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ABSTRACT. In this paper, we prove a variant of a general Hardy-Knopp type inequality. We
also formulate a convolution inequality in the language of topological groups. By our main
results we obtain a general form of multidimensional strengthened Hardy and Pélya-Knopp-type
inequalities.
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1. INTRODUCTION

The well-known Hardy'’s inequality is stated below (¢f. [5, Theorem 327]):

(1.1) /DOO (i /:f(t)dt> da < (}%) /OOO f(x)Pde, p>1,f>0.

By replacingf with f% in ) and lettingp — oo, we have the Pdlya-Knopp inequality (cf.
[5, Theorem 335]):

(1.2) /OOO exp G /: log f(t)dt> da < e/ooo f(x)dz.

The constantép/(p — 1))? ande in (1.1) and [(1.R), respectively, are the best possible. On the
other hand, the following Hardy-Knopp type inequalfty (1.3) was proved|(cf. [1, Eq.(4.3)] and
[7, Theorem 4.1]):

13 [To(3 [ rwar) < [Totant

where¢ is a convex function oni0, co). In [7], S. Kaijser et al. also pointed out thl.l)
and ) can be obtained fro .3). Furthermoré, lin [2] ahd3&meSija and R&ric proved
the so-called strengthened Hardy and Polya-Knopp-type inequalities and their multidimensional
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forms. In [4, Theorem 1 & Theorem 2[izmeSija et al. obtained a strengthened Hardy-
Knopp type inequality and its dual result. With suitable substitutions, they also showed that
the strengthened Hardy and Polya-Knopp-type inequalities given in the paper [2] are special
cases of their results. In the paper [6], Kaijser et al. proved some multidimensional Hardy-type
inequalities. They also proved the following generalization of the Hardy and Pdlya-Knopp-type
inequality:

cy [ o [ Hensn)u® < [orwnm®

where0 < b < oo, k(x,t) > 0, K(x) = [ k(x,t)dt, u(z) > 0, and

v(x) = il?/x k[f(’;;)u(z)%

A dual inequality to[(1.4) was also given. Inequality {1.4) can be obtained by using Jensen’s
inequality and the Fubini theorem. Itis elementary but powerful. On the other hand, in the proof
of [8, Lemma 3.1], for proving a variant of Schur’s lemma, Sinnamon obtained an inequality of

the form

(L5) { / |ka<x>|qu}3 < { / |f<t>|p<Hw<t>>5w<t)1—pdt}’IJ,

wherel < p < ¢ < oo, X andT are measure spacés,f (x fT t)dt, w is a positive
measurable function dfi, and

(1.6) Huw(t) :/Xk:(x,t)m (/T/f(fv,y)mw(y)dy)qg de. m=_ P

pat+p—q
In this paper, le{ X, 1) and (T, \) be twoo-finite measure spaces. Letbe a nonnegative
measurable function oN x 7" such that

(1.7) / k(xz,t)d\(t) =1 forpu—a.e.x € X.
T
For a nonnegative measurable functjpon (7', \), define

(1.8) Tof(z) = /T k(o) f(OANE), T € X,

The purpose of this paper is to establish a modular inequality of the form

(L.9) { [ st } { [ou >>5w<t>1-5pdx<t>};

for0 < p < g <oo,¢ e ®f(I),s>1/p, andH,uw(t) is defined by[(2]1). As applications,
we prove a convolution inequality in the language of integration on a locally compact Abelian
group. We also show that by suitable choicesupfve can obtain many forms of strengthened
Hardy and Pdélya-Knopp-type inequalities. Hebg(7) denotes the class of all nonnegative
functions¢ on I C (0, 00) such that'/® is convex onl and¢ takes its limiting values, finite
or infinite, at the ends of. Note that®(7) C &, (1) for 0 < r < s and we denot@_ (1) =
Nyzo @5 (1),

The functions involved in this paper are all measurable on their domains. We work under the
convention that® = oc® = 1 andoo /00 = 0 - 0o = 0.
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2. MAIN RESULTS

The following theorem is based on Jensen’s inequality and [8, Lemma 3.1]. For the conve-
nience of readers, we give a complete proof here.

Theorem 2.1.Let0 < p < g < 00, 1/p < s < o0, and¢ € 7 (I). Let f be a nonnegative
function on(T', \) and the range of values df lie in the closure of/. Suppose that is a
positive function or{7’, A) such that the function

@.1) mw@=[QMWW(£ﬁ@wWMwM@0mZw@%

wherem = spq/(spq + p — q), is finite forA—a.e.t € T. Then we have
@2 {/wnfdu} <{ [ suoewivo-ran}
Proof. Since¢!/* is convex,p(Ty f(z)) < {Ti(0*(f))(x)}* for p—a.e.x € X and hence

2.3) lA¢%ﬂfu»mu»s[;QLkwww”%ﬂwwa)wwww

Letm = spq/(spq + p — q) andw be a positive function ofiT’, \) such thatH,w(t) defined
by (2.1) is finite for\—a.e.t € T'. By Hélder’s inequality with indicesp and(sp)*, we have

(2.4) LLM%@#WNQMM&

:/anwmmwwwmmmmw%w%wm
T

g(ﬁﬁmwwmwwwﬂgy

> (/ k:(x,t)(l_m/(Sp)*)SPgbp(f(t))w(t)_SP/(Sp)*d/\(t)) o)
T

[ ot |
{/(/ ft“m“pmwwu>u>wwmuw)

Y (Lkwﬁmwmwde)@pnzmww}q
<[ [ o)) o
U j

The last inequality is based on the Minkowski’s integral inequality with ingaleRhis completes
the proof. O

and this implies

2=

(2.5)

—N

B

We can apply Theorefn 2.1 to obtain some multidimensional strengthened Hardy and Pdlya-
Knopp-type inequalities. These are discussed in Seflion 3. In the following corollary, we
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consider the norm inequality

(2.6) {/ (T3 f(2))dpu(x } <G{/¢p }

The results of Corollarly 2|2 can be obtained by Thedrerh 2.1 and the fadt tat ¢ @, (1)
for0 <r <s.

Corollary 2.2. Let0 < p < g < 00, 1/p < s < oo, and¢ € ®F(I). Let f be given as in
Theoreni Z]1.

(i) If there exists a positive functiom on (7', \) such that the following conditiof (2.7)
holds for soméd /p < r < s and for some positive constant:

(2.7) Hoaw(t) < Awt)""P4  for \-ae.t €T,
then we havd (2]6) where the best constarsiatisfies

(2.8) C < A7
(ii) If w satisfies[(2]7) for each/p < r < s, then we have (2/6) with
(2.9) C < inf Af.
1/p<r<s

i) If ¢ € @L (1) andw satisfies|(2]7) for each/p < r < oo, then we havd (26) with

(2.10) C < inf A7

1/p<r<oco

In the case < p < ¢ < oo andg¢(x) = z, chooses = r = 1 and then Corollary 2|2 can be
reduced to[[8, Lemma 3.1].

In the following, we consider the particular ca&e= T = G, where( is a locally compact
Abelian group (written multiplicatively), with Haar measurelLet i be a nonnegative function
on G such thath hdp = 1. For a nonnegative functiofion GG, define the convolution operator

(2.11) h*f(x):/Gh(xt‘l)f(t)du(t), z€eG.

Moreover, if [, h™dy is also finite, wheren is given in Theorenj 2|1, then bf (2.1) with
k(z,y) = h(zy~') andw = 1, we have

(2.12) oot = [ ey ([ h(xy*)mdu(w)sq_g du(x)

= ([ Harmauta))

We then obtain the following result:

2

3|

Corollary 2.3. Let0 < p < ¢ < 00,1/p < s < oo, and¢ € ®F(I). Leth be a nonnegative
function onG such that/,, hdu = 1 and [, h™dp < co, wherem = spq/(spq+p — q). Let f
be given as in Theorem 2.1. Then we have

ey {[ d)q(h*f(x))du(w)}ég{ [ Harinte } {[ o0 }
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Moreover, ifp < ¢, ¢ € ®L (1) and [, h"dp < oo for somer > 1, then

(2.14) { / gb‘I(h*f(ﬂJ))dﬂ(iE)};
< {exp (/Gh( ) log h(z) )}ii{/ (1 } .

Inequality [2.1#) can be obtained by letting- oo in (2.13). In the casé(r) = r ands = 1

in (2.1’3‘), the conditionfG hdyp = 1is not necessary and (2/13) can be reduced to Young's
inequality:

(2.15) { / (h*f(ﬂf))qdu(x)};ﬁ{ JERC } { | syt }

wherel < p < ¢ < ccandm = pq/(pqg+p — q). If ¢(x) = e* and f is replaced byog f
in (2.14), then fo < p < ¢ < oo,

(2.16) { /G {exp ( /G h(zt=") log f(t)du(t)> }qdu(az)};
< {oxo ([ 1o toghte) )}H{/f (0Pt } .

Let G = R" under addition ang be the Lebesgue measure. ThHen (R.15) can be reduced to

e ([ ([ ooy ) < [ i) ([ ol
Moreover, if [, h(x)dz = 1 and [, h(z)"dz < oo for somer > 1, then by [2.1p),
(2.18) {/ {exp (/ Wz — 1) log f(t)dt) }qd:c}é

< {exp ( / hx)log h(:v)dx)}

{ f(t)pdt}p .
R
Let G = (0, c0) under multiplication andy = z~*dz. Then by |(2.1p),

ey {7 ( [ wwins <>Cff) df}és{/owh@)mdf}g‘{/owf(wp%};.

Moreover, if [[* h(x)z~'dz = 1 and [ h(z)"z~'dz < oo for somer > 1, then [2.1B) can be
reduced to

e {[ o))
S{exp(/oooh(x)logh )} {/ f(t) }
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There are multidimensional cases corresponding to |(2.19)[and (2.20). For example, the 2-
dimensional analogue df (2]19) is

e {[7[ ([ oG mats) 5oy
([ [ [ [ty

and we can also obtain similar results[to (2.20).

3. MULTIDIMENSIONAL HARDY AND POLYA -KNOPP-TYPE INEQUALITIES

In this section, we apply our main results to the case- ' = R" and obtain some multi-
dimensional forms of the strengthened Hardy and Pdlya-Knopp-type inequalitiesNtébe
the unit sphere iRY, that is,X>V~! = {z € RY : |z| = 1}, where|z| denotes the Euclidean
norm ofz. Let A be a Lebesgue measurable subset®f!, 0 < b < oo, and define

E={recRY:2=5p,0<s<b pc A}
Forx € F, we define
Se={yecRY :y=sp, 0<s< 2|, pc A},
and denote bysS, | the Lebesgue measure 8f. We have the following result:

Theorem 3.1.Let0 < p < g < 00, 1/p < s < o0, and¢ € ®(I). Letg be a nonnegative
function onR™ x R" such that[, g(z,t)dt = 1 for almost allz € £ and letf be a nonneg-

ative function oriRY and the range of values dflie in the closure of/. Suppose that is a
nonnegative function oR" andw is a positive function oy such that the function

ey o= [ g0 ([ I o)l " s (B

wherem = spq/(spq + p — q), is finite for almost alt € E. Then we have

@2 {[o( [ swnsim) u(a:)dx}é {/ W(f(t))(st(t))gw(t)l_‘”’dt};

Proof. Let X = T = RY, du = u(x)xg(z)dz, d\ = xp(z)dz, andk(x,t) = g(z,t)xs, (1)
in Theorem{ 2.J1. Ther{,w defined by [(2]l) can be reduced [o (3.1) and we have (3.2) by
Theorem 2.11. O

Inthe case = ¢ = s = 1, thenm = 1 and we have

63 [o/ x o050t ) uto)ds < [ o) ( [ ateOutos. () ar

In particular, if N = 1, E = [0,b), S, = [0,z), andu(z) is replaced by.(z)/z, then [3.8) can
be reduced to

ON| s ([ ste.0s0ar) “Dao < [ s(r0) (/ bg<x,t>@dx) .

Inequality [3.4) was also obtained I [6, Theorem 4.1].
Now we consider[(3]2) withi(z) = |S,|* and g(x t) S|~ h( \St|/ wherea c
R, A |s a nonnegative function defined ¢h 1) and fo x)dr = 1. By (3 ) W|thw =

|15, [mG=0=D/(D e have
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q_,

1
(3.5) st(t) = (/ h(g)?ﬂgm(q/pa%/(sq)dg) ]S\ 1+m(a+2—q/p)/(sq)
0

1
% / h(g)mgm(q/pfaﬁ)/(sq)dé
(|tl/p)NY

As a consequence of Theorém|3.1, we have the following result:

Corollary 3.2. Let0 < p < ¢ < o0, 1/p < s < o0, ¢ € ®f(I), and f be given as in
Theorel. Let € R, h be given as above, anfl h(¢)"em@/r—a=2/(0d¢ < oo, where
m = spq/(spq + p — q). Then we have

(3.6) {/ ¢q<|5|/mh(|’§i||>f(t)dt> ‘Sgc‘adx};
< ([ weygrarearnig) { [ s dt}{

1
v(t) = / h(g)mgm(q/p—a—@/(sq)dg.
(Itl/6)N

where

By (3.6), we see that

n {1 {2 () o) s oonsens ).

where(C satisfies

1 s—%-l—%
39) C< ( JRGREE (S‘”dﬁ) |
0
Moreover, if¢ € ®% (1) andp < ¢, then the estimation given ip (3.8) can be replaced by
1 »Ta
(39) ¢ < {ox ([ ne oo oac) |
0

In the following, we consider the particular cgse= ¢. In this casen = 1 and [3.6) can be
reduced to

(310)/ (|5|/£ (@)f(z)dt) 1S, [*da
g( /0 RE)E ”/“p)ds) / o(f ( /| o h(ﬁ)é(“)/“p’dé) S|t

In the casey € &7 (I), by lettings — oo in (3.10), we have

i o ()
g{exp ( /0 1h(€)log§d§)} / o(f ( / o h(&)d&) S, dt.

If h(€) = a&®!, a > 0, then we have the following corollary.

Corollary 3.3. Let0 < p < 00, 1/p < s < 00, ¢ € ®F(I),a > 0, a+ 1 < asp, and f be
given as in Theorem 3.1. Then we have
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c12) [0 (g [ 181 o) is.
asp N[ ]\ Ve /e
< (22) " [ou (1—(;) 53

Moreover, ifp € O (I), then fora € R, we have

e(a-l—l)/oz D . ’t‘)NQ a
< e [ () (1 (—b SiJed.

Inequality (3.1R) was obtained inl[3, Theorem 1(i)] for the cage) = z,p > 1, s = 1,a <
p—1,a =1, andF is the ball inR" centered at the origin and of radibusif ¢(z) = e*,p = 1,
and f is replaced byog f in (3.13), then we havé [3, Theorem 2(j)]. Af¢) = a1 — &)*1,
a > 0, then we have the following corollary.

Corollary 3.4. Let0 <p < 00, 1/p < s < o0,¢ € (1), > 0,a+ 1 < sp, and f be given
as in Theorern 3]1. Then we have

10) [ (i [ = 150 ) 5.0
() s

whereB(d, n) is the Beta function and
1

o(t) = / a(1— ey gleD/6n)ge,
(I¢]/p)N

Moreover, ifp € ®F (1), then fora € R we have

(3.15) / (lS ; / |5z!—|5t|)a_1f(t)dt> 1S, da
s{exp(/olau—&)“—lloggdf)} /¢P ( (‘t’) >Q|St|adt-

In the following, we consider the dual result of Theorfen] 3.1.(Let b < oo and
E={zeRY : z=spb<s<oopec A}

Forz € E, we define
Se={yeRY :y=sp,|z| < s <oo,pe A}

Let u be a nonnegative function dR", du = u(z)xz(x)dx, d\ = xz(t)dt, andk(z,t) =
g(x,t)xs, (t), whereg is a nonnegative function dR" x RY such thatf; g(z,t)dt = 1 for

almost allz € E. Suppose tha is a positive function or2. ThenH,w defined by[(2]1) can
be reduced to

1) Hauto= [ steor ([ I o) wlo)y " s, (B

We have the following theorem.
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Theorem 3.5.Let0 < p < g <oo,1/p < s < o0, ¢ € I (I), andg, u, w be given as above.
Let f be given as in Theore 3.1. Suppose tHatv(t) given in [3.16) is finite for almost all
t € E. Then we have

e {[o(/ ol H1(0at) u@)dx}; <{/ W(f(t))(st(t))5w(t)1‘5pdt};

In the cas® = ¢ = s = 1, thenm = 1 and we have

SO d)(/gzg(x,t)f() ) oo < [ ot ( [ ate.0utos, () ar

In particular, if N = 1, F = [b,0), S, = [z,00), andu(z) is replaced byu(x)/z, then
by (3.18) we have

(3.19) /booqﬁ(/:og( )f()dt) ) gy </ o(f (/ (,t)@@)dt.

Inequality [3.19) was also obtained In [6, Theorem 4.3]. Using a similar method, we can also
obtain companion results gf (3.6)[- (31 15). We omit the details.
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