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ABSTRACT. The main object of this paper is to introduce and investigate a suld¢{ass, 5, k)

of normalized analytic functions in the open unit didkwhich generalizes the familiar class of
uniformly convex functions. The various properties and characteristics for functions
belonging to the clas#/(\, «, 8, k) derived here include (for example) a characterization
theorem, coefficient inequalities and coefficient estimates, a distortion theorem and a
covering theorem, extreme points, and the radii of close-to-convexity, starlikeness and convexity.
Relevant connections of the results, which are presented in this paper, with various known results
are also considered.
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1. INTRODUCTION AND MOTIVATION

Let A denote the class of functiorfsnormalizedby

(1.1) ) =2+ an2",

which areanalyticin the open unit disk
A={z:2e€C and |z] <1}.

As usual, we denote h§ the subclass afd consisting of functions which anenivalentin A.
Suppose also that, for< o < 1, S*(«) and/C(«) denote the classes of functionsinwhich
are, respectivelystarlike of ordera in A andconvex of ordery in A (see, for example| [11]).
Finally, let7 denote the subclass Sfconsisting of functiong’ given by

[e.9]

(1.2) flz)=2z— Zanz” (an, = 0)

n=2

with negativecoefficients. Silvermarn [9] introduced and investigated the following subclasses
of the function clasq:

(1.3) T () =S (a)NT and C(a):=K(a)NT 0Sa<l).

Definition 1. A function f € 7 is said to be in the clag$(\, o, 3, k) if it satisfies the following
inequality:

2F'(2) ‘ZF’(Z) B ‘
(1.4) %( F2) ) >k Fe2) 11+ 7
0SasSAS1;0508<1; k20),
where
(1.5) F(2) = a2’ f"(2) + A —a)zf' (2) + (1 = A+ a) f(2).

The above-defined function clag&\, o, 3, k) is of special interest and it contains many
well-known as well as new classes of analytic univalent functions. In parti¢darc, 3,0) is
the class of functions with negative coefficients, which was introduced and studied recently
by Kamali and Kadiglu [3], and/ (), 0, 3,0) is the function class which was introduced
and studied by Srivastavet al. [12] (see also Aglaret al. [1]). We note that the class of
k-uniformly convex functions was introduced and studied recently by Kanas aswidiska
[4]. Subsequently, Kanas and $¥iowska([5] introduced and studied the clasg-amiformly
starlike functions. The various properties of the above two function classes were extensively
investigated by Kanas and Srivastava [6]. Furthermore, we lthvEquation [(1.B)]

(1.6) U0,0,5,0) =T («) and  U(1,0,5,0) =C(a).

We remark here that the classeskeiiniformly starlike functions and-uniformly convex
functions are an extension of the relatively more familiar classes of uniformly starlike functions
and uniformly convex functions investigated earlier by (for example) Goodman [2], R@nning
[8], and Ma and Minda[7] (see also the more recent contributions on these function classes by
Srivastava and Mishra [10]).

In our present investigation of the function cldsg\, o, 3, k), we obtain a characterization
theorem, coefficient inequalities and coefficient estimates, a distortion theorem and a covering
theorem, extreme points, and the radii of close-to-convexity, starlikeness and convexity for
functions belonging to the clagg \, o, 3, k).
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2. A CHARACTERIZATION THEOREM AND RESULTING COEFFICIENT ESTIMATES

We employ the technique adopted by Agkral. [1] to find the coefficient estimates for the
function clasg/(\, «, 3, k). Our main characterization theorem for this function class is stated
as Theorerhl1 below.

Theorem 1. A functionf € 7 given by(1.2) is in the clasg/(\, «, 3, k) if and only if
(2.1) Z{nkJrl k+8)H{(n-1Dnrxa+A—a)+1}a, S1-5

0=as=As1,0=p0<1; k20).
The result is sharp for the functiof{z) given by
L 1-6 n
@2 &= D G N - Ve h—ay 1y - M=

Proof. By Definition[1, f € U(), «, 3, k) if and only if the condition[(1}4) is satisfied. Since it
is easily verified that

R(w) > klw— 1|+ 8 <= R(w(l + ke”) — ke?) >
(—m=0<m 0=3<1;k20),
the inequality[(1.4) may be rewritten as follows:

3) R (jf(g) (1+ ke') - kei9> > 8
or, equivalently,

ZF’(Z)(l + keie) _ F(z)kew)
(2.4) R ( 26 - 3.
Now, by setting
(25) G(z) = 2F'(2)(1 + ke"") = F(2)ke”,

the inequality[(2.4) becomes equivalent to
G(z) + (1=P)F(2)] > [G(2) -1+ B)F(2)] (0=p5<1),
whereF(z) andG(z) are defined by[ (1]5) anfl (2.5), respectively. We thus observe that
G(2) + (1 = B)F(2)]

e}

D (n=B+1D{(n—1(nra+X—a)+1}a,2"

n=2

2 [(2-0)2 -

— (ke Z(n —D{(n—=1)(nAa+ X —a) + 1}a,z"

n=2

[e.9]

> (2= Bzl = S (n = B+ D{(n — D(nda+ A —a) + La, 2"

n=2

— kY (n=1){(n—1)(nha + X - a) + L}a,|z["

n=2

> (2-0)|z| — Z{ (k+1)—(k+08)+ 1}H(n—D(n a+ X —a) + 1}a,|2|".
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Similarly, we obtain
|G(2) — (1 + B)F(2)]
<ﬁ|z!+Z{ — (k+8) — 1H{(n — D) (nAa + A — @) + 1}a,|2|™.

Therefore, we have
|G(2) + (1= B)F(2)| — |G(2) — (1 + B)F(2)]

>2(1-0 |z|—22{ (k+1) = (k+ )Y (n — D) (nha+ X — a) + 1}a,|z|"

2 0,

which implies the inequality (2} 1) asserted by Theofém 1.
Conversely, by setting
0= |zl =r <1,
and choosing the values af on the positivereal axis, the inequality (2.3) reduces to the
following form:

(1-25) —22{(71 —B)— ke (n—1)}H(n — 1) (nAa+ X —a)+1}a,r"t

(2.6) R — >0,
1->Y (n—1){(n—1)(nAa+A—a)+1}a,r"!
n=2
which, in view of the elementary identity:
R(—e”) 2 —|e”| = -1,
becomes
(1=0) = 2 A =0) —k(n = 1H{(n - 1)(nAa+ A — o) + 1}anr™”
(2.7) R =2 >0
1=> (n—1Df{(n—1)(nra+ X —a)+ 1}a,r"!
n=2
Finally, upon letting- — 1— in (2.7), we get the desired result. O

By takinga: = 0 andk = 0 in Theorenj [, we can deduce the following corollary.

Corollary 1. Let f € 7 be given by(L.2). Thenf € U(},0, 3,0) if and only if

o0

d (n=B{n—-Dr+1}a, £1-5.

n=2
By settinga = 0, A = 1 andk = 0 in Theorenj I, we get the following corollary.
Corollary 2 (Silverman|[9]) Let f € 7 be given by([L.2). Thenf € C() if and only if

o0

nn—Ba, £1— 4.

n=2

The following coefficient estimates fof € U(\, «, 5, k) is an immediate consequence of
TheorentL.
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Theorem 2. If f € U(X, «, 3, k) is given by(L.2), then
1-p
(2.8) an = nk+1)—(k+8)Hn-1DnAa+—a)+1}
0SaSAS1;0508<1; k20).

Equality in (2.8) holds true for the functiorf (=) given by(2.2).
By takinga = & = 0 in Theorenj 2, we obtain the following corollary.

Corollary 3. Let f € T be given by(L.2). Thenf € U(}, 0, 3,0) if and only if
1-p
2.9 a, < n=2).
29) Sm-A{n-ary =Y
Equality in (2.9) holds true for the functiorf (=) given by
1-p
2" n=2).
CET IOV VR
Lastly, if we seta = 0, A = 1 andk = 0 in Theoreni [L, we get the following familiar result.
Corollary 4 (Silverman|[9]) Let f € T be given by([L.2). Thenf € C() if and only if
1-p
ap S ————
n(n —f)
Equality in (2.11]) holds true for the functiorf(z) given by

Neao LT0 s
(2.12) R =zt (nz)

(2.10) f(z)=2z—-

(2.11) (n=2).

3. DISTORTION AND COVERING THEOREMS FOR THE FUNCTION CLASSU(\, «, 3, k)
Theorem 3.If f e U(\, o, 3, k), then

1-0 9 1-p 9
@1 r- 2+k—=0)2\a+ A —a) relfElsrs 2+k=0)2\a+A—a) "
(Jz| =7 < 1).
Equality in holds true for the functiorf(z) given by
(3.2) flz)=2— 175 22,

(2+k—-0)2\a+ A —a)

Proof. We only prove the second part of the inequality in|3.1), since the first part can be derived
by using similar arguments. Singec U()\, a, 3, k), by using Theorer|1, we find that

C+Ek-0)R2 a4+ A—a+1) ) a,

n=2

=> 2+k-pB)2\a+A-a+ 1a,

n=2

<> {nk+1) = (k+8)}H{(n = D(nra+ A —a) + 1} a,

él_ﬁv

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 43, 14 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 H. M. SRIVASTAVA, T. N. SHANMUGAM, C. RAMACHANDRAN , AND S. SVASUBRAMANIAN

which readily yields the following inequality:

(33) ;2%£§@+k—5X%a+A—a+1)

Moreover, it follows from|[(1.R) and (3.3) that

[f(2)] =]z =) anz"
n=2
<zl + 121 an
n=2
<y Z an
n=2
1-p
< 2
=TT e = ath—atD)
which proves the second part of the inequality[ in|(3.1). O
Theorem 4. If f e U(\, o, 3, k), then
2(1-p) : 2(1 - 5)
41— < =1
(3.4) PR Tcy v w S VG I wray )y vy wap

(Jz| =r < 1).
Equality in holds true for the functiorf(z) given by(3.2).

Proof. Our proof of Theorerp|4 is much akin to that of Theofdm 3. Indeed, ireé((\, o, 5, k),
it is easily verified from[(1]2) that

(3.5) F() S1+) nanlz["" 147 nay,
n=2 n=2

and

(3.6) If'(z)| 21— Znan|z|”_1 <1+ TZnan.
n=2 n=2

The assertior| (3|4) of Theorgm 4 would now follow frgm {3.5) (3.6) by means of a rather
simple consequence ¢f (8.3) given by

= 2(1 —
3.7) g;m%§(2+k—ﬁ£MaTA—a+1f
This completes the proof of Theoré¢m 4. O
Theorem 5. If f e U(\, o, B, k), thenf € T*(5), where
§:=1- L=F

2+k—B)2 a+A—a)—(1-0)
The result is sharp with the extremal functiffx) given by(3.2).
Proof. Itis sufficient to show thaf (2} 1) implies that

oo

(3.8) > (n=d)a, £1-34,

n=2
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that is, that
n—0 Ank+1)—(k+B)Hn-DmIa+A—a)+1}

>

Since [(3.9) is equivalent to the following inequality:

{nk+1)—k+/HHn-1DnAa+A—a)+1} —(1-0)

=: W(n),
and since
() S W) (n22),
(3.9) holds true for
n=22 0SAS1,05as1,053<1 and k=0.

This completes the proof of Theorérm 5. O

By settinga = k& = 0 in Theorenj b, we can deduce the following result.
Corollary 5. If f e U(N, «, 3, k), then

per (M)

A2—-p0)+1
This result is sharp for the extremal functigiz) given by

e
C+DE=8)

For the choicesx = 0, A = 1 andk = 0 in Theoren] b, we obtain the following result of

Silverman [9].
Corollary 6. If f € C(9), then
e (525).
This result is sharp for the extremal functigiz) given by
L= ﬂ 22.
2(2-p)

fz)=2-

fz) =2~

4. EXTREME POINTS OF THE FUNCTION CLASSU (A, «, 3, k)
Theorem 6. Let
fi(z) =z and

fal2) = 2~ 1=/ " (2 2).

(k+1) — (k+B)Hm—1)mra+r—a)+1} =
Thenf € U(\, «, 3, k) if and only if it can be represented in the farm

(4.1) F(2) = nfal2) (Mn 20, Y pn= 1) :

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 43, 14 pp. http://jipam.vu.edu.au/
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Proof. Suppose that the functiof(z) can be written as ifj (4.1). Then

1—ﬁ n
ZM“(‘ T e )

. 1-p o
B ;”n ({n(k+1)—(k+5)}{(n—1)(nAa+>\—a)+1}> ‘

Now

Z ({n (k+1)—(k+B8)Hn -1 a+X—a)+1}1 - ﬁ))
B){nk+1)— (k+)H(n—1)(nda+ X —a)+ 1}

=2

:ZM
n=2
:]_—,ul

=1

which implies thatf € U(\, a, 3, k).
Conversely, we suppose that (), «, 3, k). Then, by Theorern|2, we have

1-p

L < > 2).
“ “{nk+1)—k+HHn-1DnNIa+A—a)+1} (n22)
Therefore, we may write
o {nk+1)—(k+B8)Hn -1 a+X—a)+1} o (n=2)
1-p
and
p=1— Z Mo -
n=2

Then

=Y tinfa(2)

n=1

with f,(z) given as in[(4.]1). This completes the proof of Theofém 6. O
Corollary 7. The extreme points of the function clgss U (), «, 5, k) are the functions

fi(z) =
and

1-p

(2) = 2 — n > 2).
Ja(2) ) =G+ DO -Dmasr—ay+1y - =2
Fora = k& = 0 in Corollary[ 7, we have the following result.
Corollary 8. The extreme points gf € U/()\, 0, 5,0) are the functions
fe)=2 and fu(s) =2 - L0 » (n22).

{n—OHmn-1A+1}

By settingae = 0, A = 1 andk = 0 in Corollary[{, we obtain the following result obtained
by Silverman([9].
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Corollary 9. The extreme points of the claGg5) are the functions

fi(z) ==z and  f.(z2)=z— n(ln;—ﬁﬁ) 2" (n = 2).

Theorem 7. The classi/(\, «, 3, k) is a convex set.

Proof. Suppose that each of the functiofi$z) (j = 1,2) given by
4.2) fi(z) =2z— Zan,jz" (an,; 20; j=1,2)

is in the clas$/(\, «, 4, k). Itis sufficient to show that the functiof(z) defined by
9(z) = pfi(z) + A —pf(z)  (0=p=1)

is also in the clas® (), «, 3, k). Since

e}

9(z) = 2= [pans + (1 — pay)z",

with the aid of Theorerm|1, we have

Z{n (k+1) = (k+B8)Hmn —1)(n a+ X — ) + 1} pan, + (1 — p)ans)
< MZ{n(l@ +1) — (k+ B)H(n — D)(nAa + X — a) + 1}an,

Z{n (k+1) = (k+8)Hn — D(nAa+ X —a) + 1}ans

éu(l—ﬁH(l—u)(l—ﬁ)
(4.3) =1-p,
which implies thay € U(\, «, 5, k). Henceld (A, o, 3, k) is indeed a convex set.

5. MODIFIED HADAMARD PRODUCTS (OR CONVOLUTION )

For functions

o0

) =Y ae and gl =3 b
n=0

n=0
the Hadamard product (or convolutiofy)«g)(z) is defined, as usual, by

(5.1) (fxg)(z Zanb 2= (gxf)(2).

On the other hand, for functions

z):z—Zangn (1=1,2)
=2

in the classZ, we define thenodifiedHadamard product (or convolution) as follows:

(5.2) (f10f2) =z — Zanlan 22" = (fQ.fl)( )

Then we have the following result.
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Theorem 8. If f;(z) e U\, 0, B, k) (j = 1,2), then
(fl.fQ)(’Z) < Z/{<)\,Oé,6,l{?,£)7

where

2= 2+k-BH2ha+ A —a+1} —2(1 - B)?
S Rtk BH2at A —at 1} — (=37

The result is sharp for the functiorfs(z) (j = 1,2) given as in(3.2).

Proof. Sincef;(z) e U(\, a, 5, k) (j = 1,2), we have

5.3) Y {n(k+1) = (k+AHH(n—Dmra+r-a)+1}a,; S1-5  (j=1,2),

which, in view of the Cauchy-Schwarz inequality, yields

(5.4) Z {n(k+1)—(k+ ) H(n—DnAa+X—a)+1}

1 6 vV an,l an,2 g 1.

We need to find the largestsuch that

(5.5) Z {nk+1)—(k+Hn-1Dn \a+)—a)+ 1} iy <1,
n=2 1- 5 7 7
Thus, in light of [5.4) and (5]5), whenever the following inequality:

holds true, the inequality (5.5) is satisfied. We find from]|(5.4) that

1-p
vV an,1 Gn 2 é {n(k‘ + 1) _ (]{_Fﬁ)}{(n — 1)(77,)\@ + A= Oé) + 1} -

(5.6)

Thus, if

n—¢& 1-8 ne g

(1—£> ({n(kH)—(k+6)}{(n—1)(ma+A—a)+1}) = 1-3 (n 2 2),
or, if
(n—B){nk+1)— (k+8Hm -1 nIa+ A —a)+1} —n(l — 3)?

= n=0{nk+1)—(k+/HH{n—-1nAa+X—a)+ 1} — (1 —3)? (n 2 2),
then [5.4) is satisfied. Setting
®(n) = (n—B){nk+1)— (k+/8)Hn-1DmIa+ X —a)+1} —n(l — () (n=2)

(n = B){n(k+1) = (k+ H)H{(n = Dnra+ A —a) + 1} = (1 - §)?
we see thaf(n) is anincreasingfunction forn = 2. This implies that
2-0){2+k-FH2 a4+ —a+1} —2(1 - p)?
2-B{2+k—-pBH2 a+A—a+1}—(1-p)2°

Finally, by taking each of the function§(z) (j = 1,2) given as in|[(3.R), we see that the
assertion of Theorefr] 8 is sharp. O

£<0(2) =

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 43, 14 pp. http://jipam.vu.edu.au/
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6. RADII OF CLOSE-TO-CONVEXITY , STARLIKENESS AND CONVEXITY

Theorem 9. Let the functionf(z) defined by(1.2)) be in the clas$/(), ., 3, k). Thenf(z) is
close-to-convex of order (0 < p < 1)in |z| <1 (\ o, B, p, k), where
7"1()\,0[,5, P k)
o ((1 —p){n(k+1) = (k+ B)H(n — D(nda+ A —a) + 1}) Tz
n(l—p)
The result is sharp for the functiofi =) given by(2.2).

n

Proof. It is sufficient to show that
1f(z)=1<1—p (02 p<1; |zl <rm(Na,B,pk)).

Since

(6.1) 1f'(2) = 1] = ‘— D nanz" N <) nag 2"
n=2 n=2

we have

if

(6.2) 3 (%p) a|z" 7 < 1.

n=2

Hence, by Theorefn 1, (6.2) will hold true if
(L) 2rt < {nk+1)—(k+BHHn-1DnIAa+ A —a)+ 1}7

L=p 1-p
that is, if
(6.3) || < ((1 —p){nk+1)—(k +nﬁ()1}i(g)— D(nAa+ A — o)+ 1}> = (n>2).
The assertion of Theorejm 9 would now follow easily frgm{6.3). O

Theorem 10. Let the functionf(z) defined by(L.2) be in the clas#/(\, o, 3, k). Thenf(z) is
starlike of orderp (0 < p < 1)in |z| < ra(\, «, 5, p, k), where

T2<)\,Oé,ﬁ, P k)

e (A=) {n(k+1) = (k+ A)H(n — (Ao + A —a) +1} = i
=i (=)= ) )" ez
The result is sharp for the functiofi =) given by(2.2).

n

Proof. It is sufficient to show that

Z}f(ij)_l él—p (O§p<1, |Z|<T2(/\7aaﬁapak))
Since
" > (n = Lay|"!
(6.4) J{<(Z>) - ‘é n= :

o0
1— > apznt
n=2

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 43, 14 pp. http://jipam.vu.edu.au/
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we have )
z z
f@)—qél—p 0=p<1),
if
(6.5) 3 (T:Z) an|2" "t < 1.
n=2

Hence, by Theorefn 1, (6.5) will hold true if
(u) 2t < {nk+1)—(k+8)Hn—1Dn a+\—a)+1}

L=p 1-p
that is, if
(1—p{nk+1)—(k+BH(n—nra+ A —a) + 1}) =
6.6 < > 9).
( ”d‘( =) - (nz2)
The assertion of Theoregm]10 would now follow easily fr¢m|(6.6). ]

Theorem 11. Let the functionf(z) defined by([L.2) be in the clas$/(\, o, 3, k). Thenf(z) is
convex ofordep (0= p<1)in|z| <rs(\ a,p,p, k), where

7“3()\, «, /67 P k)

((1 —p){n(k+1) = (k+ B)Hn - D(nra+ A —a) + 1}) = (32
n(n—p)(1—0) -
The result is sharp for the functiofi z) given by(2.2).

Proof. It is sufficient to show that

;= inf
n

2f"(2) :
e <Sl-p  (0Sp<1; 2] <rs(\ o, B,p. k).
Since
= o n—1
(6.7) 2f"(2)] o 2,nn ~ Lanle]
f1z) |~ 1— i nay|z|"=1 7
n=2
we have £(2)
z z
Ty | S 0=e<),
if
©8) > (el s

n=2

Hence, by Theorefn 1, (6.8) will hold true if
(n(n — p)) 2t < {nk+1)—(k+)Hn-DnIa+ X —a)+1}

1—p 1-p
that is, if
(1—p){nlk+1) = (k+B)MH(n - Dnda+ A —a) + 1}\ 71
©9) 1< ( wn— (1= B) )" ez
Theorenj 1L now follows easily from (6.9). O
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7. HADAMARD PRODUCTS AND INTEGRAL OPERATORS
Theorem 12.Let f € U(\, o, 3, k). Suppose also that

(7.1) g(z) =2+ gn2"  (0Zg, 1)

Then
fxg e U\, o, B, k).

Proof. Since0 < g, <1 (n = 2),

Z{n (k+1) = (k+ )Y (n — D)(nia + X — a) + 1}ang,

§§: (k+1)—(k+08)H(n—1)(nAa+ X —a)+1}a,

(7.2) S - B,
which completes the proof of Theorém] 12. O
Corollary 10. If f € U(\, «, 5, k), then the functiorF(z) defined by

1 z
(7.3) F(z) = :;C/ tt f(t)dt (c>—1)

0

is also in the class(/(\, «, 3, k).
Proof. Since

c+1Y c+1

f(z)—z+;(c+n)z (0<C_|_n<1)7

the result asserted by Corolldry] 10 follows from Theofein 12. O
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