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ABSTRACT. Using the idea of weighted sharing of values, we prove some uniqueness theo-
rems for meromorphic functions which improve some existing results. Moreover, examples are
provided to show that some results in this paper are sharp.
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1. INTRODUCTION , DEFINITIONS AND RESULTS

In this paper, a meromorphic function means meromorphic in the complex plane. We use the
usual notations of Nevanlinna theory of meromorphic functions as explained in [3]. We denote
by E (respectively,l) a set of finite (respectively, infinite) linear measure, not necessarily the
same at each occurence. For any nonconstant meromorphic fugictipnve denote by (r, f)
any quantity satisfying (r, f) = o(T'(r, f)) asr — oo except possibly for a sét of r of finite
linear measure. Let be a positive integer. We denote B, (r, 1/(f — a)) the counting
function of the zeros of — a with multiplicity < k, by N (r, 1/(f — a)) the counting function
of the zeros off — a with multiplicity > &, and byNy(r,1/(f —a)) andN(r,1/(f — a)) the
reduced form otV (r, 1/(f — a)) and N (r,1/(f — a)), respectively (see [19]).

Let f andg be two nonconstant meromorphic functions. We denoté&'fpy the maximum
of T'(r, f) andT(r, g). For a complex numbert, if the zeros off — a andg — a coincide in
locations and multiplicities, we say thatandg share the value CM (counting multiplicities)
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and if we do not consider the multiplicities, thgnand g are said to share the valuelM
(ignoring multiplicities) (se€ [2]).

Nevanlinnal[10], Ozawa [11], Ueda [12,]13], Brosch [1], Yi[14] =[[18], ILi [9], Zhahgl [20],
Lahiri [4] — [8], and other authors (see [19]) dealt with the problems of uniqgueness of meromor-
phic functions that share three distinct values. Without loss of generality, we may assume that
0, 1, oo are the shared values.

In 1976, Ozawa [111] proved the following result.

Theorem A ([11]). Let f and g be two entire functions of finite order such thfaand g share
0,1 CM. If6(0, f) > 1/2, then eitherf =gor f-g = 1.

In 1983, removing the order restriction in the above result Ueda [12] proved the following
theorem.

Theorem B ([12]). Let f and g be two meromorphic functions sharifgl, andoco CM. If

imup 21 ﬂ() un 1

then eitherf = gor f - g = 1.

In 1998, Yi [17] proved the following theorem, which is an improvement of Theofems A and
Bl

Theorem C ([17]). Let f andg be two meromorphic functions sharifgl, andoo CM. If

b N0 )+ Ny (. 1/ ) = (1/2)m(r, /(g — 1))
i T(r, f)

forr € I,theneitherf =gor f-g=1.

<1
2

We now explain the notion of weighted sharing as introducedlin [4].

Definition 1.1 ([4]). Let k& be a nonnegative integer or infinity. Fere C U {oc}, we denote
by Ex(a, f) the set of alla-points of f where anz-point of multiplicity m is countedn times
if m < kandk + 1timesifm > k. If Ex(a, f) = Ex(a, g), we say thatf, g share the value

with weightk.

The definition implies that iff, g share a value with weightk thenz, is a zero off — a
with multiplicity m(< k) if and only if it is a zero ofy — a with multiplicity m(< k) andz is
a zero off — a with multiplicity m(> k) if and only if it is a zero ofg — a with multiplicity n
(> k) wherem is not necessarily equal ta

We write f, g share(a, k) to mean thayf, g share the value with weightk. Clearly if f, g
share(a, k) then f, g share(a, p) for all integersp, 0 < p < k. Also we note thaf, g share a
valuea IM or CM if and only if f, g share(a, 0) or (a, o) respectively.

In 2001, Lahiri [4] proved the following theorems.

Theorem D ([4]). Let f and g be two nonconstant meromorphic functions sharifigl),
(00,0), and(1, c0). If

— 1 —
Ny <r, ?) +AN(r, f) < (A4 o(1)T(r, f)

forr € Tand0 < A < 1/2, then eitherf =gor f-g = 1.
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Theorem E ([4]). Let f and g be two nonconstant meromorphic functions sharifgl),
(00, 00), and(1, c0). If

_ 1 _
Ny (7’, }) + Nyy(r, f) < (A +0o(1)T(r, f)

forr € I and0 < A < 1/2, then eitherf =gor f-g = 1.
In 2003, improving Theorenjs|D and E, Yi[18] proved the following results.

Theorem F ([18]). Let f and g be two nonconstant meromorphic functions sharjfigl),
(00,0), and(1,5). If

nsup Y0 UD + 3N ) = (1/2)mlr 1/ (g = 1) _ 1
— 70 ) ;

forr € I,theneitherf =gor f-g=1.

Theorem G ([18]). Let f and g be two nonconstant meromorphic functions sharffigl),
(00,0), and(1, 3). If

nsup Y0 UD + AN ) = (1/2)mlr 1/ g = 1) _ 1
— 7. ) ;

forr € I,theneitherf =gor f-g=1.

Theorem H ([18]). Let f and g be two nonconstant meromorphic functions sharffigl),
(00,2),and(1,6). If

Nuy(r,1/f) + Nyy(r, f) — (1/2)m(r, 1/(g — 1))

1
li —
e T, f) =2

forr € I,theneitherf =gor f-g= 1.

In this paper, with the aid of the notion of weighted sharing of values, we shall improve the
results in Theorenis| F,|G, ahd H and obtain the following theorems.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions sharingt), (oo, 0),
and(1,m), wherem (> 2) is a positive integer or infinity. If

D) Ty D+ Bl )/ Cm (17})5(7: N=0/2mir1fe=1) 1
forr € I,theneitherf =gor f-g=1.

The following example shows that in Theorem|1.1 shating) cannot be relaxed to sharing
(0,0).

Example 1.1.Let f = (¢* — 1)> andg = ¢* — 1. Thenf andg share(0, 0), (oo, ), and
(1,00). Also Nyy(r,1/f) = N(r, f) = 0 but neitherf = gnor f - g = 1.

Corollary 1.2. Let f and g be two nonconstant meromorphic functions shafitgl ), (oo, 0),
and(1,m), wherem (> 2) is a positive integer or infinity. If

(1.2) Ny(r, 1/f) + 2(m +1)/(m = 1))N(r, f) < (A + o(1)T(r, f)
forr € Tand0 < A < 1/2, then eitherf =gor f-g = 1.
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Theorem 1.3. Let f and g be two nonconstant meromorphic functions sharifgl ), (oo, k),
and(1,m), wherek, m are positive integers or infinity satisfyifg, — 1)(km —1) > (1+m)=.
If
Ny(r, 1 N —(1/2 1/(g—1
(13) thU_p 1)(7’, /f) + l)(Tv f) ( / )m<r7 /(g )) < 1
00 T(r, f) 2

forr € I, theneitherf =gor f-g=1.

Example 1.]L shows that in Theor¢m|1.3 sharifigl) cannot be relaxed to sharir{g, 0),
either. Also the following example shows that Theofenj 1.3 does not hold (whenl)(km —
1) = (1 +m)?

Example 1.2.Let f = 4¢*/(1+¢?)* andg = 2¢7/(1+¢7), andm = k = 0. Thenf andg share
(0,00), (00, k), and(1,m). AlsoNy(r,1/f) = Nyy(r, f) = 0and(m—1)(km—1) = (1+m)?
but neitherf = gnorf.-g = 1.

It is easily seen from the following examples that the condiffos]) in Theorenj 1.8 is the
best possible.

Example 1.3.Let f = e *+ 1 andg = e* + 1.

Example 1.4.Let f = ¢*/(e* — 1) andg = 1/(1 — €7).

Corollary 1.4. Let f and g be two nonconstant meromorphic functions shafiig ), (oo, k),
2

and(1,m), wherek, m are positive integers or infinity satisfyifg: — 1)(km —1) > (1+m)*.
If

(1.4) Niy(r, 1/f) + Nuy(r, f) < (A +0(1))T(r, f)
forr € Iand0 < A < 1/2, then eitherf =gor f- g = 1.
Example 1.5.Let f = 1/(e*(1 — €*)) andg = ¢**/(e* — 1).

It is easy to see, from Example [L.5, that the conditforl)) in Corollary[1.4] is the best
possible.
Corollary 1.5. Theorenj 1.3 holds for any one of the following pairs of valudsarfdm:
() k=2, m=6,
(i) k=3, m=4,
(i) k=4, m=3,
(V) k=6, m=2.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel. Henceforth we
shall denote by{ the function

/o2 9 29
@D (7-70)-(G-75):
Lemma 2.1. Let f and g be two nonconstant meromorphic functions sharig)), (oo, 0),
and(1,0). Then
T(r,f) <3T(r,g)+ 5. f),  T(r,g) <3T(r, f)+5(rg),
S(r,f) = 5(r,g) == S(r).

Proof. Note thatf andg share(0,0), (o0, 0), and(1,0). By the second fundamental theorem,
we can easily obtain the conclusion of Lemmdg 2.1. O
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Lemma 2.2([18]). Let H be given by(2.1) and H # 0. If f andg share(0,1), (c0,0), and
(1,m), wherem (> 1) is a positive integer or infinity, then

e %11 R0 e
o) ()0

whereNy(r, 1/ f') denotes the counting function corresponding to the zerg$ tifat are not
zeros off(f — 1), No(r,1/¢’) denotes the counting function corresponding to the zergg of
that are not zeros af(g — 1).

Lemma 2.3([18]). Let f and g be two distinct nonconstant meromorphic functions sharing
(0,1), (c0,0), and(1,m), wherem (> 2) is a positive integer or infinity. Then
1

(2.3) N(Q (r, %) < N(r, f)+ N(mﬂ (r, ﬁ) + S(r),

(2.4) N s ( — 1) < 2N f)+50).

Lemma 2.4 ([8]). Let f and g be two distinct nonconstant meromorphic functions sharing
(0,1), (00, k), and(1, m), wherek, m are positive integers or infinities satisfyig — 1) (km —
1) > (1+m)? Then

(2.5) N <T, %) + N (7”7 ﬁ) + Neo(r, f) = S(r).

Lemma 2.5. Let H be given by[2.1) and H # 0. If f andg share(0,1), (c0, k), and (1, m),
wherek, m are positive integers or infinity satisfyirg: — 1)(km — 1) > (1 + m)?. Then
1

(26) Nl) (7”7 f i 1) S N(g (T, %) + N(k—i—l (T‘, f) + N(m+1 (7’7 m)

1 1
+ Ny (r, ?) + No (r, £7> + S(r).
Proof. From the given condition it is clear that> 2 andm > 2. Sincef andg share(1,m),
it follows that a simple 1-point of is a simple 1-point of; and conversely. Let, be a simple

1-point of f andg. Then in some neighborhood of we getH = (z — z)a(z), wherea is
analytic atzy. Thus

— 1 1
: — ) < — < :
(2.7) Ny (r,f_l)_N(T,H)_N(T,H)+S(7“)
Note thatf andg share(0, 1), (o0, k), and(1,m). We can deduce bf2.1) that

@8) N #) < N (1} ) + N )+ N (r 52 )

f
+ N, (r l) + N, (r l>+S(T)
0 ’f, 0 7g, .

Combining(2.7) and(2.8), we obtain the conclusion of LemmaP.5. O
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3. PROOFS OF THE THEOREMS AND COROLLARIES
Proof of Theorer 1]1Note that sincef andg share(1, m), we have

(3.1) N (73 ﬁ) +N (7”7 P i 1) + (m — 1)N(m+1 (7“, ﬁ)

By the second fundamental theorem, we obtain

(3.2) T(r,f) <N (n %) +N(r f)+N (r, 7 i 1) — No (r, l) + S(r),

and
(3.3) T(r,g) <N (r, é) +N(r,g) + N (r, p i 1) — Ny <r, ;) +S(r).

Sincef andg share(0, 1), (oo, k), and(1,m), in view of - we get

(3.4) T(r,f) < 2N (7’, 1) LN (r, f) + Wy, (7“, ﬁ) — - )N (r, %)

/
1 1 1
_m(r,g_l) — Ny (7’,?> — Ny (r,;) + S(r).

Let H be given by(2.1)). If H # 0, then by Lemma 2|2 we have
— 1 — 1 — — 1
. < - -—
(3:5) My (T’ f- 1) =Ne (T’ f) TG+ N <r’ f- 1>
#80 (n3;) + M (r )+ 50)
r,— r,— r).
0 f, 0 g,

Substituting(3.5)) into we derive
(3.6) T(r,f)<2N (7", %) +3N(r, f) +N(2 (7", —)
1

7o) () 50

_ 1 — — 1 — 1
< 2Ny (r, ?> +3N(r, f) + 3N (7“, ?> —(2=m)N @t <T, ﬁ)

D) st

Sincef andg share(0, 1), (o0, 0), and(1, m), it follows by Lemmd 2.B that

—_

~ T

- (2 - m)N(m+1 (T,

(37) N(Z (ﬁ%)ﬁw(?@f)‘i‘w(mﬂ (T,ﬁ)—'—S(T),
3.8 N LYo 2 w S
38) ot (1727 ) S g MO )4 S0
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Substituting((3.7) and(3.8) into (3.6)) we have

— 4 1)— 1
70.0) < 280 (7 ) + DR ) o (12 ) 50,
which contradictg[l.1)). HenceH = 0 and so
f g

G o

where A is a nonzero constant. Note thatndg share(0, 1), (c0,0), and(1,m). We know
from that f andg share(0, ), (00, o), and(1, co). Again by Theorerh [C, we obtain the
conclusion of Theoreiin1.1. O

Proof of Corollary[1.2.Let

(3.9)

T(r, f), for rel,

(3.10) T(r, f) =

T(r,g), for rel,,
where
(3.11) I=1UlI.

Note that/ is a set of infinite linear measure @f, co). We can see by3.11)) that/, is a set of
infinite linear measure di, co) or I, is a set of infinite linear measure @f, co). Without loss
of generality, we assume thatis a set of infinite linear measure @f, co). Then it follows by

(2) and (3.10) that

o Ny 1) + (2m+ D)/ (m = )N f) 1
T_,OOp T(r, f) 2
for r € 1. Again by Theorerm 1|1, we obtain the conclusion of Corolfary 1.2. O

Proof of Theorerpi 1|3Sincef andg share(0,1), (oo, k), and(1, m), it follows by Lemmd 2.4
that

(3.12) N r,l + N 7’7% + Np(r, f) = S(r).
f f—=1

It is easily seen that

— 1 — 1
. N
(3.13) N(r,f_l)—l— (T7g—1>
_ 1 — 1
< —_— N
_N1)<r’f—1)+ (T’g—l)
<N ! +T(r,9) ! +O(1)
>~ 1) T?f_l g m rag_l :
Form (3.2), (3.3), (3.12), and(3.13), we obtain

(3.14) T(r, f) < 2Ny, (7”7 %) + 2Ny (r, ) + Ny (73 ﬁ)

igt) (o) ) 50

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 19, 11 pp. http://jipam.vu.edu.au/



http://jipam.vu.edu.au/

8 JUNFAN CHEN, SHOUHUA SHEN, AND WEICHUAN LIN

Let H be given by(2.1)). If H # 0, then by Lemma 2|5 an($.12)) we get in view oft: > 2 and
m > 2

_ 1 1 1
. < — — .
(3.15) NU07_1>—M«“f>+M«“y>+ﬂ”
Substituting((3.15) into (3.14) we have

T(r, f) < 2N1) (7‘, %) +2N1)(r, f)—m (7’, P i 1) + S(r),

which contradictg1.3). HenceH = 0 and so

f g
3.16 - B :
319 N
whereB is a nonzero constant. Note thatndg share(0, 1), (oo, k), and(1,m). We can see
by (3.16)) that f andg share(0, c0), (o0, >), and(1, co). Again by Theorem [C, we obtain the

conclusion of Theorem1.3. O
Proof of Corollary1.4.Using Theorem 1]3 and proceeding as in the proof of Cordllafy 1.2, we
can prove Corollary I]4. O

4. FINAL REMARKS
In 2003, Yi [18] proved the following theorem.

Theorem | ([18]). Let f and g be two nonconstant meromorphic functions sharifigo),
(00,1), and(1,5). If

li 3N(7’, 1/f) + Nl)(r7 f) - (1/2)777,(7', 1/(9 - 1))
g T(r, f)
forr € I,theneitherf =gor f-g=1.

<1
2

From Theorem 1|1 we get the following theorem which is an improvement of Theprem I.

Theorem 4.1. Let f and g be two nonconstant meromorphic functions sharitg)), (oo, 1),
and(1,m), wherem (> 2) is a positive integer or infinity. If

@1 timeup N0+ QO D/ = DN 1/f) = (1/2)mlr 1/ (g = 1) 1
r—00 T<T’ f) 2
forr € I,theneitherf =gor f-g=1.
Proof. Let
1 1
(4.2) F—? G_;
It is easily seen that
(4.3) T(r, f)=T(r,F)+0(1),
4.4 S L ) von
(4.4) m(r,g_l)—m(r,G_l>+ (1).
From (4.1)) — (£.4), we get
, Ny(r,1/F)+ 2(m+1)/(m —1))N(r, F) — (1/2)m(r,1/(G = 1)) 1
(4.5) hfnris;)lp 0, F) < 5
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for r € I. Note thatf andg share(0, 0), (o0, 1), and(1,m). From(4.2)), we see thaf’ andG
share(0, 1), (00,0), and(1,m). By Theorenf 11, we gef = G or F - G = 1. From this, we
deduce that Theorem 4.1 holds. O

In 2003, Yi [18] proved the following result.

Theorem J ([18]). Let f and ¢ be two nonconstant meromorphic functions sharifig?),
(00,1),and(1,6). If

s, Y010+ Ny(r f) = (1/2)m(r 1/ (g = 1) 1
e T(r, f) 2
forr € I,theneitherf =gor f-g= 1.

Using Theorem 1]3 and proceeding as in the proof of Theprejm 4.1, we can prove the follow-
ing theorem, which is an improvement of Theorjgm J.

Theorem 4.2. Let f and g be two nonconstant meromorphic functions shairifg:), (oo, 1),
and(1,m), wherek, m are positive integers or infinity satisfyirign — 1)(km —1) > (1+m)>.
If

(4.6) lirri)sup Ny(r 1/f) + Nl)(rajf(zn})(l/Z)m(r, 1/(g—1))
forr € I, theneitherf =gor f-g = 1.

<1
2

5. APPLICATIONS
In this section,f andg are two nhonconstant meromorphic functions.

Definition 5.1. For.S C CU {co} we defineE,(S, k) as
Es(S,k) = | Exla, ),

a€sS
wherek is a nonnegative integer or infinity.

In 2003, Yi [18] proved the following theorem.

Theorem K ([18]). LetS; = {a + b,a + bw,...,a + bw™ '}, Sy = {a}, and S3 = {oc},
wheren (> 2) is an integera andb (# 0) are constants, and = cos(27/n) + isin(27/n).
If Ef(Sl,G) = Eg(Sl,G), Ef(SQ,O) = Eg(SQ,O), andEf(Sg, 1) = Eg(Sg, 1), thenf —a =
t(g — a), wheret"” = 1, or (f — a)(g — a) = s, wheres™ = b*".

From Corollary 1.p we can prove the following theorem.

Theorem 5.1. Let Sy, S,, and S be defined as in Theore] K. H/(S),2) = E,(S1,2),
E¢(55,0) = Ey(S2,0), and Ef(Ss3,1) = E,(S55,1), thenf —a = t(g — a), wheret” = 1, or
(f —a)(g — a) = s, wheres™ = b,

The following example shows that the assumptien> 2” in Theorenj 511 is the best possi-
ble.

Example 5.1.Let f = a + b(1 — ¢*)® andg = a + 3b(e™* — e~ ??), and letS; = {a + b},
Sy = {a}, andS; = {oco}, wherea andb (# 0) are constants.

The following example shows that the conditiof;(S3, 1) = E,(Ss3,1)” in Theoren] 5.1 is
the best possible.
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Example 5.2.Let f = (e** +1)%/(2¢*(e** — 1)) andg = 2ie*(e** +1)/(e** —1)?, and letS; =
{—1,1}, Sy = {0}, andS; = {oco}. ThenE(S;, 00) = E,(S1,00), E¢(S2,0) = E,(S2,0),
andEf(Sg,O) - Eg<53,0>.

Proof of Theorerfi 5]iLet F = ((f —a)/b)" andG = ((9—a)/b)". ThenF andG share(1,5),

(0,1), and(co, 3). SinceNy)(r, 1/F) = Nyy(r, F') = 0, it follows by (i) in Corollary| 1.5 that

F =GorF -G = 1. From this, we deduce that Theorém|5.1 holds. O
Similarly, from Corollary 1.5 we can prove the following theorem.

Theorem 5.2. Let S;, S,, and S; be defined as in Theoref K. H;(S1,2) = E,(S1,2),
E¢(S9,1) = E (52, 1), and Ef(S3,0) = E,(S55,0), thenf — a = t(g — a), wheret” = 1, or
(f —a)(g — a) = s, wheres™ = bv*".

It is obvious that Theorenjs 5.1 and|5.2 are improvements of Thgofem K.
On the other hand, we can also obtain the following theorems.

Theorem 5.3.LetS; = {a + b,a + bw,...,a + bw" '}, Sy = {a}, andS; = {cc}, where
n (> 3) is an integera and b (# 0) are constants, and = cos(27/n) + isin(27/n). If
Ef(51,2) = Eg(51,2), Ef(SQ,O) = Eg(SQ,O), and Ef(Sg,O) = Eg<Sg,0), thenf —a =
t(g —a), wheret" =1, or (f — a)(g — a) = s, wheres™ = b*",

Proof. Let ' = ((f — a)/b)" andG = ((g — a)/b)". Note thatn > 3. ThenF andG share

(1,8), (0,2), and(o0,2). SinceN)(r,1/F) = Ny(r, F) = 0, it follows by (i) in Corollary
I.3thatF' = G or F' - G = 1. From this, we deduce that Theorgm|5.2 holds. O

Theorem 5.4.LetS; = {a+ b,a+ bw,...,a + bw" "'}, Sy = {a}, andS; = {cc}, where
n (> 3) is an integera and b (# 0) are constants, and = cos(27/n) + isin(2w/n). If
Ef(Sl,l) = Eg(Sl,l), Ef(SQ,O) == Eg(SQ,O), and Ef(Sg,l) - Eg<Sg,1), thenf —a =
t(g — a), wheret” = 1, or (f —a)(g — a) = s, wheres™ = b*".

Proof. Let F' = ((f — a)/b)"” andG = ((g — a)/b)". Note thatn > 3. ThenF andG share
(1,5), (0,2), and(oo, 3). SinceN)(r,1/F) = Nyy(r, F) = 0, it follows by (i) in Corollary
I.J3thatF' = G or F' - G = 1. From this, we deduce that Theorem|5.3 holds. O

It is easy to see that Example b.2 also shows that the assumption3” in Theorem$ 5]3
and5.4 is the best possible.
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