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ABSTRACT. The main object of this paper is to introduce and investigate a subclassU(λ, α, β, k)
of normalized analytic functions in the open unit disk∆, which generalizes the familiar class of
uniformly convex functions. The various properties and characteristics for functions
belonging to the classU(λ, α, β, k) derived here include (for example) a characterization
theorem, coefficient inequalities and coefficient estimates, a distortion theorem and a
covering theorem, extreme points, and the radii of close-to-convexity, starlikeness and convexity.
Relevant connections of the results, which are presented in this paper, with various known results
are also considered.
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1. I NTRODUCTION AND M OTIVATION

LetA denote the class of functionsf normalizedby

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which areanalytic in the open unit disk

∆ = {z : z ∈ C and |z| < 1}.
As usual, we denote byS the subclass ofA consisting of functions which areunivalentin ∆.
Suppose also that, for0 5 α < 1, S∗(α) andK(α) denote the classes of functions inA which
are, respectively,starlike of orderα in ∆ andconvex of orderα in ∆ (see, for example, [11]).
Finally, letT denote the subclass ofS consisting of functionsf given by

(1.2) f(z) = z −
∞∑

n=2

anz
n (an = 0)

with negativecoefficients. Silverman [9] introduced and investigated the following subclasses
of the function classT :

(1.3) T ∗(α) := S∗(α) ∩ T and C(α) := K(α) ∩ T (0 5 α < 1).

Definition 1. A functionf ∈ T is said to be in the classU(λ, α, β, k) if it satisfies the following
inequality:

<
(

zF ′(z)

F (z)

)
> k

∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣+ β(1.4)

(0 5 α 5 λ 5 1; 0 5 β < 1; k = 0),

where

(1.5) F (z) := λαz2f ′′(z) + (λ− α)zf ′(z) + (1− λ + α)f(z).

The above-defined function classU(λ, α, β, k) is of special interest and it contains many
well-known as well as new classes of analytic univalent functions. In particular,U(λ, α, β, 0) is
the class of functions with negative coefficients, which was introduced and studied recently
by Kamali and Kadıŏglu [3], andU(λ, 0, β, 0) is the function class which was introduced
and studied by Srivastavaet al. [12] (see also Aqlanet al. [1]). We note that the class of
k-uniformly convex functions was introduced and studied recently by Kanas and Wiśniowska
[4]. Subsequently, Kanas and Wiśniowska [5] introduced and studied the class ofk-uniformly
starlike functions. The various properties of the above two function classes were extensively
investigated by Kanas and Srivastava [6]. Furthermore, we have [cf. Equation (1.3)]

(1.6) U(0, 0, β, 0) ≡ T ∗(α) and U(1, 0, β, 0) ≡ C(α).

We remark here that the classes ofk-uniformly starlike functions andk-uniformly convex
functions are an extension of the relatively more familiar classes of uniformly starlike functions
and uniformly convex functions investigated earlier by (for example) Goodman [2], Rønning
[8], and Ma and Minda [7] (see also the more recent contributions on these function classes by
Srivastava and Mishra [10]).

In our present investigation of the function classU(λ, α, β, k), we obtain a characterization
theorem, coefficient inequalities and coefficient estimates, a distortion theorem and a covering
theorem, extreme points, and the radii of close-to-convexity, starlikeness and convexity for
functions belonging to the classU(λ, α, β, k).
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k-UNIFORMLY CONVEX FUNCTIONS 3

2. A CHARACTERIZATION THEOREM AND RESULTING COEFFICIENT ESTIMATES

We employ the technique adopted by Aqlanet al. [1] to find the coefficient estimates for the
function classU(λ, α, β, k). Our main characterization theorem for this function class is stated
as Theorem 1 below.

Theorem 1. A functionf ∈ T given by(1.2) is in the classU(λ, α, β, k) if and only if
∞∑

n=2

{n(k + 1)− (k + β)} {(n− 1)(nλα + λ− α) + 1} an 5 1− β(2.1)

(0 5 α 5 λ 5 1; 0 5 β < 1; k = 0).

The result is sharp for the functionf(z) given by

(2.2) f(z) = z − 1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
zn (n = 2).

Proof. By Definition 1,f ∈ U(λ, α, β, k) if and only if the condition (1.4) is satisfied. Since it
is easily verified that

<(ω) > k|ω − 1|+ β ⇐⇒ <
(
ω(1 + keiθ)− keiθ

)
> β

(−π 5 θ < π; 0 5 β < 1; k = 0),

the inequality (1.4) may be rewritten as follows:

(2.3) <
(

zF ′(z)

F (z)
(1 + keiθ)− keiθ

)
> β

or, equivalently,

(2.4) <
(

zF ′(z)(1 + keiθ)− F (z)keiθ

F (z)

)
> β.

Now, by setting

(2.5) G(z) = zF ′(z)(1 + keiθ)− F (z)keiθ,

the inequality (2.4) becomes equivalent to

|G(z) + (1− β)F (z)| > |G(z)− (1 + β)F (z)| (0 5 β < 1),

whereF (z) andG(z) are defined by (1.5) and (2.5), respectively. We thus observe that

|G(z) + (1− β)F (z)|

= |(2− β)z| −

∣∣∣∣∣
∞∑

n=2

(n− β + 1){(n− 1)(nλα + λ− α) + 1}anz
n

∣∣∣∣∣
−

∣∣∣∣∣keiθ

∞∑
n=2

(n− 1){(n− 1)(nλα + λ− α) + 1}anz
n

∣∣∣∣∣
= (2− β)|z| −

∞∑
n=2

(n− β + 1){(n− 1)(nλα + λ− α) + 1}an|z|n

− k
∞∑

n=2

(n− 1){(n− 1)(nλα + λ− α) + 1}an|z|n

= (2− β)|z| −
∞∑

n=2

{(n(k + 1)− (k + β) + 1}{(n− 1)(nλα + λ− α) + 1}an|z|n.
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Similarly, we obtain

|G(z)− (1 + β)F (z)|

5 β|z|+
∞∑

n=2

{(n(k + 1)− (k + β)− 1}{(n− 1)(nλα + λ− α) + 1}an|z|n.

Therefore, we have

|G(z) + (1− β)F (z)| − |G(z)− (1 + β)F (z)|

= 2(1− β)|z| − 2
∞∑

n=2

{(n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}an|z|n

= 0,

which implies the inequality (2.1) asserted by Theorem 1.
Conversely, by setting

0 5 |z| = r < 1,

and choosing the values ofz on the positive real axis, the inequality (2.3) reduces to the
following form:

(2.6) <

(1−β)−
∞∑

n=2

{(n−β)−keiθ(n−1)}{(n− 1)(nλα + λ− α)+1}anr
n−1

1−
∞∑

n=2

(n− 1){(n−1)(nλα+λ−α)+1}anrn−1

 = 0,

which, in view of the elementary identity:

<(−eiθ) = −|eiθ| = −1,

becomes

(2.7) <

(1− β)−
∞∑

n=2

{(n− β)− k(n− 1)}{(n− 1)(nλα + λ− α) + 1}anr
n−1

1−
∞∑

n=2

(n− 1){(n− 1)(nλα + λ− α) + 1}anrn−1

 = 0.

Finally, upon lettingr → 1− in (2.7), we get the desired result. �

By takingα = 0 andk = 0 in Theorem 1, we can deduce the following corollary.

Corollary 1. Letf ∈ T be given by(1.2). Thenf ∈ U(λ, 0, β, 0) if and only if
∞∑

n=2

(n− β){(n− 1)λ + 1}an 5 1− β.

By settingα = 0, λ = 1 andk = 0 in Theorem 1, we get the following corollary.

Corollary 2 (Silverman [9]). Letf ∈ T be given by(1.2). Thenf ∈ C(β) if and only if
∞∑

n=2

n(n− β)an 5 1− β.

The following coefficient estimates forf ∈ U(λ, α, β, k) is an immediate consequence of
Theorem 1.
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k-UNIFORMLY CONVEX FUNCTIONS 5

Theorem 2. If f ∈ U(λ, α, β, k) is given by(1.2), then

an 5
1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
(n = 2)(2.8)

(0 5 α 5 λ 5 1; 0 5 β < 1; k = 0).

Equality in(2.8) holds true for the functionf(z) given by(2.2).

By takingα = k = 0 in Theorem 2, we obtain the following corollary.

Corollary 3. Letf ∈ T be given by(1.2). Thenf ∈ U(λ, 0, β, 0) if and only if

(2.9) an 5
1− β

(n− β){(n− 1)λ + 1}
(n = 2).

Equality in(2.9) holds true for the functionf(z) given by

(2.10) f(z) = z − 1− β

(n− β){(n− 1)λ + 1}
zn (n = 2).

Lastly, if we setα = 0, λ = 1 andk = 0 in Theorem 1, we get the following familiar result.

Corollary 4 (Silverman [9]). Letf ∈ T be given by(1.2). Thenf ∈ C(β) if and only if

(2.11) an 5
1− β

n(n− β)
(n = 2).

Equality in(2.11) holds true for the functionf(z) given by

(2.12) f(z) = z − 1− β

n(n− β)
zn (n = 2).

3. DISTORTION AND COVERING THEOREMS FOR THE FUNCTION CLASS U(λ, α, β, k)

Theorem 3. If f ∈ U(λ, α, β, k), then

r − 1− β

(2 + k − β)(2λα + λ− α)
r2 5 |f(z)| 5 r +

1− β

(2 + k − β)(2λα + λ− α)
r2(3.1)

(|z| = r < 1).

Equality in(3.1) holds true for the functionf(z) given by

(3.2) f(z) = z − 1− β

(2 + k − β)(2λα + λ− α)
z2.

Proof. We only prove the second part of the inequality in (3.1), since the first part can be derived
by using similar arguments. Sincef ∈ U(λ, α, β, k), by using Theorem 1, we find that

(2 + k − β)(2λα + λ− α + 1)
∞∑

n=2

an

=
∞∑

n=2

(2 + k − β)(2λα + λ− α + 1)an

5
∞∑

n=2

{n(k + 1)− (k + β)} {(n− 1)(nλα + λ− α) + 1} an

5 1− β,
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which readily yields the following inequality:

(3.3)
∞∑

n=2

an 5
1− β

(2 + k − β)(2λα + λ− α + 1)
.

Moreover, it follows from (1.2) and (3.3) that

|f(z)| =

∣∣∣∣∣z −
∞∑

n=2

anz
n

∣∣∣∣∣
5 |z|+ |z|2

∞∑
n=2

an

5 r + r2

∞∑
n=2

an

5 r +
1− β

(2 + k − β)(2λα + λ− α + 1)
r2,

which proves the second part of the inequality in (3.1). �

Theorem 4. If f ∈ U(λ, α, β, k), then

1− 2(1− β)

(2 + k − β)(2λα + λ− α)
r 5 |f ′(z)| 5 1 +

2(1− β)

(2 + k − β)(2λα + λ− α)
r(3.4)

(|z| = r < 1).

Equality in(3.4) holds true for the functionf(z) given by(3.2).

Proof. Our proof of Theorem 4 is much akin to that of Theorem 3. Indeed, sincef ∈ U(λ, α, β, k),
it is easily verified from (1.2) that

(3.5) |f ′(z)| 5 1 +
∞∑

n=2

nan|z|n−1 5 1 + r
∞∑

n=2

nan

and

(3.6) |f ′(z)| = 1−
∞∑

n=2

nan|z|n−1 5 1 + r
∞∑

n=2

nan.

The assertion (3.4) of Theorem 4 would now follow from (3.5) and (3.6) by means of a rather
simple consequence of (3.3) given by

(3.7)
∞∑

n=2

nan 5
2(1− β)

(2 + k − β)(2λα + λ− α + 1)
.

This completes the proof of Theorem 4. �

Theorem 5. If f ∈ U(λ, α, β, k), thenf ∈ T ∗(δ), where

δ := 1− 1− β

(2 + k − β)(2λα + λ− α)− (1− β)
.

The result is sharp with the extremal functionf(z) given by(3.2).

Proof. It is sufficient to show that (2.1) implies that

(3.8)
∞∑

n=2

(n− δ)an 5 1− δ,
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k-UNIFORMLY CONVEX FUNCTIONS 7

that is, that

(3.9)
n− δ

1− δ
5
{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

1− β
(n = 2),

Since (3.9) is equivalent to the following inequality:

δ 5 1− (n− 1)(1− β)

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1} − (1− β)
(n = 2)

=: Ψ(n),

and since

Ψ(n) 5 Ψ(2) (n = 2),

(3.9) holds true for

n = 2, 0 5 λ 5 1, 0 5 α 5 1, 0 5 β < 1 and k = 0.

This completes the proof of Theorem 5. �

By settingα = k = 0 in Theorem 5, we can deduce the following result.

Corollary 5. If f ∈ U(λ, α, β, k), then

f ∈ T ∗
(

λ(2− β) + β

λ(2− β) + 1

)
.

This result is sharp for the extremal functionf(z) given by

f(z) = z − 1− β

(λ + 1)(2− β)
z2.

For the choicesα = 0, λ = 1 andk = 0 in Theorem 5, we obtain the following result of
Silverman [9].

Corollary 6. If f ∈ C(β), then

f ∈ T ∗
(

2

3− β

)
.

This result is sharp for the extremal functionf(z) given by

f(z) = z − 1− β

2(2− β)
z2.

4. EXTREME POINTS OF THE FUNCTION CLASS U(λ, α, β, k)

Theorem 6. Let

f1(z) = z and

fn(z) = z − 1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
zn (n = 2).

Thenf ∈ U(λ, α, β, k) if and only if it can be represented in the form:

(4.1) f(z) =
∞∑

n=1

µnfn(z)

(
µn = 0;

∞∑
n=1

µn = 1

)
.

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 43, 14 pp. http://jipam.vu.edu.au/
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8 H. M. SRIVASTAVA , T. N. SHANMUGAM , C. RAMACHANDRAN , AND S. SIVASUBRAMANIAN

Proof. Suppose that the functionf(z) can be written as in (4.1). Then

f(z) =
∞∑

n=1

µn

(
z − 1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
zn

)

= z −
∞∑

n=2

µn

(
1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

)
zn.

Now
∞∑

n=2

µn

(
{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}(1− β)

(1− β){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

)

=
∞∑

n=2

µn

= 1− µ1

5 1,

which implies thatf ∈ U(λ, α, β, k).
Conversely, we suppose thatf ∈ U(λ, α, β, k). Then, by Theorem 2, we have

an 5
1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
(n = 2).

Therefore, we may write

µn =
{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

1− β
an (n = 2)

and

µ1 = 1−
∞∑

n=2

µn.

Then

f(z) =
∞∑

n=1

µnfn(z),

with fn(z) given as in (4.1). This completes the proof of Theorem 6. �

Corollary 7. The extreme points of the function classf ∈ U(λ, α, β, k) are the functions

f1(z) = z

and

fn(z) = z − 1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
zn (n = 2).

Forα = k = 0 in Corollary 7, we have the following result.

Corollary 8. The extreme points off ∈ U(λ, 0, β, 0) are the functions

f1(z) = z and fn(z) = z − 1− β

{n− β}{(n− 1)λ + 1}
zn (n = 2).

By settingα = 0, λ = 1 andk = 0 in Corollary 7, we obtain the following result obtained
by Silverman [9].
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k-UNIFORMLY CONVEX FUNCTIONS 9

Corollary 9. The extreme points of the classC(β) are the functions

f1(z) = z and fn(z) = z − 1− β

n(n− β)
zn (n = 2).

Theorem 7. The classU(λ, α, β, k) is a convex set.

Proof. Suppose that each of the functionsfj(z) (j = 1, 2) given by

(4.2) fj(z) = z −
∞∑

n=2

an,jz
n (an,j = 0; j = 1, 2)

is in the classU(λ, α, β, k). It is sufficient to show that the functiong(z) defined by

g(z) = µf1(z) + (1− µ)f2(z) (0 5 µ 5 1)

is also in the classU(λ, α, β, k). Since

g(z) = z −
∞∑

n=2

[µan,1 + (1− µ)an,2]z
n,

with the aid of Theorem 1, we have
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}[µan,1 + (1− µ)an,2]

5 µ
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}an,1

+ (1− µ)
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}an,2

5 µ(1− β) + (1− µ)(1− β)

5 1− β,(4.3)

which implies thatg ∈ U(λ, α, β, k). HenceU(λ, α, β, k) is indeed a convex set. �

5. M ODIFIED HADAMARD PRODUCTS (OR CONVOLUTION )

For functions

f(z) =
∞∑

n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,

the Hadamard product (or convolution)(f∗g)(z) is defined, as usual, by

(5.1) (f∗g)(z) :=
∞∑

n=0

anbnz
n =: (g∗f)(z).

On the other hand, for functions

fj(z) = z −
∞∑

n=2

an,jz
n (j = 1, 2)

in the classT , we define themodifiedHadamard product (or convolution) as follows:

(5.2) (f1•f2)(z) := z −
∞∑

n=2

an,1 an,2z
n =: (f2•f1)(z).

Then we have the following result.
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10 H. M. SRIVASTAVA , T. N. SHANMUGAM , C. RAMACHANDRAN , AND S. SIVASUBRAMANIAN

Theorem 8. If fj(z) ∈ U(λ, α, β, k) (j = 1, 2), then

(f1•f2)(z) ∈ U(λ, α, β, k, ξ),

where

ξ :=
(2− β){2 + k − β}{2λα + λ− α + 1} − 2(1− β)2

(2− β){2 + k − β}{2λα + λ− α + 1} − (1− β)2
.

The result is sharp for the functionsfj(z) (j = 1, 2) given as in(3.2).

Proof. Sincefj(z) ∈ U(λ, α, β, k) (j = 1, 2), we have

(5.3)
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}an,j 5 1− β (j = 1, 2),

which, in view of the Cauchy-Schwarz inequality, yields

(5.4)
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
1− β

√
an,1 an,2 5 1.

We need to find the largestξ such that

(5.5)
∞∑

n=2

{n(k + 1)− (k + ξ)}{(n− 1)(nλα + λ− α) + 1}
1− ξ

an,1 an,2 5 1.

Thus, in light of (5.4) and (5.5), whenever the following inequality:

n− ξ

1− ξ

√
an,1 an,2 5

n− β

1− β
(n = 2)

holds true, the inequality (5.5) is satisfied. We find from (5.4) that

(5.6)
√

an,1 an,2 5
1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
(n = 2).

Thus, if(
n− ξ

1− ξ

)(
1− β

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

)
5

n− β

1− β
(n = 2),

or, if

ξ 5
(n− β){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1} − n(1− β)2

(n− β){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1} − (1− β)2
(n = 2),

then (5.4) is satisfied. Setting

Φ(n) :=
(n− β){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1} − n(1− β)2

(n− β){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1} − (1− β)2
(n = 2),

we see thatΦ(n) is anincreasingfunction forn = 2. This implies that

ξ 5 Φ(2) =
(2− β){2 + k − β}{2λα + λ− α + 1} − 2(1− β)2

(2− β){2 + k − β}{2λα + λ− α + 1} − (1− β)2
.

Finally, by taking each of the functionsfj(z) (j = 1, 2) given as in (3.2), we see that the
assertion of Theorem 8 is sharp. �
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6. RADII OF CLOSE-TO-CONVEXITY , STARLIKENESS AND CONVEXITY

Theorem 9. Let the functionf(z) defined by(1.2) be in the classU(λ, α, β, k). Thenf(z) is
close-to-convex of orderρ (0 5 ρ < 1) in |z| < r1(λ, α, β, ρ, k), where

r1(λ, α, β, ρ, k)

:= inf
n

(
(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

n(1− β)

) 1
n−1

(n = 2).

The result is sharp for the functionf(z) given by(2.2).

Proof. It is sufficient to show that

|f ′(z)− 1| 5 1− ρ
(
0 5 ρ < 1; |z| < r1(λ, α, β, ρ, k)

)
.

Since

(6.1) |f ′(z)− 1| =

∣∣∣∣∣−
∞∑

n=2

nanz
n−1

∣∣∣∣∣ 5
∞∑

n=2

nan|z|n−1,

we have
|f ′(z)− 1| 5 1− ρ (0 5 ρ < 1),

if

(6.2)
∞∑

n=2

(
n

1− ρ

)
an|z|n−1 5 1.

Hence, by Theorem 1, (6.2) will hold true if(
n

1− ρ

)
|z|n−1 5

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
1− β

,

that is, if

(6.3) |z| 5
(

(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
n(1− β)

) 1
n−1

(n = 2).

The assertion of Theorem 9 would now follow easily from (6.3). �

Theorem 10. Let the functionf(z) defined by(1.2) be in the classU(λ, α, β, k). Thenf(z) is
starlike of orderρ (0 5 ρ < 1) in |z| < r2(λ, α, β, ρ, k), where

r2(λ, α, β, ρ, k)

:= inf
n

(
(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

(n− ρ)(1− β)

) 1
n−1

(n = 2).

The result is sharp for the functionf(z) given by(2.2).

Proof. It is sufficient to show that∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ 5 1− ρ
(
0 5 ρ < 1; |z| < r2(λ, α, β, ρ, k)

)
.

Since

(6.4)

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ 5
∞∑

n=2

(n− 1)an|z|n−1

1−
∞∑

n=2

anzn−1

,
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we have ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ 5 1− ρ (0 5 ρ < 1),

if

(6.5)
∞∑

n=2

(
n− ρ

1− ρ

)
an|z|n−1 5 1.

Hence, by Theorem 1, (6.5) will hold true if(
n− ρ

1− ρ

)
|z|n−1 5

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
1− β

,

that is, if

(6.6) |z| 5
(

(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
(n− ρ)(1− β)

) 1
n−1

(n = 2).

The assertion of Theorem 10 would now follow easily from (6.6). �

Theorem 11. Let the functionf(z) defined by(1.2) be in the classU(λ, α, β, k). Thenf(z) is
convex of orderρ (0 5 ρ < 1) in |z| < r3(λ, α, β, ρ, k), where

r3(λ, α, β, ρ, k)

:= inf
n

(
(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}

n(n− ρ)(1− β)

) 1
n−1

(n = 2).

The result is sharp for the functionf(z) given by(2.2).

Proof. It is sufficient to show that∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ 5 1− ρ
(
0 5 ρ < 1; |z| < r3(λ, α, β, ρ, k)

)
.

Since

(6.7)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ 5
∞∑

n=2

n(n− 1)an|z|n−1

1−
∞∑

n=2

nan|z|n−1

,

we have ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ 5 1− ρ (0 5 ρ < 1),

if

(6.8)
∞∑

n=2

(
n(n− ρ)

1− ρ

)
an|z|n−1 5 1.

Hence, by Theorem 1, (6.8) will hold true if(
n(n− ρ)

1− ρ

)
|z|n−1 5

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
1− β

,

that is, if

(6.9) |z| 5
(

(1− ρ){n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}
n(n− ρ)(1− β)

) 1
n−1

(n = 2).

Theorem 11 now follows easily from (6.9). �
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7. HADAMARD PRODUCTS AND I NTEGRAL OPERATORS

Theorem 12. Letf ∈ U(λ, α, β, k). Suppose also that

(7.1) g(z) = z +
∞∑

n=2

gnz
n (0 5 gn 5 1).

Then
f∗g ∈ U(λ, α, β, k).

Proof. Since0 5 gn 5 1 (n = 2),
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}angn

5
∞∑

n=2

{n(k + 1)− (k + β)}{(n− 1)(nλα + λ− α) + 1}an

5 1− β,(7.2)

which completes the proof of Theorem 12. �

Corollary 10. If f ∈ U(λ, α, β, k), then the functionF(z) defined by

(7.3) F(z) :=
1 + c

zc

∫ z

0

tc−1 f(t)dt (c > −1)

is also in the classU(λ, α, β, k).

Proof. Since

F(z) = z +
∞∑

n=2

(
c + 1

c + n

)
zn

(
0 <

c + 1

c + n
< 1

)
,

the result asserted by Corollary 10 follows from Theorem 12. �
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