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1. INTRODUCTION

Let I be a real interval, that is, a nonempty, connected and bounded subRet 8h
n-dimensionalChebyshev systeon I consists of a set of real valued continuous functions
w1, . ..,wy, andis determined by the property that eagboints of/ x R with distinct first coor-
dinates can uniquely be interpolated by a linear combination of the functions. More precisely,
we have the following

Definition 1.1. Let I/ C R be a real interval andvy,...,w, : I — R be continuous func-
tions. Denote the column vector whose componentsare ., w, in turn by w, that is,w :=
(w1, ...,w,). We say thatw is a Chebyshev system ovéiif, for all elements; < --- < z,, of
1, the following inequality holds:

| w(ry) - w(z,) |>O.

In fact, it suffices to assume that the determinant above is nonvanishing whenever the argu-
mentszxy, ..., x, are pairwise distinct points of the domain. Indeed, Bolzano’s theorem guar-
antees that its sign is constant if the arguments are supposed to be in an increasing order, hence
the componentsy, ..., w, can always be rearranged such tlefulfills the requirement of the
definition. However, considering Chebyshev systems as vectors of functions instead of sets of
functions is widely accepted in the technical literature and also turns out to be very convenient
in our investigations.
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2 M. BESSENYEI

Without claiming completeness, let us list some important and classical examples of Cheby-
shev systems. In each examplas defined on an arbitrarfy C R except for the last one where
Ic]—-z%,z.

272
e polynomial systemw(z) := (1,x,...,z");

e exponential systemw(z) := (1,expx,...,expnz);

e hyperbolic systemw(z) := (1, coshz,sinh z, . .. cosh nx, sinh nx);
e trigonometric systemw(z) := (1,cosz,sinz, .. ., cos nz,sin nz).

We make no attempt here to present an exhaustive account of the theory of Chebyshev sys-
tems, but only mention that, motivated by some results of A.A. Markov, the first systematic in-
vestigation of the geometric theory of Chebyshev systems was done by M. G. Krein. However,
let us note that Chebyshev systems play an important role, sometimes indirectly, in numerous
fields of mathematics, for example, in the theory of approximation, numerical analysis and the
theory of inequalities. The books [16] arid [15] contain a rich literature and bibliography of
the topics for the interested reader. The notion of convexity can also be extended by applying
Chebyshev systems:

Definition 1.2. Letw = (w4, ..., w,) be a Chebyshev system over the real intefval function
f : I — Ris said to begeneralized convex with respectdoif, for all elementsey < --- < x,
of 1, it satisfies the inequality

flzo) -+ flan)
w(ro) -+ w(zn)

There are other alternatives to express thstgeneralized convex with respectdq for ex-
ample,f is generalizedw-convexor simply w-convex If the underlyingr-dimensional Cheby-
shev system can uniquely be identified from the context, we briefly sayftisageneralized
n-convex

If w is the polynomial Chebyshev system, the definition leads to the notion of higher-order
monotonicity which was introduced and studied by T. Popoviciu in a sequence of papers [20, 22,
21,124]23, 217, 29, 25, 30, 28,126, 31)] 33,132,/ 34, 35]. A summary of these results can be found
in [36] and [17]. For the sake of uniform terminology, throughout the this paper Popoviciu’s
setting is called polynomial convexity. That is, a functipn/ — R is said to bepolynomially
n-convexf, for all elementsr, < --- < z,, of I, it satisfies the inequality

(=1)

flzo) .. flxn)
1 . 1
(_1)” x R Tp > 0.
:1:8'_1 o xz'*l

Observe that polynomially-convex functions are exactly the “standard” convex ones. The case,
when the “generalized” convexity notion is induced by the special two dimensional Chebyshev
systemw; (z) := 1 andws(x) := x, is termedstandard settingindstandard convexityrespec-
tively.

The integral average of any standard convex funcfiana,b] — R can be estimated from
the midpoint and the endpoints of the domain as follows:

f(a;—b) - bia/abf(x)dxg f(a)—;f(b)_

This is the well known Hadamard’s inequality ([11]) or, as it is quoted for historical reasons
(seel[12] and alsa [18] for interesting remarks), the Hermite—Hadamard-inequality.
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The aim of this paper is to verify analogous inequalities for generalized convex functions, that
is, to give lower and upper estimations for the integral average of the function using certain base
points of the domain. Of course, the base points are supposed to depend only on the underlying
Chebyshev system of the induced convexity.

For this purpose, we shall follow an inductive approach since it seems to have more advan-
tages than the deductive one. First of all, it makes the original motivations clear; on the other
hand, it allows us to use the most suitable mathematical tools. Hence sophisticated proofs that
sometimes occur when using a deductive approach can also be avoided.

SEcCTION[Z investigates the case of polynomial convexity. The base points of the Hermite—
Hadamard-type inequalities turn out to be the zeros of certain orthogonal polynomials. The
main tools of the section are based on some methods of nhumerical analysis, like the Gauss
quadrature formula and Hermite-interpolation. A smoothing technique and two theorems of
Popoviciu are also crucial.

In SECTION [3 we present Hermite—Hadamard-type inequalities for generalizemhvex
functions. The most important auxiliary result of the proof is a characterization theorem which,
in the standard setting, reduces to the well known characterization properties of convex func-
tions. Another theorem of the section establishes a tight relationship between standard and
generalize®-convexity. This result has important regularity consequences and is also essential
in verifying Hermite—Hadamard-type inequalities.

The general case is studied iESTION[4. The main results guarantee only the existence
and also the uniqueness of the base points of the Hermite—Hadamard-type inequalities but offer
no explicit formulae for determining them. The main tool of the section is the Krein—Markov
theory of moment spaces induced by Chebyshev systems. In some special cases (when the di-
mension of the underlying Chebyshev systems are “small”), an elementary alternative approach
is also presented.

SECTION[5 is devoted to showing that, at least in the two dimensional case and requiring
weak regularity conditions, Hermite—Hadamard-type inequalities are not merely the conse-
guences of generalized convexity, but they also characterize it.

Specializing the members of Chebyshev systems, several applications and examples are pre-
sented for concrete Hermite—Hadamard-type inequalities in both the cases of polynomial con-
vexity and generalizeg-convexity. As a simple consequence, the classical Hermite—Hadamard
inequality is among the corollaries in each case as well.

The results of this paper can be found|in([3,4,/5,16, 7] and [1]. In what follows, we present
them without any further references to the mentioned papers.

2. POLYNOMIAL CONVEXITY

The main results of this section state Hermite—Hadamard-type inequalities for polynomially
convex functions. Let us recall that a functign I — R is said to bepolynomiallyn-convex
if, for all elementsry < --- < z,, of [, it satisfies the inequality

flxo) ... f(zn)
1 o 1
(=" T - T[>0
xgl_l !

In order to determine the base points and coefficients of the inequalities, Gauss-type quadrature
formulae are applied. Then, using the remainder term of the Hermite-interpolation, the main
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results follow immediately for “sufficiently smooth” functions due to the next two theorems of
Popoviciu:

Theorem A. ([17, Theorem 1. p. 387]JAssume thaf : I — R is continuous and: times
differentiable on the interior of. Then,f is polynomiallyn-convex if and only iff ™ > 0 on
the interior of /.

Theorem B. ([17, Theorem 1. p. 391Assume thaf : I — R is polynomiallyn-convex and
n > 2. Then,f is (n — 2) times differentiable ang("~2) is continuous on the interior df.

To drop the regularity assumptions, a smoothing technique is developed that guarantees the
approximation of polynomially convex functions with smooth polynomially convex ones.

2.1. Orthogonal polynomials and basic quadrature formulae. In what follows,» denotes a
positive, locally integrable function (brieflyveight functiofon an intervall. The polynomials
P and(@ are said to berthogonal onja, b] C I with respect to the weight functignor simply
p-orthogonal onja, b] if

b
(P.Q), = [ Pap=0

A system of polynomials is called g-orthogonal polynomial system dn,b] C I if each
member of the system jsorthogonal to the others dn, b]. Define themomentf p by the
formulae

b
g = / o*p(x)dx (k=0,1,2,...).

Then, then'* degree member of theorthogonal polynomial system da, b] has the following
representation via the momentsof

L

x M DT Mn
Pn(x) = . .1 . .

" N O Y |

Clearly, it suffices to show tha®, is p-orthogonal to the special polynomialsz, ..., 2" 1.
Indeed, fork = 1,...,n, the first and thék + 1)** columns of the determinaif, (z), z*1),
are linearly dependent according to the definition of the moments.

In fact, the moments and the orthogonal polynomials depend heavily on the intemjal
Therefore, we use the notiops;(,; and P, instead ofu, and P, above when we want to
or have to emphasize the dependence on the underlying interval.

Throughout this section, the following property of the zeros of orthogonal polynomials plays
a key role (see [39]). LeP, denote the:!" degree member of the-orthogonal polynomial
system or{a, b]. Then, P, hasn pairwise distinct zero§, < --- < &, inJa, b|.

Let us consider the following

b n
(2.1) [ io=Yate.
a k=1
b n
(2.2) | to=at@+Y ar@)
a k=1
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(2.3) / fo= ckf (&) + cnar (D),
(2.4) / fpzcof<a>+2ckf<sk>+cn+1f<b>.
a k=1

Gauss-type quadrature formulae where the coefficients and the base points are to be determined
so that[(2.11),[(2]2)[ (21 3) and (2.4) are exact wifea a polynomial of degree at mozt — 1,
2n, 2n and2n + 1, respectively. The subsequent four theorems investigate these cases.

Theorem 2.1.Let P, be then!" degree member of the orthogonal polynomial systerfuoi
with respect to the weight functign Then(2.)is exact for polynomialg of degree at most

2n — lifandonly if&, ... &, are the zeros of,, and
" Py()
(2.5) Cp = / - - x)dx.
g a (.77 - gk)Pn(gk)p< )
Furthermore(,, . .., &, are pairwise distinct elements jof, o[, andc, > Oforall k =1,....,n

This theorem follows easily from well known results in numerical analysis (see [13], [14],
[39]). For the sake of completeness, we provide a proof.

Proof. First assume thdy, . . ., &, are the zeros of the polynomi&, and, forallk =1, ..., n,
denote the primitive Lagrange-interpolation polynomials/hy: [a,b] — R. That is,

{ Bult) iy se

Li(z) =S (2= &) P (&)

If @ is a polynomial of degree at mo3t — 1, then, using the Euclidian algorithr), can be
written in the form@ = PP, + R wheredeg P,deg R < n — 1. The inequalitydeg P < n — 1
implies thep-orthogonality ofP and P,

b
/ PP,p = 0.

On the other handleg R < n — 1 yields thatR is equal to its Lagrange-interpolation polyno-

mial: .
R=7 R(&)L

Therefore, considering the definition of the coefficients . ., ¢, in formula [2.5), we obtain

that
/QP—/PPnP+/RP—ZR§k/Lkﬂ

= ZCkR &r) Z k(P (&) Pa(&k) + R(&)) chQ &k)-

That is, the quadrature formu@.l) is exact for polynomials of degree atmostl.
Conversely, assume that (R.1) is exact for polynomials of degree atmostl. Define the
polynomial@ by the formulaQ(z) := (z — &) - - - (x — &,) and letP be a polynomial of degree

at mostn — 1. Then,deg PQ < 2n — 1, and thus

/ PQp = elP€)Q(E) + -+ + eaP(E)Q(E,) = 0.
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Therefore() is p-orthogonal taP. The uniqueness af, implies thatP, = a,,Q, and¢y, . .., &,
are the zeros oP,. Furthermore,[(2]1) is exact if we substityte= L, andf := L?, respec-
tively. The first substitution give$ (2.5), while the second one shows the nonnegativity of
For further details, consult the bodk [39, p. 44]. O

Theorem 2.2. Let P, be then degree member of the orthogonal polynomial systerfu g
with respect to the weight functign (z) := (z — a)p(z). Then(2.9)is exact for polynomialg
of degree at mosin if and only if&y, . .., &, are the zeros oP,, and

1 b,
(2.6) o= iy | Pt
1 b (x—a)P,(x)
2.7 = dx.
@) * G —a /a (z — §k)P/L(§k)p(x) !
Furthermore(,, ..., &, are pairwise distinct elements [of, b[, andc, > Oforall £ =0,...,n.

Proof. Assume that the quadrature formyla (2.2) is exact for polynomials of degree a2imost
If P is a polynomial of degree at moat — 1, then

b b
[ o= [ @ = aP@p@ds = - )PE) + -+ el - P
Applying Theorenj 2]1 to the weight functign and the coefficients

Cask = Ck(gk - CL),

we get that;, ..., &, are the zeros oP, and, for allk = 1, ..., n, the coefficients; ., can be
computed using formulé (4.5). Therefore,

o Py(x) Ay — b (x —a)P,(x) da
ale—0) = [ pryelonts = [ e e

Substitutingf := P2 into (2.1), we obtain that

1 b
=— | P%.
0 P3<a>/a n?

Thus [2.6) and (2]7) are valid, angl > 0 for k = 0,1, ..., n.

Conversely, assume thét, . . ., &, are the zeros of the orthogonal polynomial, and the
coefficientscy, . . ., ¢, are given by the formula (2.7). Define the coefficienby ¢, = ffp —
(¢1 + -+ + ¢,). If Pis apolynomial of degree at mo2t, then there exists a polynomiél
with deg Q < 2n — 1 such that

P(z) = (x —a)Q(z) + P(a).

Indeed, the polynomiaP(z) — P(a) vanishes at the point = a, hence it is divisible byx —a).
Applying Theorenj 2]1 again to the weight functipn

b
/ Qpa - ca;lQ(§1> + -+ Ca;nQ(é.n)
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holds. Thus, using the definition of, the representation of the polynomidland the quadra-
ture formula above, we have that

| P@pleids = [ (- Q@) + Pla) plads

= _alé —a)Q&) + ) Pla)

k=0

= coP(a) + Z e (& — @)Q(&) + P(a))

=coP(a) + > cnP(&),

which yields that the quadrature formua (2.2) is exact for polynomials of degree amost
Therefore, substituting := P? into (2.2), we get formuld (2}6). O

Theorem 2.3. Let P, be then!" degree member of the orthogonal polynomial systerjuoi
with respect to the weight functigfi(x) := (b — x)p(z). Then(2.3)is exact for polynomialg
of degree at mosin if and only if&y, . .., &, are the zeros oP,, and

1 b (b—z)P,(x)
2.8 Cp = / x)dx,
@9 S A F A
1 b
(2.9) Cnt1 = %/a Py (x)p(x)dz.
Furthermore(, . . ., &, are pairwise distinct elements jof [, andc;, > Oforallk =1,... n+
1.

Hint. Applying a similar argument to the previous one to the weight functfomve obtain the
statement of the theorem. O

Theorem 2.4. Let P, be then!" degree member of the orthogonal polynomial systerfugi
with respect to the weight functigfj. Then(2.4)is exact for polynomialg of degree at most
2n + 1ifand only if¢y, . . ., &, are the zeros oF,, and

1 b )

(2.10) Co = m/a (b — 2) P, (2)p(x)dz,
B 1 b (b—2)(z — a)P,(2)

(241 R AR e

1 b
(2.12) Cn+1 = m/a (z — a) Py (x)p(x)da.
Furthermore(;, .. ., &, are pairwise distinct elements jof, b, andc, > Oforall k =0,..., n+
1.

Proof. Assume that the quadrature formula {2.4) is exact for polynomials of degree at most
2n + 1. If P is a polynomial of degree at magt — 1, then

| o= [ 0= - ) P@pis
=c(b—&)(&G —a)P&) + -+ (b= &) (& —a)P(&).
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Applying Theorenj 2]1 to the weight functigj and the coefficients
Capik = Ci(b— &) (&L — a),

we get that,, ..., &, are the zeros of, and, for allk = 1, ..., n, the coefficients, ;. can be
computed using formulé (4.5). Therefore,

B b P(z)
cx(b— &) (& —a) = /a (x — &) P (&)

B b (b—2)(z — a)P,(x) Ve
_/a (z — &) P (&) pla)de.

Substitutingf := (b — z)P?(x) andf := (z — a) P?(z) into (2.1), we obtain that

pa()dx

b
o= e . 0P le)de

b
Cnt1 = m/ (z — a) Py (x)p(x)da.

Thus [2.10),[(2.11) andl (2.]12) are valid, furthermege> 0 for k =0,...,n + 1.
Conversely, assume thg, ..., ¢, are the zeros of,, and the coefficients,...,c, are
given by the formula[(2.11). Define the coefficientaandc, ., by the equations

[ = aptarts = b - o)+ Y- )
a k=1

/ (x —a)p(x)dr = Z (& — a) + coa (b — a).

k=1

If P is a polynomial of degree at mat + 1, then there exists a polynomi@l with deg Q@ <
2n — 1 such that

(b—a)P(x)=(b—2)(r —a)Q(x) + (x — a)P(b) + (b — x)P(a).

Indeed, the polynomidb — a) P(z) — (z — a) P(b) — (b— z) P(a) is divisible by (b — z)(z — a)
sincex = a andz = b are its zeros. Applying Theorem 2.1 again,

b
/ ng = Ca,b;lQ(gl) + -+ Ca,b;nQ(Sn)

holds. Thus, using the definition af andc, 1, the representation of the polynomialand the
guadrature formula above, we have that

b-a) [ Pla)pla)da
= [ (0= 2)(e - Q) + (x = )PO) + O~ 2)Pla)) plo)ds

= Z ck(b - &f)(fk - G)Q(ék)

+ P(b) / (x — a)p(x)dz + P(a) / (b —z)p(x)dx
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n

=) (b= &) (& — a)Q(&)

+co(b—a)P(a) + > (b — &)Pla)

+ 3" a6 — a)P(b) + e (b — @) P(B)

k=1
n

= (b= &) (& — a)Q(&) + (& — a)P(b) + (b — &) P(a))

k=1

+Co(b—a)P( )+cn+1(b—a)P(b)

o(b—a)P +ch (b — a)P(&) + cnsr (b — a)P(D),

which yields that the quadrature formula (2.4) is exact for polynomials of degree abmedt
Therefore, substituting := (b — z)P?(z) and f := (z — a) P?(x) into (2.4), formulae[(Z2.10)
and [2.1P) follow. O
Let f : [a,b] — R be a differentiable functiony,, ..., z, be pairwise distinct elements of

la,b], andl < r < n be a fixed integer. We denote the Hermite interpolation polynomidf py
which satisfies the following conditions:

H(.Tk):f(l'k) (kzl,...,n),

H'(zy) = f'(xr) (k=1,...,7).

We recall thatdeg H = n + r — 1. From a well known result, (see [13, Sec. 5.3, pp. 230-231]),
for all z € [a, b] there exist® such that

B Wn(Z)wr () Lnpr
(2.13) fo) = H(x) = = =m5 7).
where

wr(x) = (z —x1) - (& — ).

2.2. An approximation theorem. It is well known that there exists a functianwhich pos-
sesses the following properties:

() p: R — R, isE>,I. e, itis infinitely many times differentiable;
(i) suppy C [-1,1];
(i) [ro=1.

Usingy, one can define the functign for all ¢ > 0 by the formula

o) =¢(2)  (@eR).

Then, as it can easily be checked,satisfies the following conditions:
) v :R— R, ISE™;
(i) suppp. C [—¢,¢];
(i) [p e =1.

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/
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Let I ¢ R be a nonempty open intervgl,: I — R be a continuous function, and choose
¢ > 0. Denote the convolution of andp. by f., that is

fox) = / FWeee —y)dy  (zR)

wheref(y) = f(y)if y € I, otherwisef (y) = 0. Let us recall, thaf. — f uniformly ass — 0
on each compact subinterval 6f and f. is infinitely many times differentiable oR. These

important results can be found for examplelin [40, p. 549].

Theorem 2.5.Let I C R be an open intervalf : I — R be a polynomiallyn-convex con-
tinuous function. Then, for all compact subintervalsb] C I, there exists a sequence of
polynomiallyrn-convex ands™ functions( f;) which converges uniformly tf on [a, b].

Proof. Chooser, b € I andgy > 0 such that the inclusiofu — ¢, b + ¢o] C I holds. We show
that the functiorr. f : [a, b] — R defined by the formula

= f(x) = f(x —¢)

is polynomiallyn-convex onfa, b] for 0 < € < gg. Leta < zg < --- <z, <bandk <n—1
be fixed. By induction, we are going to verify the identity

Tef(xO)

Zo

(2.14) O

T f ()

xTL

Tsf(x0>
1

Tog— €

(’ZEO _ E)k*l
76

n—1
Lo

e f(2n)

If £ = 1, then this equation obviously holds. Assume, for a fixed positive integern — 2,
that [2.14) remains true. The binomial theorem implies the identity

-

)5k+ (If)ak_l(x—s)—l—---—l— (

Thatis,(z—e¢)* is the linear combination of the elemeits—=¢, . . .,

)2

(r—e)* andz*. Therefore,

adding the appropriate linear combination of #€, ..., (k + 1)* rows to the(k + 2)" row,

we arrive at the equation

Tsf('rO)
1

Tog — €

(l'() —lg)k_l

k
Lo

E+1
Ly

n—1
Lo

7 f ()
1

Tp — €

n—1

—| (w0 —¢)

Tef(x0>
1

Tog — &

k—1

(2o — S)k
xlg+1

n—1
Lo

7 f ()
1

Tp — €

Hence formula[(2.14) holds for all fixed positikewheneverl < k£ < n — 1. The particular
casek = n — 1 gives the polynomiah-convexity ofr. f. Applying a change of variables and

J. Inequal. Pure and Appl. Mat}9(3) (2008), Art. 63, 51 pp.
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the previous result, we get that

fe(wo) - feln)
1 1
(1| o
:L,g.—l :L,Z-—l
J?(t)@s(lxo - t) : f(t)gps(xn - t)
1
— /(—1)" Lo te Tn dt
R : 5
'8,.—1 xzfl
flwo—s) -+ flza—s)
1 1
_ / —1r| o Tn | pu(s)ds
s 5 5
ngl xz—l
Tof(wo) - Tof(n)
1 1
R . . .
xg.*l R

which shows the polynomial-convexity of f. on [a, b] for 0 < e < &.

To complete the proof, choose a positive integgsuch that the relatio% < g holds. If
we defines, and f;, by e, := ﬁ andfy := f., fork € N, then0 < ¢, < g, and thuq f¢)2,
satisfies the requirements of the theorem. O

2.3. Hermite—Hadamard-type inequalities. In the sequel, we shall need two additional aux-
iliary results. The first one investigates the convergence properties of the zeros of orthogonal
polynomials.

Lemma 2.1. Let p be a weight function ofx, b], and(a;) be strictly monotone decreasin@, )
be strictly monotone increasing sequences suchdhat a, b; — b anda; < b;. Denote the
zeros ofP,,;; by &1, . . ., &myj, WhereP,,; is them!" degree member of the, , j-orthogonal
polynomial system ofu;, b;], and denote the zeros &f, by &, ..., &, whereP,, is them!
degree member of theorthogonal polynomial system ¢a, b]. Then,

jli)ngogk,jzék (kzlvan)

Proof. Observe first that the mappin@, b) — s iS continuous, thereforgyq, ) —
Hislas) hENCer,,.; — P, pointwise according to the representation of orthogonal polynomials.
Takee > 0 such that

1§ — €, &, + €[Cla, b,
& — e, & +elN)&—e & +el=0 (K#1 kle{l,....m}).
The polynomialP,, changes its sign off;, — ¢,&, + [ since it is of degreen and it hasm

pairwise distinct zeros; therefore, due to the pointwise convergéigcealso changes its sign
on the same interval up to an index. That is, for sufficiently lgige.; €|¢, — <, & +¢[. O
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The other auxiliary result investigates the one-sided limits of polynomialtpnvex func-
tions at the endpoints of the domain. Let us note that its first assertion involves, in fact, two
cases according to the parity of the convexity.

Lemma 2.2. Let f : [a,b] — R be a polynomially:-convex function. Then,

() (=1)"f(a) = limsup;_,o(=1)"f(t);
(i) f(b) = limsup,_;, o f(t).

Proof. It suffices to restrict the investigations to the even case of asséitianly since the
proofs of the other ones are completely the same. For the sake of brevity, we shall use the
notation f (a) := limsup,_,,., f(t). Take the elements, := a < 2, :=t < --- < x,, Of

la, b]. Then, the (even order) polynomial convexity foimplies

fla) f(t) flza) ... flzn)
11 1 .1

t To Ty, > (.

n—1 n—1 n—1 n
a t Ty A e

Therefore, taking the limsup as— a + 0, we obtain that

fla) fila) flxz) ... flzn)
1 1 1 o 1
a a T9 Tn >0
CLnfl anfl xg—l xzfl
The adjoint determinants of the elemerfts.), ..., f(x,) in the first row are equal to zero

since their first and second columns coincide; on the other hfgndand f (a) have the same
(positive) Vandermonde-type adjoint determinant. Hence, applying the expansion theorem on
the first row, we obtain the desired inequality

fa) = fi(a) 2 0.
UJ

The main results concern the cases of odd and even order polynomial convexity separately in
the subsequent two theorems.

Theorem 2.6.Letp : [a,b] — R be a positive integrable function. Denote the zero®pfby

&, ..., & Where P, is them!™ degree member of the orthogonal polynomial systerfuohi

with respect to the weight functioix — a)p(x), and denote the zeros &f,, by 7, ..., 7m

whereQ),, is them!™ degree member of the orthogonal polynomial systera dn with respect
to the weight functiontb — z)p(z). Define the coefficientsy, . .., a,,, andfy, . .., 5,1 by the
formulae

1,
ap = P (a) /a P2 (x)p(x)dz,

_ 1 " (z —a)Pp(x) e
e &k _a/a (x—fk)P/n(&)p( )d
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and

R N R R
fe= 5 | (=)@ ()

1 b,
B+t = m/ﬂ Q- (x)p(z)dzx.

If a function f : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the following
Hermite—Hadamard-type inequality

m b m
0 (@) + 3 anf(&) < [ <Y B ) + Ber (0)
k=1 @ k=1

Proof. First assume thaf is (2m + 1) times differentiable. Then, according to Theore A,
f@m+1) >0 on]a, b]. Let H be the Hermite interpolation polynomial determined by the condi-
tions

H(a) = f(a),
H (&) = f(&),
H'(&) = ['(&)-

By the remainder ternj (2.1.3) of the Hermite interpolation; i§ an arbitrary element g, b],
then there exist8 €|a, b[ such that

(z—a)(@—&)*- - (z — &)’

(2m + 1)! FEmo).

f(x) — H(x) =

Thatis, fp > Hp on|a,b] due to the nonnegativity of >+ and the positivity ofp. On the
other hand/ is of degreem, therefore Theorein 2.2 yields that

[ g0z [ Ho=aott@)+ 3" antt(6) = aof (@) + Y- axf(€)

For the general case, I¢tbe an arbitrary polynomially2m + 1)-convex function. Without
loss of generality we may assume that> 1; in this casef is continuous (see Theorg¢m B). Let
(a;) and(b;) be sequences fulfilling the requirements of Lemima 2.1. According to Thgorem 2.5,
there exists a sequence®f°, polynomially(2m+1)-convex functiong f;.;) such thatf;; — f
uniformly on{a;, b;] asi — oco. Denote the zeros aP,,; by &, ..., &y, Where P, ; is the
m'" degree member of the orthogonal polynomial systenugrb;] with respect to the weight
function(x — a)p(x). Define the coefficientsy;, . . ., a,,;; analogously tey, . . ., o, with the
help of P,,;;. Then,&,,; — & due to Lemm& 2]1, and henag,; — o, asj — oo. Applying
the previous step of the proof on the smooth functiofis), it follows that

a0 fii(ag) + Y oy fi (i) < / Jisp-
k=1 @;j
Taking the limitsi — oo and thenj — oo, we get the inequality

m b
ao(min /(1)) +3 sl < / I

t—a-+

This, together with Lemmla 2.2, gives the left hand side inequality to be proved. The proof of
the right hand side inequality is analogous, therefore it is omitted. O
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The second main result offers Hermite—Hadamard-type inequalities for even-order polynomi-
ally convex functions. In this case, the symmetrical structure disappears: the lower estimation
involves none of the endpoints, while the upper estimation involves both of them.

Theorem 2.7.Letp : [a,b] — R be a positive integrable function. Denote the zero®pfby
&, ..., &, where P, is them!™ degree member of the orthogonal polynomial systenfuoh
with respect to the weight functigrix), and denote the zeros &, byn, ..., n,_1 where
Q.1 isthe(m —1)* degree member of the orthogonal polynomial systeifia g with respect
to the weight functiotib — z)(z — a)p(x). Define the coefficients,, ..., a,, andfy, . .., Bmi1

by the formulae
b P, (x)
= d
o / (o= &) Py

and

1 b )
b= a0~ @@,

1 ’ (b—2)(r—a)Qm-1(v)

(b —nk)(&k — a) / @ =)0 1 (70) p(x)dz,
1 b )

6m+1 = (b — a) 5 (b) /a (x — CL) mfﬂx)p(g)dx

m—1

B, =

If a functionf : [a, b] — R is polynomially(2m)-convex, then it satisfies the following Hermite—
Hadamard-type inequality

m b m—1
S anf(@) < [ fo<mf(@)+ Y A m) + uf0)
k=1 @ k=1

Proof. First assume that is n = 2m times differentiable. Thef®*™ > 0 on]a, b[ according
to Theoren B. Consider the Hermite interpolation polynomilahat interpolates the function
f in the zeros ofP,, in the following manner:

H(&) = f(&r),
H'(&) = /(&)

By the remainder ternj (2.1.3) of the Hermite interpolation; i§ an arbitrary element g, b],
then there exist8 €)a, b[ such that

(= &)% - (= &)’

)l FE™ ().

flw) — H(z) =

Hencefp > Hp on|[a, b] due to the nonnegativity gf>™ and the positivity ofp. On the other
hand,H is of degreem — 1, therefore Theorefn 2.1 yields the left hand side of the inequality
to be proved:

b b m m
/ fPZ/ Hp =Y arH(&) =) arf(&).
a a k=1 k=1
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Now consider the Hermite interpolation polynomidl that interpolates the functiofi at the
zeros of(),,_; and at the endpoints of the domain in the following way:

H(a) = f(a),
H(ng) = f(m),
H' (i) = f'(nw),

H(b) = f(b)

By the remainder ternj (2.1.3) of the Hermite interpolation; i§ an arbitrary element dé, b],
then there exists @ €]a, b| such that

(2 = @) =) = m)* (0 = 1 )? o
flw) = H(w) = o 7em6).

The factors of the right hand side are nonnegative except for the factdr) which is negative,
hencefp < Hp. On the other handy is of degreem — 1, therefore Theorein 2.4 yields the
right hand side inequality to be proved:

b b m—1
[ do< [ Ho=put@+ Y Attt + 5,1

k=1

— Gof(a) + 3" Buf ) + B (D).

From this point, an analogous argument to the corresponding part of the previous proof gives
the statement of the theorem without any differentiability assumptions on the furfction]

Specializing the weight functiom= 1, the roots of the inequalities can be obtained as convex
combinations of the endpoints of the domain. The coefficients of the convex combinations are
the zeros of certain orthogonal polynomials[onl] in both cases. Observe that interchanging
the role of the endpoints in any side of the inequality concerning the odd order case, we obtain
the other side of the inequality.

Theorem 2.8. Let, form > 0, the polynomialP,, be defined by the formula

L3 i
r 1 1
Pm(l') - . 3 e
mo 1 1
W w2 T 2mel
Then,P,, hasm pairwise distinct zerog, ..., \,, in |0, 1[. Define the coefficients,, . . ., a,,

by

1 1
= P2 (z)d
= g, PRl

S 1 /1 zP,,(x) ”
TN =P On)
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If a function f : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the following
Hermite—Hadamard-type inequality

aof(a) + > arnf((1 = Ap)a+ Ad) < m/ f(z)dx

k=1

Proof. Apply Theoreni 2.6 in the particular setting when= 0, b := 1 and the weight function
is p = 1. Then, as simple calculations show,, is exactly them!"* degree member of the
orthogonal polynomial system df, 1] with respect to the weight function(z) = = (see the
beginning of this section). Thereforg,, hasm pairwise distinct zerog < A\; < --- < A\, < 1.
Moreover, the coefficientsy, . . ., «,, have the form above. Define the functiéh: [0,1] — R
by the formula

F(t):= f((1—t)a+tb).
It is easy to check that is polynomially(2m+1)-convex on the intervdl, 1]. Hence, applying
Theorenj 2.6 and the previous observations, it follows that

/ﬂﬂwﬁ2admm+§i%FMQ

= oo f(a) +Zozkf((1 — Ae)a + Agb).

k=1
On the other hand, to complete the proof of the left hand side inequality, observe that

bia /abf(ﬂf)drc = /01 F(t)dt.

For verifying the right hand side one, define the function|a, b — R by the formula

p(r) = —fla+b—=z)
Then,p is polynomially(2m + 1)-convex onfa, b]. The previous inequality applied gngives
the upper estimation of the Hermite—Hadamard-type inequality for O

Theorem 2.9. Let, form > 1, the polynomials®,, and@,,,_; be defined by the formulae

1 1 %
1
x —_ ... —
Py(x):=| . S
m 1 o
x m—+1 2m
1 1
1 2:3 T m(m+1)
T 1 R S
Q _1($) — 34 (m41)(m+2)
m-1 1 ' 1
X miD)(m+2) ~  @m-132m
Then,P,, hasm pairwise distinct zerog, ..., \,, in]0,1[ and@,,_1 hasm — 1 pairwise dis-
tinct zerosuy, . . ., um—1 N0, 1], respectively. Define the coefficients. . ., o, andfy, . . ., G

by

L ! P (z) "
. "/o CESHIAk
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and
1 ! )
Bo = m/o (1 —2)Q;,_(7)dx,
o 1 ! (1 —2)Qm—1(x) .
B 1= (1 — pure) /o (z — Mk:)Qﬁn_l(ﬂk)d ’
1 L

If a functionf : [a, b] — R is polynomially(2m)-convex, then it satisfies the following Hermite—
Hadamard-type inequality

m b
> anf((1=Ma+ab) < 2 [ oo
k=1 a

m—1

< Bof(@) + Y Bef (1= p)a+ pb) + B f (D).

k=1

Proof. Substitutes := 0, b := 1 andp = 1 into Theoren] 2]7. Thenp,, is exactly them"
degree member of the orthogonal polynomial system on the intgrvdl with respect to the
weight functionp(x) = 1; similarly, @, is the(m — 1)** degree member of the orthogonal
polynomial system on the intervél, 1] with respect to the weight function(z) = (1 — z)zx.
Therefore,,, hasm pairwise distinct zero8 < A\; < --- < \,, < l and@,,,_; hasm — 1
pairwise distinct zero8 < iy < --- < u,—1 < 1. Moreover, the coefficients,, ..., «,, and

Bo, - - -, B have the form above. To complete the proof, apply Thedrein 2.7 on the function
F :[0,1] — R defined by the formula

F(t):= f((1—t)a+tb).
O
2.4. Applications. In the particular setting whem = 1, Theorenj 2.8 reduces to the classical
Hermite—Hadamard inequality:

Corollary 2.1. If f : [a,b] — R is a polynomially2-convex (i.e. convex) function, then the
following inequalities hold

f(a+b) Sbia/abf(m)dxgw.

2 2

In the subsequent corollaries we present Hermite—Hadamard-type inequalities in those cases
when the zeros of the polynomials in Theoijenj 2.8 and Thepregm 2.9 can explicitly be computed.

Corollary 2.2. If f : [a,b] — R is a polynomially3-convex function, then the following in-
equalities hold

1 3 2b 1t 3 [(2a+Db 1
d@+ 3 (52) < o1 [ < 3 (250 + 40
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Corollary 2.3. If f : [a,b] — R is a polynomially4-convex function, then the following in-
equalities hold

1. (3+v3 3—-3 1. (3-v3 3+V3
§f< o0t b>+§f( o0t b)

<t [t < @+ 21 (50) + o)

Corollary 2.4. If f : [a,b] — R is a polynomially5-convex function, then the following in-
equalities hold

1 16+v6  (4+vV6 6—+6
o/ @+ =35 f( 0“0 b)
16— f 4—+/6 6+\/5b
36 T

< /f

. 16—\/_f<6+\/6a+4—\/€b>
36 10 10

+1ﬁ+¢_( J_+4+¢%>+1ﬂw

a
36 10 10

In some other cases analogous statements can be formulated applying Thegrem 2.9. For
simplicity, instead of writing down these corollaries explicitly, we shall present a list which
contains the zeros a?, (denoted by\), the coefficientsy, for the left hand side inequality,
also the zeros of),, (denoted byu;), and the coefficients,. for the right hand side inequality,
respectively.

Casen =6
The zeros ofP;:

5-v15 1  5++V15
10 7 2 10
the corresponding coefficients:
5 4 5
187 97 18
The zeros of),:
5-v5  5+6
10 7’ 10 7’

the corresponding coefficients:

1 5 1
Casen =38
The zeros ofP;:
1 5254 70v/30 1 525 — 70v/30
2 70 T2 70 ’
L 525 — 70v/30 L 525 + 70v/30
2 70 ) 70 ’
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the corresponding coefficients:

The zeros of)s:

the corresponding coefficients:
1 49 16 49 1
20" 1807 45 180" 20
Casen =10
The zeros ofs:

1 245 + 1470 1 245 — 144/70

2 42 T2 42 ’
1 1 245 —-14v/70 1 n 245 + 1470

20 2 42 ) 42 ’
the corresponding coefficients:

322 —13v/70 322+ 1370 64 322 +13v/70 322 — 1370

1800 ’ 1800 T2257 1800 ’ 1800
The zeros of)y:

1 1474+ 42V7 1 147 — 427
2 42 » 2 42 ’
1 147 — 427 1 14T+ 427
2 42 a7 42 ’

the corresponding coefficients:

1 14—V7 144+V7T MU+VT 1U-V7T 1
30’ 60 60 60 60 ' 30
Casen = 12 (right hand side inequality)
The zeros of)s:

1 495 +66v15 1 495 — 6615

2 66 2 66 ’
O 66115 1 L VA5 + 66v/15
2" 2 66 2 66 ’

the corresponding coefficients:
1 124 — 7415 124 + 715 128

42’ 700 700 525’
124+ 715 124 —7v15 1
700 700 492

During the investigations of the higher—order cases above, we can use the symmetry of the
zeros of the orthogonal polynomials with respecti @, and therefore the calculations lead
to solving linear or quadratic equations. The first case where “casus irreducibilis” appears
isn = 7; similarly, this is the reason for presenting only the right hand side inequality for
polynomially 12-convex functions.
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3. GENERALIZED 2-CONVEXITY

In terms of geometry, the Chebyshev property of a two dimensional system can equivalently
be formulated: the linear combinations of the members of the system (brgglyeralized
lines) are continuous; furthermore, any two points of the plain with distinct first coordinates can
be connected by a unique generalized line. That is, generalized lines have the most important
properties of affine functions. These properties turn out to be so strong that most of the classical
results of standard convexity, can be generalized for this setting.

First we investigate some basic properties of generalized lines of two dimensional Chebyshev
systems. Then the most important tool of the section, a characterization theorem is proved for
generalize®-convex functions. Two consequences of this theorem, namely the existence of
generalized support lines and the property of generalized chords are crucial to verify Hermite—
Hadamard-type inequalities. Another result states a tight connection between standard and
(w1, ws)-convexity, and also guarantees the integrability(«wof, w;)-convex functions. Some
classical results of the theory of convex functions, like their representation and stability are also
generalized for this setting.

3.1. Characterizations via generalized lines.Let us recall thatw,, w,) is said to be &heby-
shev systeraver an interval if w;,ws : I — R are continuous functions and, for all elements
x <yofl,

wi(r) wi(y)
wy(z) wa(y)
Some concrete examples on Chebyshev systems are presented in the last section of the section.
Given a Chebyshev systew;,ws), a functionf : I — R is calledgeneralized convex with
respect to(wy, wy) or briefly: generalized2-convexif, for all elementsz < y < z of I, it

satisfies the inequality

> 0.

f@) fy)  f2)

wi(z) wily) wi(z) | >0.

wo(w) wa(y) wa(z)
Clearly, in the standard setting this definition reduces to the notion of (ordinary) convexity. Let
(w1, ws) be a Chebyshev system on an interahnd denote the set of all linear combinations
of the functionsv; andw; by .Z(w;,ws). We say that a functiow : I — R is ageneralized
line if it belongs to the linear hullZ(w,,w,). The properties of generalized lines play the key
role in our further investigations; first we need the following simple but useful ones.

Lemma 3.1. Let (w;,wy) be a Chebyshev system over an intetkzalhen, two different gener-
alized lines of?(w;, wy) have at most one common point; moreover, if two different generalized
lines have the same value at soéne °, then the difference of the lines is positive on one side
of £ while negative on the other side 6f In particular, w; and w, have at most one zero;
moreover, ifw; (resp.,w>) vanishes at somg € I°, thenw, is positive on one side gfwhile
negative on the other.

Proof. Due to the linear structure d¥(w;, w-), without loss of generality we may assume that
one of the lines is the constant zero line. Then, the other generalized has the representa-
tion aw; + Bws, With a2 + 5% > 0.

The first assertion of the theorem is equivalent to the property.that at most one zero. To
show this, assume indirectly that¢) andw(n) equal zero fo€ # n; that is,

aw; (§) + Bwa(§) =0,
awy(n) + Pwz(n) = 0.
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By the Chebyshev property dfv;, w,), the base determinant of the system is nonvanishing,
therefore the system has only trivial solutions= 0 and3 = 0 which contradicts the property
o+ 5% > 0.

An equivalent formulation of the second assertion is the followingo(f) = 0 for some
interior point¢, thenw > 0 on one side of while w < 0 on the other. If this is not true, then,
according to the previous result and Bolzano’s theorens, strictly positive (or negative) on
both sides of. For simplicity, assume that(t) > 0 for ¢t # £. Define the generalized ling*

by w* := —fw; + aw,. Then,(w,w*) is also a Chebyshev systemuzif< y are elements of,
then
wz)  w(§) ‘ _ ) a f wi(z) wi(y) ’
w(z) w(y) B a| | w(z) way)
o g | wi(@) wi(y)
=@ @) wl) |7
Therefore, taking the elements< ¢ < y of I, we arrive at the inequalities
o<| 2 20 | = v,

which yields the contradiction that*(¢) is simultaneously positive and negative.
For the last assertion, notice that w, and the constant zero functions are special generalized
lines and apply the previous part of the theorem. O

The most important property of/(w;,ws) guarantees the existence of a generalized line
“parallel” to the constant zero function, which itself is a generalized line as well (see below).
Moreover, as it can also be showff,(w,, w,) fulfills the axioms of hyperbolic geometry.

Lemma 3.2.If (wy,ws) is @ Chebyshev system on an interahen there exists € £ (wy, w»)
such thatv is positive on/°.

Proof. If w; has no zero in°, thenw := w; orw := —w; (according to the sign af;) will do.
Suppose that, (§) = 0 for some¢ € I°. Due to Lemma 3]1, without loss of generality we may
assume that

wi(x) <0 (x <& zel),
wi(y) >0  (y>& yel).
Choose the elemenis< ¢ < y of I. The Chebyshev property ¢, w,) and the negativity of
wi (x)ws(y) implies the inequality
wa(y)  wa(x)

w1 (y) = wi ()

Hence

(3.1) o 1= sup [wQ(y)] < inf {wg(x)] :

y>e Lwi(y) e<¢ |wi ()
moreover, both sides are real numbers. We show that the generalized line defined=by
awi — wo IS positive on the interior of.
First observe that takes a positive value at the poifit Indeed, by the definition ab we
havew(&) := aw(§) — wa (&) = —ws(€); on the other hand, fay > &, the positivity ofw, (y)
and the Chebyshev property @f;, ws) yields —ws (&) > 0.
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If y > &, then the definition of implies

S

2(y) .
w1(y) ’

multiplying both sides by the positive (y) and rearranging the terms we gety) := aw; (y)—

wa(y) > 0.
If z < &, then inequality[(3]1) gives that

o>

S

~—

2(5C

a < ;
~ wi(z)

multiplying both sides by the negativg () and rearranging the obtained terms, we arrive at
the inequalityw(z) := awi () — we(z) > 0.

To complete the proof, it suffices to show thatlways differs from zero on the interior of
the domain. Assume indirectly thatn) := aw;(n) — wo(n) = 0 for somen € I°. Clearly,
n # & sincew(§) > 0. Thereforew, (n) # 0 anda can be expressed explicitly:

o= wa(n)
w1(n) .

If £ < n, choosey € I such that) < y hold. By the positivity ofv; ()w; (y) and the Chebyshev
property of(w;,ws),

wi(n) — wi(y)

which contradicts the definition ef. Similarly, if £ > 7, chooser € I such that: < 7 is valid.
Then, the positivity ofv; (z)w; (n) and the Chebyshev property @f;, w) imply the inequality

oy wa(1) _ wa(y)

() wo(a)
T o) wle)

which contradicts (3]1). O

As an important consequence of Lemjmg| 3.2, a Chebyshev system can always be replaced
equivalently by a “regular” one. In other words, assuming positivity on the first component of a
Chebyshev system, as is required in many further results, is not an essential restriction. More-
over, the next lemma also gives a characterization of pairs of functions to form a Chebyshev
system.

Lemma 3.3. Let (wy,ws) be a Chebyshev system on an interat R. Then, there exists a
Chebyshev systefw],w;) on I that possesses the following properties:
() wi is positive on/°;
(i) w3 /wy is strictly monotone increasing aff;
(iii) (wq,wq)-convexity is equivalent t@u;, w;)-convexity.

Conversely, itv;,ws : I — R are continuous functions such that is positive anduv, /w; is
strictly monotone increasing, théw,, w-) is a Chebyshev system over

Proof. Lemmd 3.2 guarantees the existence of real constaatsl 3 such thatw, + Sws > 0
holds for allz € I°. Define the functions;},w; : I — R by the formulae

wy = awy + Pws, wy = —fw + aws.
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Choosing the elements< y of I and applying the product rule of determinants, we get

(

) wi

wi(z) wily) ‘:' a B |w (y)’
wy(z) w;(y) =0 o | | wz) way)
= |50 S|

Therefore(w},w3) is also a Chebyshev system overAssuming thatv] is positive, as it can
easily be checked, the Chebyshev propertydtf w3) yields that the function; /wj is strictly
monotone increasing on the interior bf

Lastly, letf : I — R be an arbitrary function and < y < z be arbitrary elements df.
Then, by the product rule of determinants,

f@)  fly)  f(2) 1 0 0 ()  fly)  f(2)
wi(z) wily) wi(z) |=]0 a B |-|wlz) wily) wilz)
wi(z) wi(y) ws(2) 0 =8 a| |w(z) wy) wa(2)
()  fly) f(2)
= (0 + 3% | wilz) wily) wi(z) |,
wa () wa(y) wa(2)

which shows that the functiofi is generalized convex with respect to the Chebyshev system
(w1,ws) if and only if it is generalized convex with respect to the Chebyshev sygteém;).
The proof of the converse assertion is a simple calculation, therefore it is omitted. [

The following result gives various characterization$wf, w, )-convexity via the monotonic-
ity of the generalized divided difference, the generalized support property and the “local” and
the “global” generalized chord properties.

Theorem 3.1.Let(w;,w,) be a Chebyshev system over an inteivalich thatv; is positive on
I°. The following statements are equivalent:

(i) f:1 — Ris(w,ws)-coONVex;

(ii) for all elementss < y < z of I we have that

f)  f(z) ‘ f@)  fy) ‘
wi(y) wi(z) wi(z) wi(y) .
wi(y) wi(z) ‘ T @) wiy) |
wa(y) wa(z) wa(z) wa(y)

(iii) forall xq € I° there existy, 5 € R such that

aw1 (o) + Pwa(rg) = f(w0),
aw (z) + Bwa(z) < f(z)  (z € I);

(iv) foralln € N, zg,21,...,2, € I and ), ..., \, > 0 satisfying the conditions
Z Awr (2g) = wi (o),
k=1
Z AMws () = wa(xg),
k=1

we have that

f(zo) < Z A f (@);
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(v) forall zo, 1,25 € I and Ay, Ay > 0 satisfying the conditions
>\1W1 (Il) + )\2(,()1 (Ig) = W1 (Io),
Mwa (1) + Aawa(72) = wa(o),
we have that
fzo) < Aif(z1) + Aaf(22);
(vi) for all elements: < p < yof I
f(p) < awi(p) + Bwa(p),
where the constants, [ are the solutions of the system of linear equations
f(@) = awi(z) + Bus(z),
fy) = awi(y) + Bwa(y)-

Proof. (i) = (i¢). Assume indirectly thatii) is not true. Then, considering the positivity of
the denominators, there exist elements y < z of I such that the inequality

fly)  f(z) f(z)  fy) ‘
wi(y) wi(z) wi(z) wi(y)

holds or equivalently,

wi(z) wi(y) ’>

wi(y) wi(z) ‘
wa(z) wa(y)

wa(y) wa(z)

wi(y) wi() ie) @)
e <w1(ﬂf) wa(y) ws(z) ‘*wl(z) 2(z) wa(y) )
wiy) wi(2) wi(z) wi(y)
> i (y) (f(w) wa(y) wa(z) '+f(z) wa(z) wa(y) D
Subtracting
wi(z) wi(2)
fy)wi(y) wa(z) wa(2)

from both sides and applying the expansion theorem “backwards”, we get

fz) fly)  f(2)
wi(z) wiy) wi(z)
wa(z) waly) wa(z)

w1<5'7) wl(y) Wl(z)
wi(r) wily) wi(z)
wa(w) wa(y) wa(z2)

f(y) > wi(y)

The (w1, wq)-convexity of f implies that the right hand side of the inequality is nonnegative,
while the left hand side equals zero, which is a contradiction.
(17) = (i11). Fix zo € I°. Then, for all element$ < zy < x of I,

|00 S| | I
RINEEEA
holds, therefore
c‘{l((?o)) wl((:?) ‘
= nf = w1 (o) Wl(x)’
w(T9) wa()

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HERMITE-HADAMARD -TYPE INEQUALITIES 25

is areal number. The positivity assumptiongrguarantees that the coefficientan be chosen
such thataw; (o) + Pwe(xg) = f(xo) is satisfied. Rewrite the desired inequality; (x) +
Buwq(z) < f(x) in the equivalent form

wi(zo) wi(z) f(xo)  f(x)

(3.2) 5 wa(z0) wa(2) wi(xg) wi(x)

The definition of3 guarantees that it is valid if, < z. Assume that < x, and choosé € [
such thatr < 2y < £ hold. Then, applyindi:), we have the inequality

f(xo)  f(€) f(x)  f(xo)
wi (o) wi(§) wi(z) wi(zo)
wi(zo) wi(§) | 7 | wilz) wi(wo)
wa(zg) wa(§) wa(z) wa(zo)
Observe that the denominator of the right hand side is positive, therefore, after rearranging this
inequality, we get

<0.

f((l"o)) f(é)) ‘
_ wi1(To) w1 wl(xo) u)l(gj) f(xo) f(ZL’)
wi(zo) wi(§) || walo) wa() ‘ * wi(zo) wi(z) ‘ <0,

wa(zo) w2 () ’

which, and the choice gf immediately implies[(3]2).

(13i) = (iv). First assume thaty, = z; = --- = z,,. We recall thatv;(x¢) andws(x)
cannot be equal to zero simultaneously due to Lefnmja 3.1; therefore one of the conditions gives
the identity ",_, A, = 1, and the inequality to be proved trivially holds.af, z1, ..., z, are
distinct points off, then it necessarily follows, € I°. Indeed, ifinf(/) € I and indirectly
xo = inf(7), then we have the inequalities

w1 (o) wa (k) — wi(zg)wa(z) >0

forall k = 1,...,n since(w;,ws) is a Chebyshev system dn furthermore, at least one of
them is strict. Multiplying thet*” inequality by the positive\, and summing from to n, we
obtain

w1 (o) Z Mwz (zg) > wa(xg) Z Axwr (k).

k=1 k=1
But, due to the conditions, both sides have the common val(®))w- (), which is a contra-
diction. An analogous argument gives that the case sup(/) is also impossible, therefore it
follows thatz, € I°.
Chooser, 3 € R so that the relations
aw (zo) + Pwa (o) = (o),
awy () + fwp(z) < f(z) (v €l
are valid. Then, substituting = z,, into the last inequality and applying the conditions, we get
that

Z Mo f (2g) > Z Apowr (zg) + Z A Bwa ()
k=1 k=1 k=1

= own (l’o) + 6(«02(«750) = f<x0)7

which gives the desired implication.
(iv) = (v). Taking the particular case = 2 in (iv), we arrive afv).
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(v) = (vi). According to Cramer’s rule, for all elements< p < y of I, the system of linear
equations

AMwi(2) + Aawi(y) = wi(p),
AMwa () + Aawa(y) = wa(p),
has unique nonnegative solutioksand\,. Therefore, using the definition efand,
f(p) < Aif(x) + Xaf(y)
= A1 (awi () + Pwa(z)) + Ao (awr (y) + Bws(y))
= a(Mwi(z) + Xawi(y)) + B(Mwa(z) + Aawa(y))
= aw(p) + aws(p).

(vi) = (¢). Expressing the unknowns and  with w;(z),w;(y) andw;(p), the inequality
f(p) < awi(p) + Bwa(p) can be rewritten into the form

wi(z) wi(y) f@)  f(y) f(@)  fy)
wa(z) waly) [T m@>wm»FNM+ wi(x) wily) | W
or equivalently
f@)  flo) fly)
0<| wi(z) wilp) wily) |,
wa() walp) wa(y)
which completes the proof. O

In the particular setting where, (z) := 1 andw,(z) := z, this theorem reduces to the well
known characterization properties of standard convex functions. Now the last two assertions
coincide: both of them state that the function’s graph is under the chord joining the endpoints of
the graph. Let us note that in most of the literature, the notion of (standard) convexity is defined
exactly by this property (see the last assertion of the obtained corollary).

Corollary 3.1. Let] C R be an interval. The following statements are equivalent:

() f:I — Risconvex (in the standard sense);
(ii) forall elements: < y < z of I we have that

1) = @) _ J(2) = fw),
y— )
(i) forall xq € I° there existy, 5 € R such that
a+ Bxy = f(wo), a+ Bz < f(o) (z € I);
(iv) foralln € N, zg,x1,...,x, € I and Xy, ..., A, > 0 satisfying the conditions

Z)\kzl, Z/\kxkzl‘g,
k=1 k=1

we have that .
f(zo) < Z Aef (@k);
k=1
(v) for all zo, z1, 22 € I and Ay, Ay > 0 satisfying the conditions

A+ A =1, AMT1 + Aoy = g,

we have that
f(xo) < Aif(z1) + Ao f(22).
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If the base functions; andw, are twice differentiable with a positive Wronski determinant,
then a twice differentiable functiofi : I — R is (w1, ws)-convex if and only if the Wronski
determinant of the systery, w;,ws) is nonnegative (Bonsalll_[2]). This result can also be
deduced from Theorem 3.1.

As it is well known, (standard) convex functions are exactly those ones that can be obtained
as the pointwise supremum of families of affine functions. As a direct consequence (and also
another application) of Theorem B.1, an analogous statement holds;far,)-convex func-
tions.

Corollary 3.2. Let (wq,ws) be a Chebyshev system over an open intefvalhen, a function
f : I — Ris generalized convex with respect(to , w,) if and only if

flz) =sup{w(z) |w € L(w,ws), w< [}

Proof. Assertion(iii) of Theoren| 31 immediately implies the representation above. For the
sufficiency part, assertiofy) of Theorenj 3.1 is applied. Fix the elementof the open interval

1. Take a generalized line = aw; + Bw; such thatv < f, with the elements, x5, of I and

the nonnegative coefficients, \, that fulfill the conditions

Awi (1) + Agwr (x2) = wi(xg)
AMwa (1) + Aawsa(x2) = we(xp).

Then,

1) + Bwa (1)) + Ao (awr (z2) + Bwa(w2))
1) + Aowi (22)) + B(Mwa (1) + Aows(2))
+ ﬁu)z(Io) w(ZBo)

That is, A\, f(z1) + \af (z2) > w(zo) for all w < f, hence, according to the representation, it
follows that\; f(z1) + Ao f(z2) > f(xo). Thereforef is convex with respect tQv;, ws). O

3.2. Connection with standard convexity. The convexity notion induced by two dimensional
Chebyshev systems turns out to be always reducible to standard convexity with the help of a
composite function. This connection enables us to generalize many classical results for the case
of (wq, ws)-convexity directly.

Theorem 3.2.Let (w1, w,) be a Chebyshev system on an open intehgich thatv, is positive.
The functionf : I — R is (wy, wq)-convex if and only if the function: w,/w; (1) — R defined
by the formula

iS convex in the standard sense.

Proof. In this case the function, /w; is continuous and strictly monotone increasing, according
to Lemmg 3.B. Therefore, the image of the intedvaly the functionu, /w; is a nonempty open
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interval. Consider the identity

flx)  fly) f(2)
wi(r) wi(y) wi(z)
wa(T) waly) wal(z)
(f/w)(@)  (flo)ly)  (f/w)(2)
= w1 (z)w1(y)wr(2) 1 1 1
(wa/wi)(w) (wo/wi)(y) (w2/wi)(2)
g(u) g(v) g(w)

=wi()wr(Y)wi(z)| 1 1 1

where
u=(wy/wi)(z)  v=(wa/wi)(y)  w=(wa/wi)(2).

The positivity ofw, forces both sides to be simultaneously positive, negative or zero. That is, the
function f is (w, wy)-convex if and only if the functio is convex in the standard sense []

Theorem 3.2 yields strong regularity properties for generalized convexity. For example,
(w1, ws)-convex functions defined on compact intervals are integrable, which is essential in
formulating the main result of the section.

Theorem 3.3. Let (w;,w-) be a Chebyshev system on an intervallf a functionf : I —
R is (w1, wq)-convex, then it is continuous aii. Moreover, f is bounded on each compact
subinterval off.

Proof. Without loss of generality we may assume thats positive on/°. If the functionf is
(w1, wsq)-convex onl, then the composite functiopin the previous theorem is convex in the
standard sense oh:= w,/w; (I). Therefore, by the well known regularity properties of convex
functions,g is continuous orv/°. On the other hand, we have that

f:wl'go<%)7
w1

and the right hand side is continuous Brwhence the continuity of the functighfollows.

To prove thatf is bounded on the compact subinterjvab] of I, we shall apply Theorem 3.1.
Take a generalized line which suppoftsit an arbitrary point, € I°. Then, inequality(iii)
implies thatf is bounded from below on theholeinterval /. On the other hand, putting:= a
andy := binto (vi), we get thatf is also bounded by a certain generalized line from above on
la, b]. Hencef is bounded. O

Definition 3.1. Let (w;,w,) be a Chebyshev system on an interfandw € £(w,ws) a
generalized line which is positive dfi. A functionf : I — R is calledgeneralizedv-convex
with respect tqw,, w») if, for all elementse < y < z of I, the following inequality holds:

f@)+w(x) fly) —wly) f(z)+w(z)
wi () wi(y) wi(2) > 0.
wa () wa(y) wa(z)
Substitutingw; (z) := 1, wo(x) := = andw := /2, the definition gives the notion af
convexity. By well known results;-convexity is stable: every-convex function is “close” to

a (standard) convex function. As another application of Thegrem 3.2, we prove an analogous
result for(w;, ws)-convex functions.
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Corollary 3.3. Let(w;, wy) be a Chebyshev system on an intevalrthermorev € .2 (wy, wo)
be a generalized line which is positive 6h A functionf : I — R is generalized,-convex with
respect tqw, , wo) if and only if there exist functiong ¢ : I — R such thay is (w;, w,)-convex,
2] < lwl|l, and f = g + h.

Proof. Assume thatv has the representation = aw; + Sw, and define the generalized lines
wi andw; by wi = aw; + pw, andw; = —fw; + aw,, respectively. Then, according to
Lemmd 3.3, the function; /wj is strictly monotone increasing and the generalizezbnvexity
of f is equivalent to the inequality

f(@) +wilz) fly) —wily) f(2)+wi(z)
wi(z) wi(y) wi(2) > 0.
wj () w3 (y) w3 (2)
Dividing both sides by the positive;(z)wi(y)wi(z), then substituting the arguments =
(ws/wi)(z), v = (wi/wi)(y) andw = (w3 /w])(2), we get the inequality
Fuy)+1 Fv)—1 F(w)+1
1 1 1 >0
u (% w

e\ —1
F = i o (ﬂ) .
wi  \wp

That is, I satisfies the inequality of-convexity withe = 1. Therefore, there exist functions
G,H : I — R such thatG is convex (in the standard sensgf/|| < 1 andF = G + H or

equivalently,
f:wf-GO(w—>+w1 H0<w—)—g+h
wy wy

Then, Theorerh 3|2 and Lemtha[3.3 guarantegthew,)-convexity ofg, while simple calcu-
lations imply||A|| < ||w]|. O

where

3.3. Hermite—-Hadamard-type inequalities. The main result provides Hermite—Hadamard-
type inequalities for generalizedconvex functions.

Theorem 3.4. Let (w;,w,) be a Chebyshev system on an intefuab] such thatv, is positive
on |a, b, furthermore, lety : [a,b] — R be a positive integrable function. Define the pgjnt
and the coefficients ¢, c; by the formulae

@) -

and
f wip wi(b wi(a) fuzwlp
wzp wo b) wy(a) [, wap

C1 = ; (&)

wi(a) wi(b) wi(a) wi(b) ‘

wala) wa(b) wala) wa(b)

If f: [a,b] — Ris an(w;,ws)-convex function, then the following Hermite—Hadamard-type
inequality holds

b
< / fo < erf(a) + caf (b).
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Proof. By the definitions of the point and the constant we have the formulae

ffwﬂ? _ w2 (§)
fabwlp w1 ()

b
/ wip = cwi(§),

and

which yields the identity
b
/ wap = cws(§).

That is, the left hand side of the Hermite—Hadamard-type inequality to be proved is exact for
f = w; and f = ws, respectively. Lelf : [a,b] — R be an arbitraryw;, ws)-convex function
and choose, 5 € R such that the relations

Oéwl(f) + ﬁw2(f) = f(€)7
awy (7) + Pwa(r) < f(),

are satisfied for alk € [a,b]. By Theorenj 31, such real numbers exist si@és an interior
point of the domain. Multiplying the last inequality by the positive weight functipwe arrive
at

/ab Jo= O‘/bwlf’+ ﬁ/abww = acwi(§)) + Baws()) = cf(€)

which results in the left hand side inequality.
To verify the right hand side one, observe first that the coefficierasdc, are the solutions
of the following system of linear equations

b
/ w1p = cqwi(a) + cowi (b),

b
/ Wop = C1wq (a) + CQCL)Q(b).

In other words, the right hand side of the Hermite—Hadamard-inequality is exact, agdinsfor
wy andf = wy. Let f : [a,b] — R be an arbitrarfw;, ws)-convex function. By Theore@.l, if
the real numbers and( are the solutions of the system of linear equations

f(a) = awi(a) + Bwa(a),
f(b) = aw;(b) + Bwa(b),
then

f(x) < awi(z) + fws(z)
for all z € [a, b]. Multiplying this inequality by the positive weight functign we get that

/fp<oz/a w1p+ﬁ/ wap

= a(ciwi(a) + cowi (b)) + B(ciwa(a) + cows (b))
= ¢1 (w1 (a) + Bws(a)) + ez (awi (b) + Bwa (b)) = c1f(a) + cof (b),

thus the proof is complete. O
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3.4. Applications. Simple calculations show that by settiag(x) := 1, ws(x) := zandp = 1,
Theorenj 3.4 reduces to the classical Hermite—Hadamard inequality.

Corollary 3.4. If f : [a,b] — R is a (standard) convex function, then

f(a;—b> - bia/abf(x)dxg f(a);f(b)_

The subsequent corollaries present further Hermite—Hadamard-type inequalities for general-
ized convex functions where the underlying Chebyshev systems of the induced convexity are
the hyperbolic, trigonometric, exponential and power systems (to see that theyairs)
form a Chebyshev system in each case, consult the converse part of [Lemma 3.3).

Corollary 3.5. If f : [a,b] — R is a(cosh, sinh)-convex function, then

2sinh (b‘ a) f (“;b) < /abf(x)dx < tanh (b;“) (F(a) + f(b)).

2

Proof. If w; := cosh andw, := sinh, thenw, is positive andv, /w; = tanh is strictly monotone
increasing; hence, according to Lemma 3.3,, w) is a Chebyshev system and, /w;)~! =
artanh. Applying the addition properties of hyperbolic functions for the identities (b +
a)/2+ (b—a)/2anda = (b+a)/2 — (b—a)/2, the integrals ofs; andw, can be written into
product form via the formulae

b J—
/ cosh xdx = sinh(b) — sinh(a) = 2 cosh (b "2‘ a) <inh (b . a> |

’ b b—
/ sinh zdz = cosh(b) — cosh(a) = 2sinh ( ;a) sinh ( 5 a) :

Therefore,
‘= artanh( fab sinh xd:c) _ b+a
fab cosh zdx 2
and ,
_ [ cosh xdx sl b+ a
cosh & 2

To determine the coefficients of the right hand side, first we calculate the numerator of

2 cosh (HT“) sinh (b’T“) cosh b
2 sinh (HT“) sinh (b_T“) sinh b

= 2sinh (b _ a) (cosh (b—l—_a) sinh b — sinh (b—l—_a) cosh b)
2 2 2

P b—a\ . b+a\ . o(b—a

= 2sinh (T) sinh (b i ) = 2sinh ( 5 ) .

Similarly, the numerator of the coefficieat can be obtained as follows:

cosha 2cosh (HT“) sinh (b_T“)
sinha 2sinh (HT“) sinh (b_Ta)

= 2sinh (b _ a> <sinh <b+_a> cosh a — cosh <b+_a> sinh a)
2 2 2

= 2sinh (b_ a> sinh (b+a — a) = 2sinh? <b_ a) )
2 2 2
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On the other hand, the denominators in both cases coincide and have the common value

cosha coshbd

: . b—a b—a

b—a
01202:tanh( 5 )

Replacing the Chebyshev systémsh, sinh) with (cos, sin), the obtained Hermite—Hadamard-
type inequality is analogous to the previous one due to the similar additional properties of
trigonometric and hyperbolic functions.

therefore

O

Corollary 3.6. If f : [a,b] C] — 7, 5[— R s a(cos, sin)-convex function, then

2on (150) 1 (%) < [ sty < van (50 @) + 500

Observe that both of the previous two Hermite—Hadamard-type inequalities involve the mid-
point of the domain; moreover, dividing by— « and taking the limitz — b, the coefficient of
the left hand sides tends towhile the coefficient of the right hand sides tend$t®. Therefore
these inequalities can be considered as the “local” version of the Hermite—Hadamard inequality.
We say that a functiofi : / — R islog-convexf the composite functiorfolog : exp(/) — R
is convex (in the standard sense). In terms of generalized convexity, log-convex functions are
exactly the(1, exp)-convex ones (consult Theor¢m [3.2). The next corollary gives a Hermite—
Hadamard-type inequality for log-convex functioris ([9],/[10]).

Corollary 3.7. If f : [a,b] — R is a(1, exp)-convex function, then

(b—a)f <log exp(b) — eXp(a))

b—a
< [ 1w
: (ex%a)—ejf;?)) 1) 1@+ (1 o ) 1O

The last corollary concerning the case of “power convexity” also reduces to the classical
Hermite—Hadamard inequality on substituting- 0 andg = 1:

Corollary 3.8. If p < q, p,q # —1and f : [a,b] C|0,c0[— R is an(z?, z7)-convex function,
then

(bp-H _ ap-i-l)q( g+1 )Pf . (p + 1)(bq+1 _ aq—i—l)
D + 1 bq+1 _ aq—l—l (C] + 1)(bp+1 _ ap+1)

/fda:

bp+1 ap+1 (bq+1_aq+l)bp (b9t —qat1)aP (bp+l_ap+l)aq

p+1 q+1 q+1 B q+1
- aPbid — qdbp fla) + aPbid — qdbp f(0).

The proofs of the last three corollaries need similar calculations as the first one, therefore
they are omitted.
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4., GENERALIZED CONVEXITY INDUCED BY CHEBYSHEV SYSTEMS

In this section we formulate Hermite—Hadamard-type inequalities for generalized convex
functions where the underlying Chebyshev system of the induced convexsititsary. The
proofs of the main results are based on the Krein—Markov theory of moment spaces induced
by Chebyshev systems. According to this theory, the vector integral of a Chebyshev system
can uniquely be represented as the linear combination of the values of the system in certain
base points of the domain. The number of the points and also the points themselves, depend
only on the Chebyshev system and its dimension: it turns out that the cases of odd and even
order convexity must be investigated separately. In fact, this is exactly the deeper reason for
the analogous phenomenon in the case of polynomial convexity. Once the base points of the
representations are determined, its coefficients are obtained as the solutions of a system of linear
equations. With the help of the representations and the notion of generalized convexity, the
Hermite—Hadamard-type inequalities can be verified using integration and pure linear algebraic
methods.

In the previous sections when the basis or the dimension of the studied Chebyshev systems
was quite special, the base points of the Hermite—Hadamard-type inequalities could be explic-
itly given. Unfortunately, under the present general circumstances, we can guarantee only the
existencgand the uniqueness) of the base points, dannot give any explicit formulae for
them

Lastly, motivated by Rolle’s mean-value theorem, an alternative and elementary approach
is presented for the cases when the Hermite—Hadamard-type inequalities involve at most one
interior base point of the domain. Some examples are also presented of these particular cases.

4.1. Characterizations and regularity properties. Let w = (wy,...,w,) be a Chebyshev
system over an interval and denote the set of all linear combinations of its members by
Z(wy,...,wy,). Afunction is calledyeneralized polynomigbelonging to the system in ques-
tion) if it is the element of the linear spa#f (wy, . . .,w,). In terms of generalized polynomials,
generalized convexity can be characterized in a geometrical manner. Namely, a function is
generalized convex if and only if it intersects its generalized polynomial that interpolates the
function in any prescribed points alternately. (The number of the points depends on the dimen-
sion of the underlying Chebyshev system.) More precisely, we have the following

Theorem 4.1. Letw = (wy,...,w,) be a Chebyshev system over an interkalThen, for a
functionf : I — R, the following statements are equivalent:

(i) fis generalized convex with respectuo
(ii) forall y; < -+ < y, in I, the generalized polynomial of wy,...,w, determined
uniquely by the interpolation conditions

f(yk):w(yk) (k’:L...,n)
satisfies the inequalities
()™ (fy) —w®) >0 (Y <y <Yy, k=0,...,n)

under the conventiong, := inf I andy,,,, := sup [;
(iii) keeping the previous notations and settings, for fiked {0,...,n}, the following
inequality holds

(D)™™ (fly) —w®) =0 (4 <Y < Ypy1)-

Proof. First of all, in order to simplify the proof, two useful formulas are derived. Denote the
n — 1 tuple obtained by dropping thé" component ofw by w;,, and define the determinants
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Dy, Dy, ..., D,, and the generalized polynomialof w, ..., w, by
Dy:=| w(y) - w(y) |
| fw) e f(ua)
wi(y1) - Wi(Ya)
o n (_1)k+1Dk
w.—; Dy Wk-

Due to the Chebyshev property af, the determinanD, is positive, hence the definition of
w is correct. Fixy € I. Applying the expansion theorem to the first column of the following
determinant, we get the identity

fw) f) - flua) ’

4.1 b - |
@ p Sl S D) - et

Moreover, ify, < y < yp and (zo,z1,...,x,) denotes the increasing rearrangement of
(y; 91, - - -, yn), the previous identity can be written into the form

(4.2)

f(xo)  flz1) - flza) | _ k

wry) w(z) - w(z,) ‘— (=1)"Do(f(y) = w(y))-
For the implication(i) = (ii), observe that[ (4]1) guarantees the required interpolation

property ofw in the pointsy,, ..., y,. Clearly,w is uniquely determined. Suppose tifat —

R is generalized:.-convex with respect tw. Then, the positivity oD, and formula[(4.R) yield

the inequalities to be proved. The implicatign) = (ii7) is trivial. The proof of(iii) = (i)

is completely the same as the proof of the first assertion. O

In the standard setting and fixing = 1, assertion(ziz) gives the classical definition of
standard convexity: a function is convex (in the standard sense) if and only if it is “under”
the chord of the graph. Moreover, substituting= 2, we also get a new characterization of
generalize@-convexity that completes Theor¢m|[3.1. However, the most important application
of Theorenj 4.1 guarantees strong regularity properties for generalized convex functions.

Theorem 4.2. Letw = (wy, . ..,w,) be a Chebyshev system over an intefudf f : I — R is
a generalizedh-convex function with respect to this system and 2, thenf is continuous on
the interior of I. Furthermore,f is bounded on each compact subinterval of

Proof. Choosey, € I° and fixzy < z; < --- < z, In I so thatz; = y, hold. Denote
the generalized polynomials afj, ..., w, that interpolatev, in the pointsz,...,z,_; and
z1, ...z, by w andw®, respectively. We assume thatis even (the argument in the odd
case is analogous). Then, accordingity of Theorenj 4.]1, we have the inequalities

w(y) > woly) = w?(y) Yy € [0, 21],
W(l)(y) <wo(y) < W(Q)(y) Yy € |11, 29].
On the other handy™ (yy) = wo(yo) andw® (yy) = wo(yo). Therefore, due to the continuity

of the generalized polynomials? andw®, we get that both the left and right hand side limits
of wy exist at the poing, and

lim wo(y) = wo(yo),

Yy—Yo—0

li =
,Jm, wo (y) = wo(vo),

which yields the continuity oy, at the interior poing, of I.
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To prove the second assertion, we may assume/thata, b|. It is sufficient to show thaty
is locally bounded at the endpoints bfFix g < z; < --- < z,, In I so thatry = « hold, and
denote the generalized polynomialsugt . . . , w,, that interpolatev, in the pointsey ..., x, 1
andzy, ..., z, by v andw®, respectively. We assume thats even (the odd case is very
similar). Then, by the previous theorem again, we have the inequalities

w(y) > woly) > wP(y) vy € [zo, 2.

On the other hand, the function$" andw® are continuous, therefore boundedeyb]. Hence
wp 1S bounded in a right neighborhood of the endpaintt can be similarly proved that, is
locally bounded at the left endpoibt O

In particular, generalized convex functions are integrable on any compact subset of the do-
main. Let us also mention that the special case 2 gives the statement of Theor¢gm|3.3 via
another approach in the proof.

4.2. Moment spaces induced by Chebyshev system$he geometric study of moment spaces
induced by Chebyshev systems was systematically developed by M. G. Krein. Independently
and simultaneously, S. Karlin and L. S. Shapley elaborated the geometry of moment spaces
induced by the polynomial system. Some of the results of their research play a key role in
further investigations.

Definition 4.1. Letw := (wy, ..., w,) be a Chebyshev system[anb] and denote the set of all
nondecreasing right continuous functions definedwn| by %([a, b]). The set

- /ab wdo, o € B([a, b])}

My, = {CGR"

is called themoment space ab.

It can be shown that#,, is a closed convex cone. More precisely, it is the smallest closed
convex cone that contains the parameterized curiz¢ wheret traverses the intervéd, b|. For
details, seel[16, pp. 38-41]. The following notion makes the formulation of many theorems
guite convenient.

Definition 4.2. Theindex(c) of a pointc € ., is the minimal number of points, ..., &,,
in a representation

c=>Y opw(&)
k=1

under the convention thab(a) and w(b) are counted with half multiplicity, whilew(¢) for
¢ €la, b] receives a full count. The poings, . . ., &,, are called theootsof the representation.

By the celebrated theorem of Carathéodory (5eé [37]), each point belonging to the conical
hull of a given subset oR™ can be represented as a cone combination involving at most
points of the subset. Due to the Chebyshev property,a surprisingly better upper bound can
be established: it turns out that the elements4jf are cone combinations of approximately
n/2 points of the range ofv. More precisely, the boundary and the interior.4f,, denoted
by Bd.#,, and Int.#,,, can be characterized via the subsequent two theorems due to Krein and
Markov.

Theorem C. ([16, Theorem 2.1. p. 42 vectorc € .#,, is a boundary point of#, if and only
if I(c) < n/2. Moreover, every € Bd.#, admits a unique representation

c:Zakw(fk) (fke[a,b],ak>0,k:1,...,no)
k=1
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wheren, < 2,

Theorem D. ([16, Theorem 3.1. p. 44; Remark 3.1. pp. 45-46; Corollary 3.1. p. #0r]ach
¢ € Int.#, there exist precisely two representations of indéx = n/2. Distinguishing the
even and odd cases, the representations in question are the following.

Casen = 2m:

c= Z@kw(fk) (& €la, b)),

m—1
Cc = ﬁow(a) + Z Bku-’(nk) + ﬂmwa)) (nk G]a, b[)v
k=1
Casen =2m + 1.

c = apw(a) +Zakw(§k> (& €la, b)),
k=1

=" Gew(n) + Brnw®) (i €la,b]).

The roots of the representations in both cases strictly interlace.

Let/ C R be arealinterval and := (wy,...,w,) be a Chebyshev system ouverThen, for
pairwise distinct elements, . .. , ¢, of I, the vectorsw(t,), ..., w(t,,) are linearly independent.
This simple observation immediately implies

Theorem 4.3. The coefficients and the roots of the representations above are uniquely deter-
mined.

Now we present a sufficient condition for a pointo belong to the interior of the se#,,.
This condition guarantees that the inequalities of the main results have exactly the required
form.

Theorem 4.4.Letw = (w1, ...,w,) be a Chebyshev system [anb| and letp : [a,b] — R be
a positive integrable function. Then,

b
c::/ wp € Int #,.

Proof. Let us recall that#, is a closed subset &&”. On the other hand, the positivity pf
yieldsc € .#,, therefore it suffices to prove that¢ Bd.#,. Assume indirectly that €
Bd.#,. We shall distinguish two cases according to the parity.of

Casen = 2m + 1. The indirect assumption and Theoré C impligs) < m sincel(c)
increases at most/2. For simplicity, assume that(c) = m. Then there are two further
possibilities: the representation ofinvolves eitherm pairwise distinct interior base points
& < --- < &, orm — 1 pairwise distinct interior base poinf{s < --- < &,,_1 plus both the
endpoints: andb, respectively. In the first case we have the representation

c= Z arw(&r).
k=1
Due to the Chebyshev property @fand the positivity ofp, we arrive at
0<] wlt)p(tr) w(&) - wltn)p(tn) W(En) @(tni)p(tnr) |
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fort, €]&—1,&[ (k=1,...,m)where, := a and¢,,,1 := b. After integration with respect
to (¢4, ..., tnms1) @and using the above representation,ofre have

0<| [Swp wie) - [& wp w&n) [& wp |

=| fowp w(&) - g::l wp w(&,) St ;:_1 wp‘

= JSwp w&) - [ wp w(én) fpr‘

— | JSwp w(@) o [T wp W) T aww(€) [ =0

since the last column is the linear combination of the even indexed columns. Thus we get the
desired contradiction.
Now consider the other case whehas the representation

m—1
c=oqw(a) + Z apw (&) + amw(b).
k=1
Due to the Chebyshev property @fand the positivity ofp again, we arrive at
0<| wla) wt)plt) w&) - wEn1) wtn)ptn) wb) |
fort, €)&1,&[ (K =1,...,m)where, := a and¢,, := b. An analogous argument to the

previous one leads to contradiction.

Casen = 2m. Similarly to the odd case, now we may assume fi{af = m — 1/2. Then
there are two possibilities: the representation: afivolves either the endpoint andm — 1
pairwise distinct interior base poinfs < --- < &,,_1 or the endpoint andm — 1 pairwise
distinct interior base pointg < --- < ,,_1. Applying the same method as above, both cases
lead to contradiction again. O

4.3. Hermite—Hadamard-type inequalities. The main results concern the cases of even and
odd order generalized convexity separately. First we establish Hermite—-Hadamard-type inequal-
ities for the odd order one.

Theorem 4.5. Let w = (wy,...,wans1) be a Chebyshev system fanb] andp : [a,b] — R
be a positive integrable function. There exist uniquely determined base gqints, &,,, and
M, - .., nNm Of]a, b] such that

m b m
cow(a) + 3 (@) = [ wp= 3" Bwn) + 5, (0).
k=1 a k=1
The coefficientsy, ..., o, and gy, ..., 3,41 are positive and uniquely determined, too. Fur-

thermore, for any generalized-convex functionf : [a,b] — R, the following Hermite—
Hadamard-type inequality holds

m b m
aof(a) + > anf(&) < / Fo <) Bef 0n) + B f (D).
k=1 a k=1
Proof. Let us note thaf p is integrable ora, b] by Theorenj 4]2. The proofs of the left and right

hand side inequalities need similar methods, therefore, we shall verify only the left hand side

one. Theore 4 guarantees tﬂ"éiuup is an interior point of the moment spac#,, hence
(see Theorem D and Theor¢m|]4.3) it has the representation

b m
(4.3) / wp = apw(a) + Y apw (&)
a k=1
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where the coefficientsy, . . ., a,, and interior base pointg, ..., &,, are determined uniquely.
Definingé, := a and¢,, .1 := b, consider the following system of linear equations

/gm+1 wp = cow (&) + Z(Ck/ wp + ckw(é”k))

Em k=1 Ek—1
where the unknowns ar®, ci,cy,...,c , cn. Due to the Chebyshev property af and the
positivity of p, its base determinant
D = ‘ w(fO) fgol wp w(gl) e f{:_1 wp w(fm) ‘
is positive. Therefore, the system has a unique solutigrn, ci, ..., ¢, c,). On the other
hand, representatiop (4.3) shows thaf, —1, a4, ..., —1, a,,) is also a solution. Thusy, a;,
., ay, can be obtained by Cramer’s Rule:
1 6 m fm
o= 5| S wie) o I e wien S
¢ &m
ak:E‘w<€0) S wp [Swp gm“wp‘.

Suppose now that, : [a,b] — R is a generalized2m + 1)-convex function with respect to
w. Then, for all elements, of |, &+1], the following inequality holds:

f(&)  flto) -+ f(&m) f(tm)
w(&) w(to) -+ w(ém) w(tn)

Multiplying both sides by the positive(t;) - - - p(t,,) and integrating on the produfg, &;] x

02>

X [&m, Ema1] With respect tdto, . . ., t,,), We arrive at the inequality
0> | F&) Jg fp e flEn) Jort e
B w(fO) T w(ém) é:H—l wp
_| f(&) fp e G S ot J £
“’(50) T w(ém) 501 wp+---+ finH wp
| #&) ;; fp e &) [ fp
w(&) e w(gn) J)wp
Observe that the adjoint determinants of each ele %rﬁ t fpinthe last expression are equal to
zero since their columns are linearly dependent due td (4.3). Therefore, applying the expansion

theorem to the first row, it follows that
0<|wie) [Swp wie) [ wp e /fp
’ 'wp w(&) - f&:L_l wp w(ém) [, " wp ’f &o)

St e [ e e |6

Here the coefficient ofab fpis the positive determinari?, while the the coefficients of (&),
., f(&n) are exactly the numerators of, . . ., «,,, (see above), since the last colurﬁflw

can be replaced bf’"“ wp. After rearranging, we get the left hand side of the Hermite—
Hadamard-type mequahty. O
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Theorem 4.6.Letw = (wy, .. .,ws,) be a Chebyshev systemjanb] andp : [a,b] — R be a
positive integrable function. Then, there exist uniquely determined base pqints, ¢, and
M, -..,Nm—1 Of Ja, b] such that

m b m—1

> aw(&) = [ wo=Ghwl@) + Y hwn) + Gaw(b)

k=1 @ k=1

The coefficients, ..., a,, andgy, ..., 3,, are positive and uniquely determined, too. Further-
more, for any generalize@-convex functiorf : [a, b] — R, the following Hermite—Hadamard-
type inequality holds

m b m—1
S anf(@) < [ fo<mf(@)+ Y A m) + ufO)
k=1 a k=1

Proof. To prove the left hand side inequality, take the unique interior base ggints , £, and

coefficientsay, . . ., a,, fulfilling the representation
b m
(4.4) [ =3 @)
a k=1

guaranteed by Theorgm #.4. Definifig:= a and¢,,.; := b, consider the following system of

linear equations
Em+1 m &k
/ wp = Z(CZ/ wp—l—ckw(ﬁk))

Em k=1 §k—1
where the unknowns ax€§, ¢y, ..., ¢, c,,. Due to the Chebyshev property @fand the posi-
tivity of p, its base determinant
Dii=| [Swp w(@) - [ wp wig) |
is positive, hence the system has a unique solut@n, . .., ., ¢,). On the other hand, the
representatiorj (4.4) shows thatl,ay,...,—1,«,,) is also a solution. Thus, the coefficients
can be obtained by Cramer’s Rule:
Loy e ¢ m Em
O R A S A ST
L e & €t Emt1
ak—E‘fowp e JE wp f&k wp - [ wp‘.

Suppose now thaf : [a,b] — R is a generalized2m)-convex function with respect ta@.
Then, for all elements; of |¢, &.11[, the following inequality holds:

O<'f(t0) f(&) - fl&n) f(tm)
— | wlto) w(&) o w(én) wtn)

Therefore,
I I A (YR (A R S
- ;01 wp w(&) - w(&m) ;:H wp
I L R (R Nl R e
f;ol wp w() - w(&n) f£01 “’p"‘""i‘fi”“ w)p
R G B GO
Joowp w(&) - w(&n) [ wp
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In the last expression, the adjoint determinant of each eleﬁg%h‘t fp are equal to zero since
their columns are linearly dependent due[to](4.4). Applying the expansion theorem to the first
row, we arrive at the inequality

b
0<| Jilwp w(e) o [ wp wlew ‘/ e
S [Ewp e 5w wlen) [wp | £(E)
D W R A P
k=2

Here the coefficient of; fp is the positiveD;; moreover, the coefficients ¢f(&,), ..., f(&n)
are exactly the numerators of;, ..., «,, since the last columrfab wp can be replaced by

;:“ wp. After rearranging, we get the left hand side of the Hermite—Hadamard-type inequal-

ity.
For the right hand side inequality, take the uniquely determined interior base points, n,,,_1
and coefficientsl, . . ., 4,, So that the representation
b m—1
(4.5) [ wr= o)+ Y hwin) + 5w
a k=1

holds. Defining), := a andn,, := b, consider the following system of linear equations

/nm wp = cow(no) + mz_l(cz /nk wpt Ckw(nk)> (1),

Tm—1 k=1 Nk—1
where the unknowns arg, ¢}, c1, ..., ¢ 1, ¢m-1, cm. Due to the Chebyshev property @fand
the positivity ofp, its base determinant
Dyi= | win) [y wp w(m) o [ wp @) @) |

is positive, hence the system has a unique solution;, ¢y, ..., ¢ 1, Cm—1,cm- The repre-
sentation[(4.5) shows th&8,, —1, 51, . .., Bm_1, —1, Gn) is also a solution, therefore Cramer’s
Rule can be applied:

1 "
b= | S we wlm) o @) [ we wln) |,
2
1 m
Be=p-| @) - fpl wp [ wo e [ @ (i) |,
2
1 m— m
b= | @) Sy wp oo [ wp @) [ wp‘.
2

These coefficients are positive since even changes are needed to transfer the f(;]’ﬁyrmp

to the adequate place.
If a function f : [a, b] — R is a generalize2m)-convex with respect tw, then we arrive at
the inequality

m— b
o< | F) Ly foo SOm) e [ e f) g o
- m— b )
win) [Mwp wlm) - [ wp wim) [, wp
whence an analogous argument to the previous one completes the proof. O

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HERMITE-HADAMARD -TYPE INEQUALITIES 41

4.4. An alternative approach in a particular case. To prove the main results, the main point

is the existence of the representations of Thedrém D. These representations can also be con-
sidered as systems of nonlinear equations where the unknowns are the coefficients and the base
points. The number of the equations and the unknowns coincide in each case. In those cases
when only one interior base point is involved, the solubility of the system of equations can
directly be verified without applying the Krein—Markov theory of moment spaces.

Theorem 4.7. Let w = (w;,ws,ws) be a Chebyshev system pnb] andp : [a,b] — R be
a positive integrable function. Then, there exist unique elementf |a, b[ and uniquely
determined positive coefficients ¢, andd;, d» such that

1w (a) + cw(E) = / wp = drw(n) + dw(b).

Furthermore, if a functiory : [a,b] — R is generalized-convex with respect tw, then the
following Hermite—Hadamard-type inequality holds

b
e f(a) + eaf (€) < / fo < dif(n)+ dof (b).

Proof. We shall restrict the process of the proof only on the existence of the interior§diat
do this, define the functiof' : [a, b] — R by the formula

wi(a) fax w1p fb w1p
F)=| wla) [Fwp [lwp|=]wla) [wp [ wp
ws(a) [, wsp [, wsp
Then, F' is continuous ona, b] andF'(a) = F'(b) = 0. Further on,F'(z) # 0 if = €]a, b[ due to
the Chebyshev property @ and the positivity ofp. For simplicity, we may assume thatis
positive on|a, b[. Therefore, by Weierstrass’ theorem, there exjstsa, b such that

F(&) = I[Halﬁ( F.
Assume that €]¢, b]. Then, the maximal property @fyields the inequality
F(z)—F Cw
0x F@—FE _| ) Jewr [ wp
fg P

fg P
The central column of the determinant tendeA(®) asz tends tc¢ since the following estima-
tions are valid fork = 1,2, 3:

minggwe 7 p [T o maxes o 7o
minw, = < < = max Wy.

€.2] Jer A Jip [€.2]

Therefore
(@) W) [lwp|<0

Choosingr € [a, £[ and using the maximal property ¢fagain, we get the opposite inequality
with the same argument and arrive at the identity

| wia) w(©) [lwp|=0.

Thus, the linear independence ©fa) and w(¢) yields that there exist coefficients andc,
such that

aw(a)+ cow(§) :/ wp.
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The right hand side inequality can be verified with an analogous argument, therefore the proof
is omitted. 0

Let us note, that if the weight functignis continuous, then the functiafi is differentiable
and Rolle’s mean-value theorem can directly be applied.

The representations of Theorém|4.7 are linear with respect to the coefficients. Therefore, in
concrete cases, the main difficulty lies in determining the interior base goantdr,. Without
claiming completeness, we list some examples of when they can be determined explicitly.

Example 1. If the Chebyshev systefw;, w,,ws) is defined ora, b] by wi(x) = 1, we(z) =
sinh z, w3(z) = coshz andp = 1, then

¢ — 2artanh sinhb —sinha — (b — a)cosha') .
B coshb — cosha — (b — a)sinha ’
sinhb — sinha — (b — a) cosh b
= 2artanh —b.
" (coshb— cosha — (b—a) sinhb)

Proof. With the above setting, the left hand side representation of Theorgm 4.5 reduces to the
following system of nonlinear equations

b
C1+02:/ ldx = b —a,
ab
cy1sinha 4 ¢ sinh € = / sinh xdx = cosh b — cosh a,
ab
cicosha + cycoshé = / cosh rdx = sinh b — sinh a,

where the three unknowns arg ¢, and¢, respectively. Multiplying the first equation binh «
and subtracting it from the second one, then multiplying again the first equatiessby and
subtracting it from the third one, the coefficientcan be eliminated and it follows

co(sinh § — sinha) = coshb — cosha — (b — a) sinh a

ca(cosh € — cosha) = sinh b — sinha — (b — a) cosh a.

Applying the well known additional properties of hyperbolic functions for the identiies
(E+a)/2+ (£ —a)/2anda = (£ +a)/2 — (£ — a)/2, the left hand side of both equations can
be written in product form:

2¢4 cosh (GTG) sinh (f—Ta> = cosh b — cosha — (b — a) sinha,
2¢9 sinh <§—|—Ta> sinh ({“—Ta> = sinh b — sinha — (b — a) cosha.

The left hand side of the first equation differs from zero sificé a. Therefore, dividing the
second equation by the first one, we get the equation

tanh (§+a) sinh b — sinha — (b — a) cosha

2 :Coshb—cosha—(b—a)sinha’
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whence the desired expressionéos obtained. For determining, we shall consider the fol-
lowing system of nonlinear equations:

d1 + dQ =b— a,
dy sinh n 4 ds sinh b = cosh b — cosh a,
dy coshn + ds cosh b = sinh b — sinh a.

In this case, the coefficiedt, can be eliminated with a similar method to the previous one. The
new system of equations, due to the additional formulae again, can be written in the form

b b —
2d; cosh (%) sinh (Tn) = cosh b — cosha — (b — a) sinh b,

b b
2, sinh (%) sinh (T”> — sinh b — sinha — (b — a) coshb.

This system, analogously to the previous case, yields the equation
tanh b+n _ sinhb — sinha — (b — a) cc.)shbj
2 coshb — cosha — (b — a)sinhb

whence the base pointcan be expressed easily. O

The proofs of the subsequent examples are similar to the previous one, therefore they are
omitted.

Example 2. If the Chebyshev systefm;, ws, w3) is defined orja, b] C| — m, 7[ by w;(z) = 1,
wa(x) = sinz, wy(z) = cosx andp = 1, then

sina —sinb+ (b — a)cosa
— 2 arct -
§ = 2arctan (cosa —cosb— (b—a) sina) ’
sina —sinb+ (b — a) cosb
= 2arct —b.
1 archad (cosa —cosb— (b—a) Sinb)

Example 3. If the Chebyshev systefw;, w,,ws) is defined ora, b] by wi(x) = 1, we(z) =
expx,ws(xr) = exp2z andp = 1, then
£—1o exp2b—exp2a—2(b—a)exp2a_e
-8 2(expb —expa — (b —a)expa) e

b exp 2b — exp 2a — 2(b — a) exp 2b exnb
= 2(expb —expa — (b— a)expb) po)-

Example 4. If, for p > 0, the Chebyshev systgm,, w», ws) is defined orja, b] C [0, +oo[ by
wi(z) = 1, ws(x) = 2P, w3(x) = 2?P andp = 1, then

é B P+ 1 p2r+l _ g2p+1 _ (2p+ 1)(b _ a)a2p o 1/p
S\ 2p+1 bt —artl — (p+1)(b—a)ar ¢ ’
B p+1 p2etl _ o201 (2p_|_ 1)(b . a)pr B 1/p

T=\op+1 Tt (pr )b a)r

The particular casg = 1 of the last example gives a corollary of Theorem 2.8 for polyno-
mially 3-convex functions. Fos dimensional Chebyshev systems generated by arbitrary power
functions, the interior base points in general, cannot be expressed explicitly.

The proof of Theorem 4]7 is applicable for generalizeconvexity, and gives a different
approach to that followed in Theorgm [3.4. We can also state the right hand side Hermite—
Hadamard-type inequality for generalizéadonvex functions.
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Theorem 4.8.Let w = (w;,ws,ws,ws) be a Chebyshev system fpnb] andp : [a,0] — R
be a positive integrable function. Then, there exist a unique elegnehia, b[ and uniquely
determined positive coefficients c,, c3 such that

/ wp = cw(a) + cow(€) + csw(b).

Furthermore, if a functiorf : [a,b] — R is generalizedi-convex with respect tw, then the
following Hermite—Hadamard-type inequality holds

/ fo < erf(a) + caf () + es f).

Hint. Apply the same argument as in the proof of Theoferh 4.7 for the funétiofu, b] — R
defined by the formula

wa) [ww @) [lop
F(x):z‘w(a) ST wp w(b) [ wﬂ‘iz Zﬁiﬁiﬁ fizz ii% f"biiﬁ
wila) [Fanp wn(®) [P

O

For example, ifw(z) := (cosh z,sinh z, cosh 2z, sinh 2x), then one can check that the in-
terior base point of the inequality is exactly the midpoint of the domain. Unfortunately, the
method fails if someone tries to use it for proving the left hand side of the Hermite—Hadamard-
type inequality for a generalizeticonvex function since, by the even case of Thedrém D, the
existence of two interior base points should be guaranteed. For similar reasons, the “existence”
part in the proof of Theorein 4.7 cannot be applied for generatizeonvex functions if, > 4.

5. CHARACTERIZATIONS VIA HERMITE —HADAMARD |INEQUALITIES

Under some weak regularity conditions, the Hermite—Hadamard-inequdigyacterizes
(standard) convexity (see [17, Excersice 8. p. 205]). The aim of this section is to verify analo-
gous results fofw,, ws)-convexity. To do this, the most important auxiliary tool turns out to be
some characterization properties of continuaws)generalize®-convex functions.

5.1. Further properties of generalized lines. In what follows, two properties of generalized
lines are crucial. The first one improves the statement of Lemna 3.2 and states that, on compact
intervals, generalized lines are uniformly non bounded.

Lemma 5.1. Let (wy,w,) be a Chebyshev system on an interyal Then, for any compact
subinterval of/ and positive numbeK, there existsv € .Z(w,w,) such thatv > K on the
compact subinterval.

Proof. According to Lemma 3|2, there exist coefficientss such that the generalized line
aw; + Pws is positive on the interior of. Therefore, ifx,y] is a compact subinterval of
I, m = min{aw(t) + Bwa(t) |t € [z,y]} > 0. Defining the coefficients* and 5* by the
formulae

. ak . OK
of = — b= —,
m m
the generalized line := a*w; + F*w, is strictly greater thak on [z, y]. O
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The second important property concerns the convergence of generalized lines. It turns out
that pointwise convergence is not only a necessary but a sufficient condition for the uniform
convergence of sequences of generalized lines. Let us note that an analogous result remains
true for generalized polynomials in the higher-order case.

Lemma 5.2. Let (w;,w,) be a Chebyshev system on an intetydurthermore, letv = aw; +
Bws andw,, = a,wi + Buws (n € N) be generalized lines. Then, the following statements are
equivalent:

(i) there exist elements < y of / such thatv,(z) — w(z) andw,(y) — w(y);
(i) the sequences, andg, are convergent, withv, — « and g, — j;
(i) w, — w uniformly on each compact subset/of

Proof. (i) = (ii). Applying Cramer’s Rule and the convergence properties,af) andw,,(y),
one can easily get that

w(z) we(x) ' wn(z) wolx) ‘

g 9w @) | L enl) wel) |
wi(z) wo(x) ‘ n—oco | wy(x) wa(x) ‘ m o,
wi(y) wa(y) wi(y) wa(y)

The convergence gf, can be obtained similarly.
(1) = (ui1). Let [z, y] be a compact subinterval df and¢ € [z, y] arbitrary. Due to the
continuity of the functionss; andw,, there existd< > 0 such that

max {supm(t) |, sup | ws (1) |} <K.

[z,y] [z,y]

Therefore,

|wn(t) —w(t) | = [ anwi(t) — awi(t) + Buwa(t) — Bwa(t) |
<lan —allwi(®t) | +] 8. — Blwa(t) ]
<K(lan—al+]8,—8]) =0

asn — oo; hencew,, — w uniformly on|z, y].
(23i) = (7). Trivial. O

Under the assumption of continuity, if a function is not convex, then it must be locally strictly
concave somewhere. The following theorem generalizes this result fqrnon, )-convexity.

Theorem 5.1.Let (w;, ws) be a Chebyshev system on an intetdrurthermore, letf : I — R
be a continuous function. Then, the following assertions are equivalent:

(i) fisnot(w;,wq)-convex;
(i) there exist elements < y of I such thatv < f on]z, y[ wherew is the generalized line
determined by the properties

w(x) = f(z),  wy)=rf);

(iii) there exist elements < p < y of I and a generalized line such thatv > f on |z, y].
Moreover

flx) <w(z), flp) =wlp), [y) <w(y);
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(iv) there existp € I° such thatf is locally strictly (w;,w,)-concave ap, that is, there exist
elements < p < y of I such that, for alle < v < p < v < y, the following inequality
holds:

fw)  flp)  f(v)
wi(u) wi(p) wi(v) | <O.
wa(u) wa(p) wa(v)

Proof. (i) = (i7). If fis not(w;,ws)-convex, then there exist elements< p < y, of I such
thatw(p) < f(p), wherew is the generalized line determined by the propetties)) = f(zo)
andw(yo) = f(yo) (see assertiotwi) of Theorenj 3.]1). Define the functidf : [zo, yo] — R
by F := f — w, and the elements andy by the formulae

z:=sup{t|F(t) =0, 20 <t <p},
y:=inf{t|F(t)=0,p<t <y}
Clearly,zy < z < p < y < yo hold; moreoverf'(z) = F(y) = 0andF > 0 on]z,y| due to
the continuity ofF'. Thatis,w(z) = f(z), w(y) = f(y) and f(t) > w(t) for all t €]z, y].
(17) = (i17). Take the elements < y of I and the generalized linefulfilling the properties

w(z) = f(x),w(y) = f(y) andwljzy < floy- Define, for allt € R, the family of “parallel”
generalized lines, by the conditions

wi(r) = w(z) + ¢, wi(y) = w(y) + t.

Observe first thaty|(.,; > f|..y for “sufficiently large”t. Indeed, take the generalized liné
satisfying the inequalitw*|, ,; > max f|j, and choose > 0 such thatu,(z) > w*(x) and
we(y) > w*(y) hold. (The existence af* is guaranteed by Lemma5.1.) Thenj, ,) > w*|izy

due to Lemma 3|1 hence|,,) > f|i.,)- On the other hand, a similar argument to the previous
one yields the inequalities, |, ,; < Wiy < fli2y forallt < 0. Therefore,

to == inf{t € R|wi[jzy > fly}t € R.

By definition,w;, > f on[z,y]. Assume indirectly that this inequality is strict. Then, according
to the continuity otv,, and f, there exists > 0 such that

f—|-€<u)t0

on|[z,y]. Consider the sequence of generalized lingsletermined by the conditions
1 1
wp(x) == w(x) +to — - wn(y) == w(y) +to — -

Lemm4 3.1 implies thatv,) is strictly monotone increasing; further, according to Lenima 5.2,
wn — wy, Uniformly on the compact intervat, y] sincew, (x) — wy, () andw, (y) — w, (y).
Hence, there exists any € N satisfying the inequalities

Wno < Wiy < Wry + 5
Comparing this to the previous one, it follows that

£
f+§<wn0<wt0,

which contradicts the definition of sincew,, can also be written in the foray,, _, /,,. Therefore,
the choicev;, satisfies the requirements.

(14i) = (iv). Due to the continuity of the functiong andw, we may assume that is
the minimal element ofzx, y[ fulfilling the properties of the assertion. Thef(u) < w(u) if
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r<u<pandf(v) <w(v)if p < v <y. Therefore,

fw)  flp)  fv) w(u) w(p) w)
wi(u) wi(p) wi(v) | <| wi(u) wi(p) wi(v)
wa(u) wa(p) wa2(v) wa(u) wa(p) wa(v)
since the adjoint determinants 6fu) and f(v) are positive, furthermore; andw coincide at
p. However,w is a linear combination af; andwy, hence the left hand side of the previous
inequality equals zero.
(iv) = (7). Trivial. O

The next result shows thét,, w,)-convexity, similarly to the standard one, is a pointwise
property.
Corollary 5.1. Let (w;,w>) be a Chebyshev system over the open intefy&irthermoref :
I — R is a given function. Then, the following assertions are equivalent:
(i) fis (w1, ws)-cONVEX;
(i) fislocally (w,ws)-convex that is, each element of the domain has a neighborhood
where it is(w;, wy)-cONVex;
(iif) f is continuous and, for app € I, there exist elements< p < y of I such that

flw)  f(p) fv)
wi(u) wi(p) wi(v) [ >0
wa(u) wa(p) wa(v)

forallz <u <p<wv<y(.e., fislocally convexat each point).

Hint. The implicationsi) = (ii) and (i) = (iii) are trivial. For the implicatioriii) = (i),
the last assertion of Corollafy 5.1 can be applied, which, in the case of indirect assumption,
immediately leads to contradiction. O

5.2. Hermite—Hadamard-type inequalities and(w, wo )-convexity. The main results are pre-
sented in three theorems. The first and the second ones concern the left and right hand side in-
equalities of Theorein 3.4 independently, while the third one is analogous to the classical Jensen
inequality.

Theorem 5.2. Let (w1, w,) be a Chebyshev system on an interfab] such thatv, is positive
onJa, b], furthermorep : [a,b] — R is a positive integrable function. Define, for all elements
x < y of [a, b], the functiong (z, y) andc(x, y) by the formulae

E(w,y) = (ﬂ)l (fxngp)’ (i y) = e P

w1 [ wip wi(§(r,y))

Then, a continuous functioh: [a,b] — R is generalized convex with respect(to, w,) if and
only if, for all elements: < y of [a, b], it satisfies the inequality

c(z,y) f(E(z,y)) < /y fp.

Proof. The necessity is due to Theor¢gm|3.4. For the converse assertion, note first that the
mapping(z,y) — &(z,y) is continuous in each variable and takes its value betweand

y since it is a Lagrange-type mean-value. Furthér, y) and{(z,y) are constructed so that

all generalized lines (i.e., the linear combinationsspfandw,) are solutions of the functional
equation

(5.1) oz, y)w(&(z,y)) = /ywp (z <y).

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

48 M. BESSENYEI

(For details, see the proof of Theorgm|3.4.) Assume flsattisfies the inequality of the theorem
and, indirectly, is nofw;, w)-convex. Then, according to assertiaf) of Theorenj 5.1, there
exist elements < p < y of I and a generalized line such thatf < w on|[z,y] and

f(z) <w(z), f(p)=wp), [fly)<w(y).

If, for example,p < ¢(z,vy), then there is €]p, y] such thap = £(x, u) sincef is a Lagrange-
type mean-value. The inequalifi{z) < w(x) and the continuity off implies thatf < w on a
right hand side neighborhood ofhence, applyind (5]1), it follows that

() (glo) < [ o< [ wp= e ww(En).
On the other hand, both sides have the common vadlue:) f (p), which is a contradiction. [

Theorem 5.3.Let(wy,ws) be a Chebyshev system over an intefwab] such thatu, is positive
on|a, b], furthermorep : [a,b] — R is a positive integrable function. Define, for all elements
x < y of [a, b], the functions; (z, y) andcs(z, y) by the formulae

[lwip wi(y) ‘ wi () féwlp‘
fx wap w2 (y) w2 () fx Wz

wi(z) wi(y) wi(r) wi(y)
wa(z)  wa(y) wa(z) wa(y)

Then, a continuous functioh: [a,b] — R is generalized convex with respect(to, w-) if and
only if, for all elements: < y of [a, b], it satisfies the inequality

/ﬂwsﬁ@wvuwum@wﬂw

Proof. The necessity is due to Theorém|3.4 again. Conversely, note first;ifaty) and
c2(x, y) are constructed such that all generalized lines (i.e., the linear combinatiansaafi
w9) are the solutions of the functional equation

(5.2) /szqmww@wumawww.

(For details, see the proof of Theor¢m|3.4.) Assume indirectly fhatnot (w;, ws)-convex.
Then, according to assertigf) of Theorenj 5.11, there exist elements< y of I and a gener-
alized linew such thatv(z) = f(z), w(y) = f(y) andw < f on]|x,y[. Therefore,

/y wp < /y frp<ci(z,y)f(x)+cz,y)f(y)

- 01(137 y)w(w) + C2(x7 y)bd(y),
which contradicts (5]2). O
Theorem 5.4.Let(w;, wy) be a Chebyshev systembandf : I — R be a continuous function.
Keeping the notations of Theor¢m|5.3 and Thedrem 5i&(w;, w»)-convex if and only if, for
all elementse < y of I, it satisfies the inequality

c(z, ) f (&) < aalz,y) f(@) + calz,y) f(y).

Proof. The necessity part has already been proved in Theprgm 3.4. For the sufficiency, observe
first that the functions, ¢, ¢, and¢ are constructed so that all the generalized lines are solutions
of the functional equation

c(z,y)w(E(x,y) = alz,y)w(@) + ez, y)wly)  (z<y)

) 02(x7y) =

Cl(x>y) =
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since both sides have the common vafgeup. Assume indirectly that a functiofi: 7 — R
satisfies the inequality of the theorem and is not generalized convex with resgegt dg).
Then, there exist elements< y of I and a generalized line fulfilling the conditions

W(I) = f(:L‘), th,y[ < fhx,y[a w(y) = f(y)

due to Theorern 5| 1. Therefore, taking the above observation into consideration, one can imme-
diately get that

c(x,y)f (£(x,y)) < arlz,y) f(2) + calw, y)
= c1(z,y)w(z) + c2(x, y)w(y)
= c(z,y)w(é(z.y)) < c(z,y)f(E(x,y)),

which is a contradiction. O

To give a unified view, the previous results are combined in the subsequent corollary. This
corollary, Theorerm 3]1, Corollafy 3.2, Theorem|3.2 and Cord[larly 5.1 together are a comprehen-
sive characterization of generalized convexity induced by two dimensional Chebyshev systems.

Corollary 5.2. Let(w;,ws) be a Chebyshev system bsuch thatv, is positive on/°, further,
p: I — Ris a positive integrable function. Keeping the notations of Theprem 5.2, Thorem 5.3
and Theorerh 54, the following assertions are equivalent for any fun¢tioh— R:

(i) fis generalized convex with respect(to, ws);
(i) fis continuous and, for all elements< y of I, satisfies the inequality

c(z,y)f(&(z,y)) < /y fo;

(i) f is continuous and, for all elements< y of I, satisfies the inequality

)
/ fr < alzy)f(e) +clz,y)f(y);
(iv) fis continuous and, for all elements< y of I, satisfies the inequality

c(x,y)f(€(z,y) < ailz,y) f(@) + e, 9) f ().

The question arises, quite evidentihether Hermite—Hadamard-type inequalities also char-
acterize generalized convexity in the general case or fimgive an affirmative answer even in
the polynomial case remains an open problem and may be the subject of further studies.
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