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Abstract

In this paper we introduce the functions G and G, similar to Sandor’s functions
which are defined by,

G(z) =min{m e N:z <e™}, z€[l,0),

() — oS & N . o , N PR
Gi(z) =max{m e N:e" <z}, z€le,00)
) A Note on Sandor Type

Functions
We study some interesting properties of G and G,. The main purpose of this LA
paper is to show that
X
m(x) ~ ‘
G.(2) Title Page
where 7 () is the number of primes less than or equal to =.
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In his paper [], J. S&ndor discussed many interesting properties of the functions
S andS., defined by,

S(z) =min{m e N:z <ml}, =€ (1,00),

and
Si(x) =max{m e N:m! <z}, z€]ll,00).

He also proved the following theorems:

Theorem 1.1. |
ogx
5:(@) log log = (z = o).
Theorem 1.2. The series
> 1
; n[S.(n)]

is convergent fory > 1 and divergent fory < 1.

Now we will define functions7(z) andG.(z) and discuss their properties.
The functions are defined as follows:

G(z) =min{m e N:z <™}, z€l, ),

Gi(z) =max{m e N:e" <z}, xz€ e, 00).

Clearly,
Gx)=m+1, if zele™e™t) for m>0.
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Similarly,
G.(z) =m, if
It is immediate that

G.(x)+1, if xelek ) (k>1)
Gle) = { G. (), if x=e (k>1).

~—

Therefore,
Gi(z) +1> G(x) > Gi(x).

It can be easily verified that the functi@n,(x) satisfies the following proper-
ties:

1. G.(x) is surjective and an increasing function.

2. G.(x) is continuous for allx € (e,00) \ A, whereA = ¢f k> 1 and
sincelim, .x G.(z) = k, lim v Gi(z) = k — 1for k > 1, G.(z) is
continuous from the right at = e* (k > 1), but it is not continuous from
the left.

3. G.(z) is differentiable orje, c0) \ A, and since

_ k
lim G@) =Gl
\eF xr — <€k)

it has a right derivative at*.
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4. G.(x) is Reimann integtrable ovés, b] C R for all a < b.

Also

’ Gi(x)dr = (e — 1)
/.

1—

3
I

E

1

(" +m—1)(k+m—1).
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The main purpose of this paper is to prove the following theorem:

Theorem 2.1. .

m(x) ~ G0

Proof. To prove our theorem first we will prove that

(2.1) G.(z) ~ log .

By Stiriling’s formula [2] we have

n! ~ ce "n /2

i.e.,

+1/2

o cn Y/

n!
Thus,

Cnn+1/2

loge™ ~ log (
n!

and hence,

1
n~n+ §logn—|—logc— log n!.
Also we have,

log(n!) ~nlogn = n ~ logn (cf. [1], Lemma 2)
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If z > ethenz € [¢", ") for somen > 1.
SinceG.(z) = nif z € [¢", "), n > 1, we have

n Gi(z) _n
< < —.
n+17 logz — n
As n
lim =1,
we have

G.(z) ~ log .

From the prime number theorem it follows that
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The following table compares the valuesrdfr) and 7/:

x m(x) Gf(x)
10 5 3.3333
100 26 20.00000

1000 169 142.857143
10000 1230 | 1000

100000 | 9593 | 8333.3333
1000000 | 78499 | 71428.571429
10000000, 664580| 588235.294118

Now we prove the following theorem which is similar to Theorér

Theorem 3.1. The series

o0

1
2 n[G.(n)]

n=1

is convergent forv > 1 and divergent fory < 1.
Proof. By (2.1) we have
Alogn < G.(n) < Blogn

where(A, B > 0) forn > 1.
Therefore it is sufficient to study the convergence of the series

S 1
Z n(logn)e’

n=1
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To study the convergence of the above series we use the following result:
If ¢(x) is positive for all positive+’ and if
lim ¢(z) =0

r—00

then the two infinite series

Y ¢(n) and ) a"¢(a")

behave alike for any positive integer'.
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Therefore the two series
- 1 > " Title Page
Z a and Z n . AV .
=1 n(logn) — (a™)[log (a™)] Contents
behave alike. 44 >
However, the second series convergesdor 1 and diverges fonn < 1. < >
Hence the theorem is proved. O
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