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ABSTRACT. Using the idea of weighted sharing of values, we prove some uniqueness theo-
rems for meromorphic functions which improve some existing results. Moreover, examples are
provided to show that some results in this paper are sharp.
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1. I NTRODUCTION , DEFINITIONS AND RESULTS

In this paper, a meromorphic function means meromorphic in the complex plane. We use the
usual notations of Nevanlinna theory of meromorphic functions as explained in [3]. We denote
by E (respectively,I) a set of finite (respectively, infinite) linear measure, not necessarily the
same at each occurence. For any nonconstant meromorphic functionf(z), we denote byS(r, f)
any quantity satisfyingS(r, f) = o(T (r, f)) asr →∞ except possibly for a setE of r of finite
linear measure. Letk be a positive integer. We denote byNk)(r, 1/(f − a)) the counting
function of the zeros off − a with multiplicity ≤ k, byN(k(r, 1/(f − a)) the counting function
of the zeros off − a with multiplicity ≥ k, and byNk)(r, 1/(f − a)) andN (k(r, 1/(f − a)) the
reduced form ofNk)(r, 1/(f − a)) andN(k(r, 1/(f − a)), respectively (see [19]).

Let f andg be two nonconstant meromorphic functions. We denote byT (r) the maximum
of T (r, f) andT (r, g). For a complex numbera, if the zeros off − a andg − a coincide in
locations and multiplicities, we say thatf andg share the valuea CM (counting multiplicities)
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and if we do not consider the multiplicities, thenf and g are said to share the valuea IM
(ignoring multiplicities) (see [2]).

Nevanlinna [10], Ozawa [11], Ueda [12, 13], Brosch [1], Yi [14] – [18], Li [9], Zhang [20],
Lahiri [4] – [8], and other authors (see [19]) dealt with the problems of uniqueness of meromor-
phic functions that share three distinct values. Without loss of generality, we may assume that
0, 1,∞ are the shared values.

In 1976, Ozawa [11] proved the following result.

Theorem A ([11]). Let f andg be two entire functions of finite order such thatf andg share
0, 1 CM. If δ(0, f) > 1/2, then eitherf ≡ g or f · g ≡ 1.

In 1983, removing the order restriction in the above result Ueda [12] proved the following
theorem.

Theorem B ([12]). Letf andg be two meromorphic functions sharing0, 1, and∞ CM. If

lim sup
r→∞

N(r, f) + N(r, 1/f)

T (r, f)
<

1

2
,

then eitherf ≡ g or f · g ≡ 1.

In 1998, Yi [17] proved the following theorem, which is an improvement of Theorems A and
B.

Theorem C ([17]). Letf andg be two meromorphic functions sharing0, 1, and∞ CM. If

lim sup
r→∞

N1)(r, f) + N1)(r, 1/f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

We now explain the notion of weighted sharing as introduced in [4].

Definition 1.1 ([4]). Let k be a nonnegative integer or infinity. Fora ∈ C∪ {∞}, we denote
by Ek(a, f) the set of alla-points off where ana-point of multiplicity m is countedm times
if m ≤ k andk + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say thatf , g share the valuea
with weightk.

The definition implies that iff , g share a valuea with weightk thenz0 is a zero off − a
with multiplicity m(≤ k) if and only if it is a zero ofg − a with multiplicity m(≤ k) andz0 is
a zero off − a with multiplicity m(> k) if and only if it is a zero ofg − a with multiplicity n
(> k) wherem is not necessarily equal ton.

We writef , g share(a, k) to mean thatf , g share the valuea with weightk. Clearly if f , g
share(a, k) thenf , g share(a, p) for all integersp, 0 ≤ p < k. Also we note thatf , g share a
valuea IM or CM if and only if f , g share(a, 0) or (a,∞) respectively.

In 2001, Lahiri [4] proved the following theorems.

Theorem D ([4]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(∞, 0), and(1,∞). If

N1)

(
r,

1

f

)
+ 4N(r, f) < (λ + o(1))T (r, f)

for r ∈ I and0 < λ < 1/2, then eitherf ≡ g or f · g ≡ 1.
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Theorem E ([4]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(∞,∞), and(1,∞). If

N1)

(
r,

1

f

)
+ N1)(r, f) < (λ + o(1))T (r, f)

for r ∈ I and0 < λ < 1/2, then eitherf ≡ g or f · g ≡ 1.

In 2003, improving Theorems D and E, Yi [18] proved the following results.

Theorem F ([18]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(∞, 0), and(1, 5). If

lim sup
r→∞

N1)(r, 1/f) + 3N(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

Theorem G ([18]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(∞, 0), and(1, 3). If

lim sup
r→∞

N1)(r, 1/f) + 4N(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

Theorem H ([18]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(∞, 2), and(1, 6). If

lim sup
r→∞

N1)(r, 1/f) + N1)(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

In this paper, with the aid of the notion of weighted sharing of values, we shall improve the
results in Theorems F, G, and H and obtain the following theorems.

Theorem 1.1. Let f andg be two nonconstant meromorphic functions sharing(0, 1), (∞, 0),
and(1, m), wherem (≥ 2) is a positive integer or infinity. If

(1.1) lim sup
r→∞

N1)(r, 1/f) + (2(m + 1)/(m− 1))N(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

The following example shows that in Theorem 1.1 sharing(0, 1) cannot be relaxed to sharing
(0, 0).

Example 1.1. Let f = (ez − 1)2 andg = ez − 1. Thenf andg share(0, 0), (∞,∞), and
(1,∞). Also N1)(r, 1/f) ≡ N(r, f) ≡ 0 but neitherf ≡ g norf · g ≡ 1.

Corollary 1.2. Let f andg be two nonconstant meromorphic functions sharing(0, 1), (∞, 0),
and(1, m), wherem (≥ 2) is a positive integer or infinity. If

(1.2) N1)(r, 1/f) + (2(m + 1)/(m− 1))N(r, f) < (λ + o(1))T (r, f)

for r ∈ I and0 < λ < 1/2, then eitherf ≡ g or f · g ≡ 1.
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Theorem 1.3. Let f andg be two nonconstant meromorphic functions sharing(0, 1), (∞, k),
and(1, m), wherek, m are positive integers or infinity satisfying(m−1)(km−1) > (1+m)2.
If

(1.3) lim sup
r→∞

N1)(r, 1/f) + N1)(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

Example 1.1 shows that in Theorem 1.3 sharing(0, 1) cannot be relaxed to sharing(0, 0),
either. Also the following example shows that Theorem 1.3 does not hold when(m− 1)(km−
1) = (1 + m)2.

Example 1.2.Let f = 4ez/(1+ez)2 andg = 2ez/(1+ez), andm = k = 0. Thenf andg share
(0,∞), (∞, k), and(1, m). AlsoN1)(r, 1/f) ≡ N1)(r, f) ≡ 0 and(m−1)(km−1) = (1+m)2

but neitherf ≡ g norf · g ≡ 1.

It is easily seen from the following examples that the condition(1.3) in Theorem 1.3 is the
best possible.

Example 1.3.Let f = e−z + 1 andg = ez + 1.

Example 1.4.Let f = ez/(ez − 1) andg = 1/(1− ez).

Corollary 1.4. Let f andg be two nonconstant meromorphic functions sharing(0, 1), (∞, k),
and(1, m), wherek, m are positive integers or infinity satisfying(m−1)(km−1) > (1+m)2.
If

(1.4) N1)(r, 1/f) + N1)(r, f) < (λ + o(1))T (r, f)

for r ∈ I and0 < λ < 1/2, then eitherf ≡ g or f · g ≡ 1.

Example 1.5.Let f = 1/(ez(1− ez)) andg = e2z/(ez − 1).

It is easy to see, from Example 1.5, that the condition(1.4) in Corollary 1.4 is the best
possible.

Corollary 1.5. Theorem 1.3 holds for any one of the following pairs of values ofk andm:
(i) k = 2, m = 6,

(ii) k = 3, m = 4,
(iii) k = 4, m = 3,
(iv) k = 6, m = 2.

2. L EMMAS

In this section we present some lemmas which will be needed in the sequel. Henceforth we
shall denote byH the function

(2.1)

(
f ′′

f ′
− 2f ′

f − 1

)
−

(
g′′

g′
− 2g′

g − 1

)
.

Lemma 2.1. Let f and g be two nonconstant meromorphic functions sharing(0, 0), (∞, 0),
and(1, 0). Then

T (r, f) ≤ 3T (r, g) + S(r, f), T (r, g) ≤ 3T (r, f) + S(r, g),

S(r, f) = S(r, g) := S(r).

Proof. Note thatf andg share(0, 0), (∞, 0), and(1, 0). By the second fundamental theorem,
we can easily obtain the conclusion of Lemma 2.1. �
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Lemma 2.2 ([18]). Let H be given by(2.1) andH 6≡ 0. If f andg share(0, 1), (∞, 0), and
(1, m), wherem (≥ 1) is a positive integer or infinity, then

(2.2) N1)

(
r,

1

f − 1

)
≤ N (2

(
r,

1

f

)
+ N(r, f) + N (m+1

(
r,

1

f − 1

)
+ N0

(
r,

1

f ′

)
+ N0

(
r,

1

g′

)
+ S(r),

whereN0(r, 1/f
′) denotes the counting function corresponding to the zeros off ′ that are not

zeros off(f − 1), N0(r, 1/g
′) denotes the counting function corresponding to the zeros ofg′

that are not zeros ofg(g − 1).

Lemma 2.3 ([18]). Let f and g be two distinct nonconstant meromorphic functions sharing
(0, 1), (∞, 0), and(1, m), wherem (≥ 2) is a positive integer or infinity. Then

(2.3) N (2

(
r,

1

f

)
≤ N(r, f) + N (m+1

(
r,

1

f − 1

)
+ S(r),

(2.4) N (m+1

(
r,

1

f − 1

)
≤ 2

m− 1
N(r, f) + S(r).

Lemma 2.4 ([8]). Let f and g be two distinct nonconstant meromorphic functions sharing
(0, 1), (∞, k), and(1, m), wherek, m are positive integers or infinities satisfying(m−1)(km−
1) > (1 + m)2. Then

(2.5) N (2

(
r,

1

f

)
+ N (2

(
r,

1

f − 1

)
+ N (2(r, f) = S(r).

Lemma 2.5. Let H be given by(2.1) andH 6≡ 0. If f andg share(0, 1), (∞, k), and(1, m),
wherek, m are positive integers or infinity satisfying(m− 1)(km− 1) > (1 + m)2. Then

(2.6) N1)

(
r,

1

f − 1

)
≤ N (2

(
r,

1

f

)
+ N (k+1(r, f) + N (m+1

(
r,

1

f − 1

)
+ N0

(
r,

1

f ′

)
+ N0

(
r,

1

g′

)
+ S(r).

Proof. From the given condition it is clear thatk ≥ 2 andm ≥ 2. Sincef andg share(1, m),
it follows that a simple 1-point off is a simple 1-point ofg and conversely. Letz0 be a simple
1-point off andg. Then in some neighborhood ofz0 we getH = (z − z0)α(z), whereα is
analytic atz0. Thus

(2.7) N1)

(
r,

1

f − 1

)
≤ N

(
r,

1

H

)
≤ N(r, H) + S(r).

Note thatf andg share(0, 1), (∞, k), and(1, m). We can deduce by(2.1) that

(2.8) N(r, H) ≤ N (2

(
r,

1

f

)
+ N (k+1(r, f) + N (m+1

(
r,

1

f − 1

)
+ N0

(
r,

1

f ′

)
+ N0

(
r,

1

g′

)
+ S(r).

Combining(2.7) and(2.8), we obtain the conclusion of Lemma 2.5. �
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3. PROOFS OF THE THEOREMS AND COROLLARIES

Proof of Theorem 1.1.Note that sincef andg share(1, m), we have

N

(
r,

1

f − 1

)
+ N

(
r,

1

g − 1

)
+ (m− 1)N (m+1

(
r,

1

f − 1

)
(3.1)

≤ N1)

(
r,

1

f − 1

)
+ N

(
r,

1

g − 1

)
≤ N1)

(
r,

1

f − 1

)
+ T (r, g)−m

(
r,

1

g − 1

)
+ O(1).

By the second fundamental theorem, we obtain

(3.2) T (r, f) ≤ N

(
r,

1

f

)
+ N(r, f) + N

(
r,

1

f − 1

)
−N0

(
r,

1

f ′

)
+ S(r),

and

(3.3) T (r, g) ≤ N

(
r,

1

g

)
+ N(r, g) + N

(
r,

1

g − 1

)
−N0

(
r,

1

g′

)
+ S(r).

Sincef andg share(0, 1), (∞, k), and(1, m), in view of (3.1) – (3.3) we get

(3.4) T (r, f) ≤ 2N

(
r,

1

f

)
+ 2N(r, f) + N1)

(
r,

1

f − 1

)
− (m− 1)N (m+1

(
r,

1

f − 1

)
−m

(
r,

1

g − 1

)
−N0

(
r,

1

f ′

)
−N0

(
r,

1

g′

)
+ S(r).

Let H be given by(2.1). If H 6≡ 0, then by Lemma 2.2 we have

(3.5) N1)

(
r,

1

f − 1

)
≤ N (2

(
r,

1

f

)
+ N(r, f) + N (m+1

(
r,

1

f − 1

)
+ N0

(
r,

1

f ′

)
+ N0

(
r,

1

g′

)
+ S(r).

Substituting(3.5) into (3.4) we derive

T (r, f) ≤ 2N

(
r,

1

f

)
+ 3N(r, f) + N (2

(
r,

1

f

)
(3.6)

− (2−m)N (m+1

(
r,

1

f − 1

)
−m

(
r,

1

g − 1

)
+ S(r)

≤ 2N1)

(
r,

1

f

)
+ 3N(r, f) + 3N (2

(
r,

1

f

)
− (2−m)N (m+1

(
r,

1

f − 1

)
−m

(
r,

1

g − 1

)
+ S(r).

Sincef andg share(0, 1), (∞, 0), and(1, m), it follows by Lemma 2.3 that

(3.7) N (2

(
r,

1

f

)
≤ N(r, f) + N (m+1

(
r,

1

f − 1

)
+ S(r),

(3.8) N (m+1

(
r,

1

f − 1

)
≤ 2

m− 1
N(r, f) + S(r).
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Substituting(3.7) and(3.8) into (3.6) we have

T (r, f) ≤ 2N1)

(
r,

1

f

)
+

4(m + 1)

m− 1
N(r, f)−m

(
r,

1

g − 1

)
+ S(r),

which contradicts(1.1). HenceH ≡ 0 and so

(3.9)
f ′

(f − 1)2
= A

g′

(g − 1)2
,

whereA is a nonzero constant. Note thatf andg share(0, 1), (∞, 0), and(1, m). We know
from (3.9) thatf andg share(0,∞), (∞,∞), and(1,∞). Again by Theorem C, we obtain the
conclusion of Theorem 1.1. �

Proof of Corollary 1.2.Let

(3.10) T (r, f) =

 T (r, f), for r ∈ I1,

T (r, g), for r ∈ I2,

where

(3.11) I = I1 ∪ I2.

Note thatI is a set of infinite linear measure of(0,∞). We can see by(3.11) thatI1 is a set of
infinite linear measure of(0,∞) or I2 is a set of infinite linear measure of(0,∞). Without loss
of generality, we assume thatI1 is a set of infinite linear measure of(0,∞). Then it follows by
(1.2) and(3.10) that

lim sup
r→∞

N1)(r, 1/f) + (2(m + 1)/(m− 1))N(r, f)

T (r, f)
<

1

2

for r ∈ I. Again by Theorem 1.1, we obtain the conclusion of Corollary 1.2. �

Proof of Theorem 1.3.Sincef andg share(0, 1), (∞, k), and(1, m), it follows by Lemma 2.4
that

(3.12) N (2

(
r,

1

f

)
+ N (2

(
r,

1

f − 1

)
+ N (2(r, f) = S(r).

It is easily seen that

N

(
r,

1

f − 1

)
+ N

(
r,

1

g − 1

)
(3.13)

≤ N1)

(
r,

1

f − 1

)
+ N

(
r,

1

g − 1

)
≤ N1)

(
r,

1

f − 1

)
+ T (r, g)−m

(
r,

1

g − 1

)
+ O(1).

Form(3.2), (3.3), (3.12), and(3.13), we obtain

(3.14) T (r, f) ≤ 2N1)

(
r,

1

f

)
+ 2N1)(r, f) + N1)

(
r,

1

f − 1

)
−m

(
r,

1

g − 1

)
−N0

(
r,

1

f ′

)
−N0

(
r,

1

g′

)
+ S(r).
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Let H be given by(2.1). If H 6≡ 0, then by Lemma 2.5 and(3.12) we get in view ofk ≥ 2 and
m ≥ 2

(3.15) N1)

(
r,

1

f − 1

)
≤ N0

(
r,

1

f ′

)
+ N0

(
r,

1

g′

)
+ S(r).

Substituting(3.15) into (3.14) we have

T (r, f) ≤ 2N1)

(
r,

1

f

)
+ 2N1)(r, f)−m

(
r,

1

g − 1

)
+ S(r),

which contradicts(1.3). HenceH ≡ 0 and so

(3.16)
f ′

(f − 1)2
= B

g′

(g − 1)2
,

whereB is a nonzero constant. Note thatf andg share(0, 1), (∞, k), and(1, m). We can see
by (3.16) thatf andg share(0,∞), (∞,∞), and(1,∞). Again by Theorem C, we obtain the
conclusion of Theorem 1.3. �

Proof of Corollary 1.4.Using Theorem 1.3 and proceeding as in the proof of Corollary 1.2, we
can prove Corollary 1.4. �

4. FINAL REMARKS

In 2003, Yi [18] proved the following theorem.

Theorem I ([18]). Let f and g be two nonconstant meromorphic functions sharing(0, 0),
(∞, 1), and(1, 5). If

lim sup
r→∞

3N(r, 1/f) + N1)(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

From Theorem 1.1 we get the following theorem which is an improvement of Theorem I.

Theorem 4.1. Let f andg be two nonconstant meromorphic functions sharing(0, 0), (∞, 1),
and(1, m), wherem (≥ 2) is a positive integer or infinity. If

(4.1) lim sup
r→∞

N1)(r, f) + (2(m + 1)/(m− 1))N(r, 1/f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

Proof. Let

(4.2) F =
1

f
, G =

1

g
.

It is easily seen that

(4.3) T (r, f) = T (r, F ) + O(1),

(4.4) m

(
r,

1

g − 1

)
= m

(
r,

1

G− 1

)
+ O(1).

From(4.1) – (4.4), we get

(4.5) lim sup
r→∞

N1)(r, 1/F ) + (2(m + 1)/(m− 1))N(r, F )− (1/2)m(r, 1/(G− 1))

T (r, F )
<

1

2
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for r ∈ I. Note thatf andg share(0, 0), (∞, 1), and(1, m). From(4.2), we see thatF andG
share(0, 1), (∞, 0), and(1, m). By Theorem 1.1, we getF ≡ G or F · G ≡ 1. From this, we
deduce that Theorem 4.1 holds. �

In 2003, Yi [18] proved the following result.

Theorem J ([18]). Let f and g be two nonconstant meromorphic functions sharing(0, 2),
(∞, 1), and(1, 6). If

lim sup
r→∞

N1)(r, 1/f) + N1)(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

Using Theorem 1.3 and proceeding as in the proof of Theorem 4.1, we can prove the follow-
ing theorem, which is an improvement of Theorem J.

Theorem 4.2. Let f andg be two nonconstant meromorphic functions sharing(0, k), (∞, 1),
and(1, m), wherek, m are positive integers or infinity satisfying(m−1)(km−1) > (1+m)2.
If

(4.6) lim sup
r→∞

N1)(r, 1/f) + N1)(r, f)− (1/2)m(r, 1/(g − 1))

T (r, f)
<

1

2

for r ∈ I, then eitherf ≡ g or f · g ≡ 1.

5. APPLICATIONS

In this section,f andg are two nonconstant meromorphic functions.

Definition 5.1. ForS ⊂ C∪ {∞} we defineEf (S, k) as

Ef (S, k) =
⋃
a∈S

Ek(a, f),

wherek is a nonnegative integer or infinity.

In 2003, Yi [18] proved the following theorem.

Theorem K ([18]). Let S1 = {a + b, a + bω, . . . , a + bωn−1}, S2 = {a}, andS3 = {∞},
wheren (≥ 2) is an integer,a and b (6= 0) are constants, andω = cos(2π/n) + i sin(2π/n).
If Ef (S1, 6) = Eg(S1, 6), Ef (S2, 0) = Eg(S2, 0), andEf (S3, 1) = Eg(S3, 1), thenf − a ≡
t(g − a), wheretn = 1, or (f − a)(g − a) ≡ s, wheresn = b2n.

From Corollary 1.5 we can prove the following theorem.

Theorem 5.1. Let S1, S2, and S3 be defined as in Theorem K. IfEf (S1, 2) = Eg(S1, 2),
Ef (S2, 0) = Eg(S2, 0), andEf (S3, 1) = Eg(S3, 1), thenf − a ≡ t(g − a), wheretn = 1, or
(f − a)(g − a) ≡ s, wheresn = b2n.

The following example shows that the assumption“n ≥ 2” in Theorem 5.1 is the best possi-
ble.

Example 5.1. Let f = a + b(1 − ez)3 andg = a + 3b(e−z − e−2z), and letS1 = {a + b},
S2 = {a}, andS3 = {∞}, wherea andb (6= 0) are constants.

The following example shows that the condition“Ef (S3, 1) = Eg(S3, 1)” in Theorem 5.1 is
the best possible.
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Example 5.2.Let f = (e2z +1)2/(2ez(e2z−1)) andg = 2iez(e2z +1)/(e2z−1)2, and letS1 =
{−1, 1}, S2 = {0}, andS3 = {∞}. ThenEf (S1,∞) = Eg(S1,∞), Ef (S2, 0) = Eg(S2, 0),
andEf (S3, 0) = Eg(S3, 0).

Proof of Theorem 5.1.Let F = ((f−a)/b)n andG = ((g−a)/b)n. ThenF andG share(1, 5),
(0, 1), and(∞, 3). SinceN1)(r, 1/F ) = N1)(r, F ) = 0, it follows by (ii) in Corollary 1.5 that
F ≡ G or F ·G ≡ 1. From this, we deduce that Theorem 5.1 holds. �

Similarly, from Corollary 1.5 we can prove the following theorem.

Theorem 5.2. Let S1, S2, and S3 be defined as in Theorem K. IfEf (S1, 2) = Eg(S1, 2),
Ef (S2, 1) = Eg(S2, 1), andEf (S3, 0) = Eg(S3, 0), thenf − a ≡ t(g − a), wheretn = 1, or
(f − a)(g − a) ≡ s, wheresn = b2n.

It is obvious that Theorems 5.1 and 5.2 are improvements of Theorem K.
On the other hand, we can also obtain the following theorems.

Theorem 5.3. Let S1 = {a + b, a + bω, . . . , a + bωn−1}, S2 = {a}, andS3 = {∞}, where
n (≥ 3) is an integer,a and b (6= 0) are constants, andω = cos(2π/n) + i sin(2π/n). If
Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0), and Ef (S3, 0) = Eg(S3, 0), thenf − a ≡
t(g − a), wheretn = 1, or (f − a)(g − a) ≡ s, wheresn = b2n.

Proof. Let F = ((f − a)/b)n andG = ((g − a)/b)n. Note thatn ≥ 3. ThenF andG share
(1, 8), (0, 2), and(∞, 2). SinceN1)(r, 1/F ) = N1)(r, F ) = 0, it follows by (i) in Corollary
1.5 thatF ≡ G or F ·G ≡ 1. From this, we deduce that Theorem 5.2 holds. �

Theorem 5.4. Let S1 = {a + b, a + bω, . . . , a + bωn−1}, S2 = {a}, andS3 = {∞}, where
n (≥ 3) is an integer,a and b (6= 0) are constants, andω = cos(2π/n) + i sin(2π/n). If
Ef (S1, 1) = Eg(S1, 1), Ef (S2, 0) = Eg(S2, 0), and Ef (S3, 1) = Eg(S3, 1), thenf − a ≡
t(g − a), wheretn = 1, or (f − a)(g − a) ≡ s, wheresn = b2n.

Proof. Let F = ((f − a)/b)n andG = ((g − a)/b)n. Note thatn ≥ 3. ThenF andG share
(1, 5), (0, 2), and(∞, 3). SinceN1)(r, 1/F ) = N1)(r, F ) = 0, it follows by (ii) in Corollary
1.5 thatF ≡ G or F ·G ≡ 1. From this, we deduce that Theorem 5.3 holds. �

It is easy to see that Example 5.2 also shows that the assumption“n ≥ 3” in Theorems 5.3
and 5.4 is the best possible.
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