ON SOME q-INTEGRAL INEQUALITIES

KAMEL BRAHIM

Institut Préparatoire aux Études d'Ingénieur

Tunisia

EMail: Kamel.Brahim@ipeit.rnu.tn

Received: 24 June, 2008

Accepted: 10 November, 2008

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26D15.

Key words: q-integral, Inequalities.

Abstract: In this paper, we provide a q-analogue of an open problem posed by Q. A. Ngô et

al. in the paper, *Note on an integral inequality*, J. Inequal. Pure and Appl. Math., 7(4)(2006), Art. 120, by using analytic and elementary methods in Quantum

Calculus.

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

Page 1 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	3
2	Notations and Preliminaries	5
3	Main Results	7

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

Page 2 of 14

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

In [9], Q.A. Ngô et al. studied an interesting integral inequality and proved the following result:

Theorem 1.1. Let $f(x) \ge 0$ be a continuous function on [0,1] satisfying

(1.1)
$$\int_{x}^{1} f(t)dt \ge \int_{x}^{1} tdt, \quad \forall x \in [0, 1].$$

Then the inequalities

(1.2)
$$\int_0^1 f^{\alpha+1}(x)dx \ge \int_0^1 x^{\alpha} f(x)dx$$

and

(1.3)
$$\int_0^1 f^{\alpha+1}(x)dx \ge \int_0^1 x f^{\alpha}(x)dx$$

hold for every positive real number $\alpha > 0$.

Then, they proposed the following open problem: *Under what condition does the inequality*

(1.4)
$$\int_0^1 f^{\alpha+\beta}(x)dx \ge \int_0^1 x^{\beta} f^{\alpha}(x)dx$$

hold for α *and* β ?

In view of the interest in this type of inequalities, much attention has been paid to the problem and many authors have extended the inequality to more general cases (see [1, 3, 7, 8]). In this paper, we shall discuss a q-analogue of Ngô's problem.

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

44 >>>

←

Page 3 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

This paper is organized as follows: In Section 2, we present definitions and facts from the q-calculus necessary for understanding this paper. In Section 3, we discuss a q-analogue of the inequalities given in [9] and [3].

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page
Contents

Page 4 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Notations and Preliminaries

Throughout this paper, we will fix $q \in (0,1)$. For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper (see [4] and [6]). We write for $a \in \mathbb{C}$,

$$[a]_q = \frac{1 - q^a}{1 - q}.$$

The q-derivative $D_q f$ of a function f is given by

(2.1)
$$(D_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \text{ if } x \neq 0,$$

 $(D_q f)(0) = f'(0)$, provided f'(0) exists.

The q-Jackson integral from 0 to a is defined by (see [5])

(2.2)
$$\int_0^a f(x)d_q x = (1 - q)a \sum_{n=0}^\infty f(aq^n)q^n,$$

provided the sum converges absolutely.

The q-Jackson integral in a generic interval [a, b] is given by (see [5])

(2.3)
$$\int_{a}^{b} f(x)d_{q}x = \int_{0}^{b} f(x)d_{q}x - \int_{0}^{a} f(x)d_{q}x.$$

We recall that for any function f, we have (see [6])

(2.4)
$$D_q\left(\int_a^x f(t)d_qt\right) = f(x).$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

44 >>>

Page 5 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

If F is any anti q-derivative of the function f, namely $D_qF=f$, continuous at x=0, then

(2.5)
$$\int_0^a f(x)d_q x = F(a) - F(0).$$

A q-analogue of the integration by parts formula is given by

(2.6)
$$\int_{a}^{b} f(x)(D_{q}g(x))d_{q}x = f(a)g(a) - f(b)g(b) - \int_{a}^{b} (D_{q}f(x))g(qx)d_{q}x.$$

Finally, we denote

$$[0,1]_q = \{q^k : k = 0, 1, 2, \dots, \infty\}.$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

44 >>

, ,

Page 6 of 14

Go Back Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Main Results

Let us begin with the following useful result:

Lemma 3.1 ([9] General Cauchy inequality). Let α and β be positive real numbers satisfying $\alpha + \beta = 1$. Then for all positive real numbers x and y, we always have

$$(3.1) \alpha x + \beta y \ge x^{\alpha} y^{\beta}.$$

Theorem 3.2. Let f be a nonnegative function defined on $[0,1]_q$ satisfying

(3.2)
$$\int_{x}^{1} f^{\beta}(t) d_{q}t \ge \int_{x}^{1} t^{\beta} d_{q}t, \quad \forall x \in [0, 1]_{q}.$$

Then the inequality

(3.3)
$$\int_0^1 f^{\alpha+\beta}(x)d_qx \ge \int_0^1 x^{\alpha}f^{\beta}(x)d_qx,$$

holds for all positive real numbers $\alpha > 0$ and $\beta > 0$.

To prove Theorem 3.2, we need the following lemma.

Lemma 3.3. *Under the conditions of Theorem 3.2, we have*

(3.4)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x \ge \frac{1}{[\alpha + \beta + 1]_q}.$$

Proof. By using a q-integration by parts, we obtain

$$\int_0^1 x^{\alpha-1} \left(\int_x^1 f^{\beta}(t) d_q t \right) d_q x = \frac{1}{[\alpha]_q} \left[x^{\alpha} \int_x^1 f^{\beta}(t) d_q t \right]_{x=0}^{x=1} + \frac{q^{\alpha}}{[\alpha]_q} \int_0^1 x^{\alpha} f^{\beta}(x) d_q x$$
$$= \frac{q^{\alpha}}{[\alpha]_q} \int_0^1 x^{\alpha} f^{\beta}(x) d_q x,$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

44 >>

Page 7 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

which yields

(3.5)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x = \frac{[\alpha]_q}{q^{\alpha}} \int_0^1 x^{\alpha - 1} \left(\int_x^1 f^{\beta}(t) d_q t \right) d_q x.$$

On the other hand, from condition (3.2), we get

$$\int_0^1 x^{\alpha-1} \left(\int_x^1 f^{\beta}(t) d_q t \right) d_q x \ge \int_0^1 x^{\alpha-1} \left(\int_x^1 t^{\beta} d_q t \right) d_q x$$

$$= \frac{1}{[\beta+1]_q} \int_0^1 (x^{\alpha-1} - x^{\alpha+\beta}) d_q x$$

$$= \frac{q^{\alpha}}{[\alpha]_q [\alpha+\beta+1]_q}.$$

Therefore, from (3.5), we obtain

(3.6)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x \ge \frac{1}{[\alpha + \beta + 1]_q}.$$

We now give the proof of Theorem 3.2.

Proof of Theorem 3.2. Using Lemma 3.1, we obtain

(3.7)
$$\frac{\beta}{\alpha+\beta}f^{\alpha+\beta}(x) + \frac{\alpha}{\alpha+\beta}x^{\alpha+\beta} \ge x^{\alpha}f^{\beta}(x),$$

which gives

$$(3.8) \qquad \beta \int_0^1 f^{\alpha+\beta}(x) d_q x + \alpha \int_0^1 x^{\alpha+\beta} d_q x \ge (\alpha+\beta) \int_0^1 x^{\alpha} f^{\beta}(x) d_q x.$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

>>

Page 8 of 14

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Moreover, by using Lemma 3.3, we get

$$(3.9) \qquad (\alpha + \beta) \int_0^1 x^{\alpha} f^{\beta}(x) d_q x = \alpha \int_0^1 x^{\alpha} f^{\beta}(x) d_q x + \beta \int_0^1 x^{\alpha} f^{\beta}(x) d_q x$$
$$\geq \frac{\alpha}{[\alpha + \beta + 1]_q} + \beta \int_0^1 x^{\alpha} f^{\beta}(x) d_q x.$$

Then, from relation (3.8), we obtain

$$(3.10) \quad \beta \int_0^1 f^{\alpha+\beta}(x) d_q x + \frac{\alpha}{[\alpha+\beta+1]_q} \ge \frac{\alpha}{[\alpha+\beta+1]_q} + \beta \int_0^1 x^{\alpha} f^{\beta}(x) d_q x,$$

which completes the proof.

Taking $\beta = 1$ in Theorem 3.2, we obtain

Corollary 3.4. Let f be a nonnegative function defined on $[0,1]_q$ satisfying

(3.11)
$$\int_{x}^{1} f(t)d_{q}t \ge \int_{x}^{1} td_{q}t, \quad \forall x \in [0, 1]_{q}.$$

Then the inequality

(3.12)
$$\int_0^1 f^{\alpha+1}(x) d_q x \ge \int_0^1 x^{\alpha} f(x) d_q x$$

holds for every positive real number $\alpha > 0$.

Theorem 3.5. Let f be a nonnegative function defined on $[0,1]_q$ satisfying

(3.13)
$$\int_{x}^{1} f(t)d_{q}t \ge \int_{x}^{1} td_{q}t, \quad \forall x \in [0,1]_{q}.$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

44 >>

Page 9 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Then the inequality

(3.14)
$$\int_0^1 f^{\alpha+1}(x) d_q x \ge \int_0^1 x f^{\alpha}(x) d_q x$$

holds for every positive real number $\alpha > 0$.

Proof. We have

$$(3.15) \forall x \in [0,1]_q, (f^{\alpha}(x) - x^{\alpha})(f(x) - x) \ge 0,$$

SO

(3.16)
$$f^{\alpha+1}(x) + x^{\alpha+1} \ge x^{\alpha} f(x) + x f^{\alpha}(x).$$

By integrating with some simple calculations we deduce that

(3.17)
$$\int_0^1 f^{\alpha+1}(x)d_q x + \frac{1}{[\alpha+2]_q} \ge \int_0^1 x^{\alpha} f(x)d_q x + \int_0^1 x f^{\alpha}(x)d_q x.$$

Then, from Lemma 3.3 for $\beta = 1$, the result follows.

Theorem 3.6. Let f be a nonnegative function defined on $[0,1]_q$ satisfying

(3.18)
$$\int_{T}^{1} f(t)d_{q}t \ge \int_{T}^{1} td_{q}t, \quad \forall x \in [0,1]_{q}.$$

Then the inequality

(3.19)
$$\int_0^1 f^{\alpha+\beta}(x)d_q x \ge \int_0^1 x^{\alpha} f^{\beta}(x)d_q x$$

holds for all real numbers $\alpha > 0$ and $\beta > 1$.

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

Page 10 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Lemma 3.7. *Under the conditions of Theorem 3.6, we have*

(3.20)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x \ge \frac{1}{[\alpha + \beta + 1]_q}$$

for all real numbers $\alpha > 0$ and $\beta > 1$.

Proof. Using Lemma 3.1, we obtain

(3.21)
$$\frac{1}{\beta}f^{\beta}(x) + \frac{\beta - 1}{\beta}x^{\beta} \ge x^{\beta - 1}f(x),$$

which implies

(3.22)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x + (\beta - 1) \int_0^1 x^{\alpha + \beta} d_q x \ge \beta \int_0^1 x^{\alpha + \beta - 1} f(x) d_q x.$$

Therefore, from Lemma 3.3, we get

(3.23)
$$\int_0^1 x^{\alpha} f^{\beta}(x) d_q x + \frac{\beta - 1}{[\alpha + \beta + 1]_q} \ge \frac{\beta}{[\alpha + \beta + 1]_q}.$$

Thus (3.20) is proved.

We now give the proof of Theorem 3.6.

Proof of Theorem 3.6. By using Lemma 3.1, we obtain

(3.24)
$$\frac{\beta}{\alpha+\beta}f^{\alpha+\beta}(x) + \frac{\alpha}{\alpha+\beta}x^{\alpha+\beta} \ge x^{\alpha}f^{\beta}(x),$$

which implies

(3.25)
$$\beta \int_0^1 f^{\alpha+\beta}(x) d_q x + \frac{\alpha}{[\alpha+\beta+1]_q} \ge (\alpha+\beta) \int_0^1 x^{\alpha} f^{\beta}(x) d_q x.$$

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Then, from Lemma 3.7, we obtain

$$(3.26) \quad \beta \int_0^1 f^{\alpha+\beta}(x) d_q x + \frac{\alpha}{[\alpha+\beta+1]_q} \ge \frac{\alpha}{[\alpha+\beta+1]_q} + \beta \int_0^1 x^\alpha f^\beta(x) d_q x,$$
 which completes the proof.

 $q ext{-Integral Inequalities}$

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

Page 12 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] L. BOUGOFFA, Note on an open problem, *J. Inequal. Pure and Appl. Math.*, **8**(2) (2007), Art. 58. [ONLINE: http://jipam.vu.edu.au/article.php?sid=871].
- [2] L. BOUGOFFA, Corrigendum of the paper entitled: Note on an open problem, J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 121. [ONLINE: http://jipam.vu.edu.au/article.php?sid=910].
- [3] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral inequality, *J. Inequal. Pure and Appl. Math.*, **8**(3) (2007), Art. 77. [ONLINE: http://jipam.vu.edu.au/article.php?sid=885].
- [4] G. GASPER AND M. RAHMAN, *Basic Hypergeometric Series*, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
- [5] F.H. JACKSON, On q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, **41** (1910), 193–203.
- [6] V.G. KAC AND P. CHEUNG, *Quantum Calculus*, Universitext, Springer-Verlag, New York, (2002).
- [7] W.J. LIU, C.C LI AND J.W. DONG, On an open problem concerning an integral inequality, *J. Inequal. Pure and Appl. Math.*, **8**(3) (2007), Art. 74. [ONLINE: http://jipam.vu.edu.au/article.php?sid=882].
- [8] W.J. LIU, G.S. CHENG AND C.C LI, Further development of an open problem, J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 14. [ONLINE: http://jipam.vu.edu.au/article.php?sid=952].

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Title Page

Contents

1

Page 13 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

[9] Q.A. NGÔ, D.D. THANG, T.T. DAT AND D.A. TUAN, Note on an integral inequality, *J. Inequal. Pure and Appl. Math.*, **7**(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737].

q-Integral Inequalities

Kamel Brahim

vol. 9, iss. 4, art. 106, 2008

Full Screen
Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756