f(u)dµ ≤ α + σ max
x∈Kl

f(x).

The fact that lim
l→+∞

Dl(u) = Rn shows that the limit ofΩR ∩ Dl(u) in (2.7) is

ΩR. By first lettingσ → 0 and thenl → +∞, (2.7) reads

(2.8)
∫

ΩR

f(u)dµ ≤ α ≤ lim
i→+∞

∫
Ω

f(ui)dµ,

where the last inequality is obtained using the nonnegativity off(x). Finally,
by lettingR → +∞ and using the Lebesgue dominated convergence theorem,
(2.8) leads to (2.1). This completes the proof.
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3. Inequalities for Weakly* Convergent Sequences
In the previous section we have given inequalities for integrals of composite
functions for weakly convergent sequences in(Lp

µ(Rn))m for 1 ≤ p < +∞.
In this section we present a similar result for weakly* convergent sequences in
(L∞µ (Rn))m .

Using the process of the proof in Theorem2.1, we can prove the following
theorem.

Theorem 3.1.Assume that a sequence{ui}+∞
i=1 weakly* converges in(L∞µ (Rn))m

to u asi → +∞, wherem andn are two positive integers. Assume that all the
values ofu andui (i = 1, 2, 3, . . . ) belong to an open convex setK of Rm and
that f(x) is a nonnegative convex function fromK to R. Then the inequality
(2.1) holds for any measurable setΩ ⊆ Rn.

Proof. PutΩR = Ω ∩ {w : |w| < R, w ∈ Rn}. ThenΩR is a bounded set in
Rn for all fixed positive real numbersR. Sinceui → u weakly* in (L∞µ (Rn))m,
ui → u weakly* in (L∞µ (ΩR))m. Hence, byL∞(ΩR) ⊂ L1(ΩR), it can be easily
shown thatui → u weakly in(L1

µ(ΩR))m. Then, using the process of the proof
of Theorem2.1, we obtain

(3.1) lim
i→+∞

∫
ΩR

f(ui)dµ ≥
∫

ΩR

f(u)dµ.

It follows from the nonnegativity of the convex functionf that

(3.2) lim
i→+∞

∫
Ω

f(ui)dµ ≥
∫

ΩR

f(u)dµ.
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Finally, by the Lebesgue monotonous convergence theorem, asR → +∞, (3.2)
implies (2.1). Our proof is completed.

Furthermore, by removing the nonnegativity off(x) and assuming that the
convex setK is closed, we can deduce the following result.

Theorem 3.2.Assume that a sequence{ui}+∞
i=1 weakly* converges in(L∞µ (Rn))m

to u asi → +∞, wherem andn are two positive integers. Assume that all the
values ofu andui (i = 1, 2, 3, . . . ) belong to a closed convex setK in Rm and
thatf(x) is a continuous convex function fromK to R. Then the inequality (2.1)
holds for any bounded measurable setΩ ⊂ Rn.

We can also obtain Theorem3.1 from Theorem3.2. Theorem3.2 can be
easily proved using Lemma2.2. In fact, Theorem3.2 is a part of the results
given by Ying [6]. However, we still give its proof below.

Proof of Theorem3.2. Put αi =
∫

Ω
f(ui)dµ (i = 1, 2, . . . ) and α =

lim
i→+∞

∫
Ω

f(ui)dµ for any bounded setΩ. Then there exists a subsequence of

{αi}+∞
i=1 such that this subsequence, denoted without loss of generality by{αi}+∞

i=1 ,
converges toα asi → +∞.

TakeK̃ = K ∩ {x : x ∈ Rm, |x| ≤ ‖u‖∞ + 1}. Then, sinceK is closed
andf(x) is continuous inK, K̃ is a bounded closed set andf(x) is uniformly
continuous inK̃, that is, for any given positive numberε, there exists a positive
numberδ < 1 such that

(3.3) |f(x)− f(y)| < ε/µ(Ω)

as|x− y| < δ for anyx andy in K̃.
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Sinceui → u weakly* in (L∞µ (Rn))m, ui → u weakly* in (L∞µ (Ω))m.
Hence, byL∞(Ω) ⊂ L1(Ω), it can be easily shown thatui → u weakly in
(L1

µ(Ω))m. It follows from Lemma2.2 that, for any natural numberj, there

exists a convex combination
∑N(j)

k=j λ
(j)
k uk of {uk : k = j, j + 1, . . . } such that∥∥∥u−

∑N(j)
k=j λ

(j)
k uk

∥∥∥∞ ≤ 1
j

whereN(j) is a natural number which depends on

j and{uk : k = j, j + 1, . . . }, ‖v‖∞ represents a norm ofv in (L∞µ (Ω))m,

λ
(j)
k ≥ 0 and

∑N(j)
k=j λ

(j)
k = 1. Put vj =

∑N(j)
k=j λ

(j)
k uk. Thenvj converges in

(L∞µ (Ω))m to u asj tends to∞. In particular, for the above numberδ, there
exists a natural numberN such that

(3.4) esssup
ω∈Ω

|u(ω)− vj(ω)| < δ

for all j > N. Since all the values ofu andui are inK andK is convex, all
the values ofu andvj in Ω are inK̃ for all j > N. Combining (3.3) and (3.4),
we know that for any given positive numberε, there exists a natural numberN
such that

(3.5) f(u) < f(vj) + ε/µ(Ω)

almost everywhere inΩ for all j > N. Thus, integrating (3.5) gives

(3.6)
∫

Ω

f(u)dµ ≤
∫

Ω

f(vj)dµ + ε

for all j > N. By the convexity of the functionf(x), integrating (3.6) gives

(3.7)
∫

Ω

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k

∫
Ω

f(uk)dµ + ε.

http://jipam.vu.edu.au/
mailto:
mailto:mcsjzl@mail.sysu.edu.cn
mailto:
mailto:mcsfxy@mail.sysu.edu.cn
mailto:
mailto:hongjiongtian@263.net
http://jipam.vu.edu.au/


Convex Functions and
Inequalities for Integrals

Zhenglu Jiang, Xiaoyong Fu and
Hongjiong Tian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 15

J. Ineq. Pure and Appl. Math. 7(5) Art. 184, 2006

http://jipam.vu.edu.au

(3.7) can be equivalently written as

(3.8)
∫

Ω

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k αk + ε.

By letting j → +∞ and using the convergence ofαk to α, (3.8) gives

(3.9)
∫

Ω

f(u)dµ ≤ α + ε.

By letting ε → 0, (3.9) leads to (2.1). This completes the proof.
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