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ABSTRACT. Suppose given the uniform approximation to the unknown convex function on a
bounded interval. Starting from it the objective is to estimate the derivative of the unknown
convex function. We propose the method of estimation that can be applied to evaluate optimal
hedging strategies for the American contingent claims provided that the value function of the
claim is convex in the state variable.
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1. INTRODUCTION

Consider the continuous convex functigf) on a bounded intervak, b] and suppose that
its explicit analytical form is unknown to us, whereas there is the possibility to construct its
continuous uniform approximatiofi;, whered is a small parameter. Our objective consists
in constructing the approximation to the unknown left-derivaffifec—) based on the known

function fs(x). For this purpose we consider the lower convex envelpge) of fs(x), that
is the maximal convex function, less than or equalf{or). Geometrically it represents the
thread stretched from below over the graph of the funcfigm). Now our main idea consists

of exploiting the left-derivativef;(z—) as a reasonable approximation to the unkngiym—).
The justification of this method of estimation is the main topic of this article.

These kinds of problems arise naturally in mathematical finance. Indeed, consider the value
functionv (¢, z) of the American contingent claim and suppose we have already constructed its
uniform approximation(t, z), where0 <t < T,0 < = < L (for example, by discrete Markov
Chain approximation developed by Kushrier [1]). The problem is to find the estimation method
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of the partial derivativeg—;(t,x) that can be used to construct the optimal hedging strategy
(we should note here that the explicit form of the value functighz) is typically unknown

for one in most problems of the option pricing). It is well-known (see, for example El Karoui,
Jeanblanc-Picque, Shreve [2]) that for a variety of practical problems in the pricing of American
contingent claims that utilize one-dimensional diffusion models, the value functiom) is

convex in the state variable and hence we can apply the above mentioned method of estimation.
Thus, consider first for fixetlc [0, 7] the lower convex envelope(t, x) of the functionu(t, x)

and then use its Ieft-derivati\%z—(t, z—) instead of the unknow#? (¢, z). Then in this way we
construct the approximation to the optimal hedging strategy.

2. THE ENERGY ESTIMATE FOR CONVEX FUNCTIONS

Consider the arbitrary finite convex functigifz) on a bounded intervdk, b]. It is well
known that it is continuous inside the interval, and at the endpaiaisdb it has finite limits
f(a+) and f(b—). Moreover it has finite left and right-derivativg$(z—) and f'(z+) in the
interval (a, b) (see, for example Schwariz [3, p. 205]).

We will use the following inequality several times (Schwartz [3, p. 205]) concerning convex
function f(x) and its left-derivativef’(z—)

(21) f’(%-) S f(:EQ) f(gjl) S f,(l'z_)
Ty — I
for arbitraryzy, xo with a < x7 < 249 < b.
Letting z, tend tob we get

: f(b=) = f(21)
fllo=) = == o

and similarly lettingr; tend toa, we have

flws) = fla+) _

—a = f'(w2=).

Y

From here we get
$@) = Fat) oy < 102) = @)
r—a b—x
Multiplying the latter inequality by{z — a)(b — =) we obtain the following crucial estimate
(2.2) (b—2)(f(z) = flat+)) < (z —a)(b—2)f'(x—)
< (z—a)(f(b=) — f(z)) for a <z <b.
From this estimate we see, that the function
wi(z) = (z —a)(b—2)f'(z—)
is bounded on the intervé, b), moreover
wi(a+) =0, wi(b—) =0,
hence it is natural to extend this function at the endpairdadb by the relations
wi(a) =0, wy(b)=0.

Thus we obtain the functiom, (x) defined on the closed intervial, b], which is left-continuous
with right-hand limits and is bounded on the interj@lb]. Similarly for another finite convex
function p(z) defined ora, b] we may denote

wy(x) = (x —a)(b—x)' (z—) for a <z <b

for a < x < b.
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Finally introduce the following function
(2.3) w(z) = w(x) — wa(z)
=(z—a)(b—2x)(f(z—) — ¢ (z—)) for a<a<b
and note that it is bounded, left-continuous (with right-hand limits) and also
w(a) =0, w(b)=0.

Now our objective in this section is to bound the Riemann mteﬁf&bz )dx, it holds the
key to our method of estimation of the derivative of the arbitrary convex functlon. This bound
is given in the theorem below.

Theorem 2.1. For arbitrary two finite convex functiong(x) and ¢(z) defined on a closed
interval [a, b] the following energy estimate is valid

b
(2.4) /(m—a)g(b—x)Q(f’(x—)—gp’(x—))Qd:v
ggx/g sup |f(a:) | sup }f (@‘(b_a)g

z€(a,b) z€(a,b)

- % (xil(lapb |f(x) (w)\) (b—a)’.

Proof. The proof is lengthy and therefore divided in two stages. At the first stage we verify the
validity of the statement for smooth (twice continuously differentiable) convex functions. At
the second stage we approximate arbitrary finite convex functions inside the iftedjdly
smooth ones in an appropriate manner and afterwards pass on limit in the previously obtained
estimate.

Thus, at first we assume that the convex functigfis) and p(z) are twice continuously
differentiable ora, b] in which case we obviously have

() >0, ¢"(x)>0, a<z<b.
Introduce the functions
u(z) = f(z) = p(z), v(@)=(z—a)’(b—2)*(f(z) - p(z)).
Consider the following integral and use in it the integration by parts formula

- / ’ (@) (z) da

b

/ u ()0 (z)dx = u'(x)v(z)

a

b
_ / (2 — a)*(b— 22 (f(x) — (2)) (f"(2) — " () do.

asv(a) = v(b) = 0.
From here we get the estimate

/abu'(x) () da

However, as pointed abovy&(z) > 0, ¢”(z) > 0, hence

’f”(m)—go"(x)} Sf,/($)+80,/(x)

< s [760) = o) [ 0= 00— 2 10) )] do

x€|a,b]
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and from the previous estimate we obtain the bound

[ e < sw | |/ v — a6 — 22 (f"(a) + ¢'(@)) da.

Next we have to transforr:uet[sug integral
[ P22 (@) + )
— (- P 2P (Fa) + @)
[ (@O @ + ) o

b

_ /abQ(a: —a)(b— )2+ a+ 0)(f(2) + () da
= 2z — a)(b—2)(—2z +a+b)(f(z) + ()|
+ /ab (2(z — a)(b—z)(—2z +a+0)) (f(z) + p(x)) dz.
Therefore

/ (2 — al2(b— 22(f"(z) + (@) da

2(x —a)(b—x)( 2x+a—|—b ‘dm

< sup |f(z) +o(z

z€a,b]

Evaluating the last integral we get

b
4
/ (2(z —a)(b—z)(—2z + a+1b)) ‘dm— g V3-(b—a)
Whence we come to the estimate
b
4
@8) | [ wnle)ds| < 5-VE- s (1) = p(o)] - sup [£@) + ()] - (-
a 9 z€[a,b] z€a,b]

On the other hand
b b
/ u'(2)v'(x) dr = / (f'(2) — ' (2)) [(x — a)*(b— 2)*(f(z) — p())] dz
= /(x—a)(b—x)(—2x+a+b) (f(@)—e(@) (f'(z)—¢ () dx
a b 2
+ [ a0 0P (f@) - ) do

Therefore we get the equality

2

(2.6) / (= )’ (b— 2 (f (2) — ¢'(2))* du

- / o/ (@) (2) di — / (z— a)(b—2) (f'(z) — &/(2))
X 2(=2zx4+a+0b)(f(x) — p(z)) d.
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Bound now the last term

[ @=ae-2)(7@) - ¢@)2-20 + 0+ H(f@) - o) ds

<: / (2 — @b — 22 (£ () — ¢'(2))° da
+ 2/ (=2z+a+b)*(f(z) — go(m))z dx
b
<5 [ @ aP0— (o) - @) da

- ( s /() - w(@}) S0-a
z€[a,b]
as
b 1
/ (=22 +a+b)?dr = §<b —a)®.

Therefore we obtain

b
2.7) / (2 — a)(b— 2) (f'(x) — ¢ (2) - 22z + a + ) (f(x) — plx)) da
<5 [ @ aP0— 0P (o) - @) e

2 (SUP \f(m)—¢(x)|> - (b—a)’.

3 z€la,b]

Finally, if we use the bound§ (2.5) arjd (2.7) in the equdity| (2.6), we come to the following
estimate

< 5 VB sup (1) = pl@)] - sup [f(@) + (o) (b — o)

z€[a,b] z€[a,b]

v ( sup |f(x) - 90(»"6)!> (- a).

z€[a,b]

Let us pass to the second stage of the proof. Consider two arbitrary finite convex furf¢tions
andp(z) on the closed intervdk, b]. We have to construct the sequences of smooth convex
functionsf, (z) andy, (x) approximating, respectively, the functiofigr) andp(z) inside the
interval [a, b] in an appropriate manner.

For this purpose we will use the following smoothing function

c- 61@32) for 0 <ax <2
(2.9) p(x) = {

0, otherwise

where the factor is chosen to satisfy the equality
2
/ p(x)de = 1.
0
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Define

b
(2.10) fulx) = / n-p(n-(x—v) - fy) dy,

on (1) = / n-p(n-(z—y))-ey)dy,

wheren = 1,2,...andx € (—oo, +00).
For arbitrary fixedd > 0 consider the restriction of functiorf () andy,(x) on the interval
la+6,b— 6] and letn > 3. Thenn - (z —a) > 4andn - (x —b) < 0forz € [a+6,b— d].
Perform in {2.1D) the change of variable= - (z — y), then we'll have

= [ (e 2) e

n-(z—b)
n-(z—a) P
() = z) - r——) dz.
ool = [ )¢ (e-)
But the functionp(z) is equal to zero outside the interv@l 2) and hence we obtain
2
z
(2.11) fa) = [ o)1 (o=2) e

onta) = [ ot (o 2)

if n > 4. From the definition[(2.10) it is obvious, that the functiofigz) and ¢, (z) are
infinitely differentiable, while the convexity of these functions simply follows from the repre-
sentation[(2.111).

Next we show the uniform convergence of the sequefj¢e) to f(x) on the intervala +
3, b — 6] (similarly for ¢,,(x) to ¢(z)). For this purpose we use the uniform continuity of the

function f(z) on the intervala + £,b — 4]. For fixe > 0 there exist$ such that we have

|f(x2)—f(x1)\§5 if ]xg—x1]<;5\ and zq,z, € {a—l-g,b—é} )

Taken > max{$, 5}. Thenfor0 < » < 2 andx € [a +4,b — ] we get

Y N S N )
< min 25 , I n_a 2—@ 5"

Sw

Hence
‘f(m—i>—f(x)’ < ¢ for anaX{é 4}

n 50
and consequently

@) = 11 =| [ o) (5 (v 2) - s0)

forz € [a+ 6,b — ] andn > max{%,% :
Thus we've shown the uniform convergence of the sequgpte) to f(z) on the interval
la+0,b—].
Now we need to differentiate the relatiofs (2.11). We’'ll use again the basic ineqiality (2.1)
on convex functions. Take therein
z z
l‘lz(x——>—h, Tog =T — —,

n n

<e
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where0 < h < 2.
We will have

(2.12) f/<<x_i_h>_>éf(x—ﬁ)—f(x—i—h)

<#((-2)-)

ifzefa+d,b—0,0<2<2,0<h<?2andn> 1.
Taking into account that the left-derivative of the convex function is nondecreasing and that

0
x—i—hza%——, x—igb—é
n 4 n

we get
0 — %) — —2—h
(2.13) f’( <a+ Z) —) < fle =3 i(x ) < f'((b—6)-).
It follows from here that the family of functions
fl@a=2)—fla—:-h)
h

B} (2) =

is uniformly bounded by the constant

c:max(f’((a—i-%)—)

if x € [a+5,b—6],0§z§2,0<h<gandn2§.
We write from the representation (2]11)

fn(x)—in(x—h) :/0 p(z)_f(x—%)—f(x—%—m s,

Now lettingh to zero and using the bounded convergence theorem we come to the following
formula

@19 @ = [ o s ((e-2) - )

forz € [a+ 46,0 — 0] andn > 3.
From this formula it is easy to see, that for fixede [a + §,b — 0] the sequencé) (x)
converges to the left-derivativé(z—). Indeed consider the difference

=1 = [ o (7((-2) =) - 7o) e

and choose arbitrary > 0. As the left-derivativef’(z—) is
e) such that (fo) < = < 2)

)

Fi((b— 6>—>I>

where we assume that >
left-continuous we can find/

STIFSN

—~

z

f,< (x_ E> _> _f’(;p—)‘ <e ifonly n> N(e).

Hence we get

2
|fo(z) = f(z=)] < / p(z)-edz=¢ if n>max (%,N(a)) :
0
Thus for any fixedr € [a + d,b — 0] we have
Tim fi(x) = f'(z-),
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and similarly for functions/, (z), ¢'(z—)

lim o, () = ¢'(z-).

n—oo

Next write the estimatg (2.8) for functiorfs(z), ¢, (z) restricted to the interval + 6, b — 4]

(2.15) / T — a+5) ((b—5)—x)2-(f,’l(x)—gpil(x))de
<2 VB s [fule) = pul@)
9 z€[a+8,b—0]
X sup |fn )+ pn(z )|-(b—a—2-5)3
z€[a+0,b—0]

x€[a+0,b—4]

+§< sup \h(@—%(!ﬂ)!) (b—a-2:0)"

Forz € [a+6,b—6],0 < z < 2andn > 5 we have

P((ar5)-) =7 ((-2)-) < re-0-)

multiplying this inequality byp(z) and integrating by. over (0, 2) from the equality[(2.14) we

obtain
((a+5)-) = < r0-0-)

Similarly for the functionsy!, ()

¢ <(a + g) —> < @) < @'((b—0)-).

Hence the sequences of the functighéz) andy!, (z) are uniformly bounded on the interval
l[a+ 8,0 — 6] forn > % Thus we can apply the bounded convergence theorem in the left-hand
side of the inequality{ (2.15) passing to limit when— oo and we get

(2.16) /

2

)’ ((0=0)—2)’ (f'(a—) — ¢ (@—))" da

+

8

Sg-\/g- sup | f(z) — ()]
z€[a+6,b—0)

x sup |f(z)+e@)] (b—a—2-0)°
xz€[a+0,b—0d]

+%.( sup If(:v)—w(mﬂ) (b—a-2-0)"

3 z€la+6,b—4]

Finally it remains to pass onto limit wheh — 0 in the inequality [(2.16). Introduce the
following function

X (at8,b—0] (z) - (x;f;6)2 : (b;i;m)2 for a<az<b
us(z) = ,

0 otherwise
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wherex, ., 5 (z) is the characteristic function of the intervial+ J,b — 4]. Evidently

1, a<x<b

0 <ug(x) <1, lgfgug(x) = {

0, otherwise

We remind now the definitior] (2.3) of the functian(x) and the fact that it is a bounded
function on the closed interval, b] and we rewrite the inequality (2.16) in terms of the functions
w(z) andug(z).

@17) [ us(o) wi(@)do < 5 VB s [f(o) - (o)

z€[a+6,b—0]

x sup |f()+ ()] (b—a—2-6)
xz€[a+0,b—0]

2
4
—|—§- ( sup |f(:v)—gp(m)|> (b—a—2-9)>
z€[a+8,b—0]
We use again the bounded convergence theorem in this inequalityiwhérand at last get
the desired energy estimafe (2.4). O
3. THE MAIN RESULT

The following proposition is the basic result of this article though its proof is a simple con-
sequence of the previous theorem

Theorem 3.1. Let f(z) be the unknown continuous convex function defined on the bounded
interval [a, b] and suppose we have at hand its some continuous uniform approxinfation

Consider the lower convex enveloﬁg(x) of the functionfs;(x). Then for the unknown left-
derivative f'(x—) the following estimate througfi;(«—) does hold

2

(3.1) /ab@c—a)?-(b—m)?-(f'(x—)—?g@c—)) da

<

©| oo

z€[a,b] z€[a,b] z€la,b]

V3 sup |fs(x) = f(a)] | sup [f(2)]+ sup Ifa(l")|> (b—a)’

z€[a,b]

—l—% ( sup ‘f(;(x) — f(x)}) - (b—a)’.

Proof. Introduce the notation

sup | f5(z) — f(z)]| = cs.

z€[a,b]

It is clear that

f(.%')—C(sng(l'), fﬁ('T)_CtSSf(x)? if @€ [aab]'
Therefore we get that the convex functiff) — c; is less or equal thayis(x) and hence

flx) —c; < fs(x), x€la,b]
On the other hand we have

Fol@) —cs < fi(x) —cs < f(z), € [a,b],
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therefore _
‘f(;(x) - f(x)’ <cs, x€lab),
thatis
(3.2) sup ‘fg(l’) — f(m)‘ < sup ‘f(;(x) — f(a:)}
x€[a,b] z€[a,b]
Denote sup |fs(z)| = ¢s, then obviously
z€[a,b]

—¢5 < fs(x) <¢5, x € |a,b

and hence _
—c5 < folx) < f5(x) < ¢, x €la,b],

that is
(3.3) sup ’fg(l‘)‘ < sup ‘f(;(x)|.

x€[a,b] z€[a,b]

Take now?(;(x) instead of convex functiop(x) in the formulation of Theore@.l and use
the inequalities](3]2) { (3.3) in the right-hand side of the estinjat¢ (2.4), then we directly come
to the estimatd (3]1). O

Remark 3.2. As the left and the right-hand derivatives of convex function coincide everywhere
except on the countable set, Theoréms 2.1[and 3.1 are obviously true for the right-derivatives
instead of the left-ones.
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