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1. Introduction

Let I be a real interval, that is, a nonempty, connected and bounded suli®et of
An n-dimensionalChebyshev systeom / consists of a set of real valued continuous
functionsw, ..., w, and is determined by the property that eagboints of / x R

with distinct first coordinates can uniquely be interpolated by a linear combination
of the functions. More precisely, we have the following

Definition 1.1. Let/ C R be areal interval andv,, ..., w, : I — R be continuous
functions. Denote the column vector whose components;are. , w,, in turn by w,
that is, w := (wy,...,w,). We say thatw is a Chebyshev system ovérif, for all
elements; < --- < x, of I, the following inequality holds:

| w(z1) -+ w(z,) |>0.

In fact, it suffices to assume that the determinant above is nonvanishing when-
ever the arguments,, ..., x, are pairwise distinct points of the domain. Indeed,
Bolzano’s theorem guarantees that its sign is constant if the arguments are supposed
to be in an increasing order, hence the components. . ,w,, can always be rear-
ranged such thab fulfills the requirement of the definition. However, considering
Chebyshev systems as vectors of functions instead of sets of functions is widely
accepted in the technical literature and also turns out to be very convenient in our
investigations.

Without claiming completeness, let us list some important and classical examples
of Chebyshev systems. In each examplés defined on an arbitrary C R except
for the last one wheré C] — 7, Z1.

e polynomial systemw(z) := (1,x,...,z");

e exponential systemw(z) := (1,expx,...,expnz);

e hyperbolic systemw(z) := (1, coshx,sinh x, . .. cosh nz, sinh nx);
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e trigonometric systemw(z) := (1,cosz,sinz, ..., cos nx, sinnz).

We make no attempt here to present an exhaustive account of the theory of Cheby-
shev systems, but only mention that, motivated by some results of A.A. Markov, the
first systematic investigation of the geometric theory of Chebyshev systems was done
by M. G. Krein. However, let us note that Chebyshev systems play an important role,
sometimes indirectly, in numerous fields of mathematics, for example, in the theory
of approximation, numerical analysis and the theory of inequalities. The ba6éks [
and [L5] contain a rich literature and bibliography of the topics for the interested
reader. The notion of convexity can also be extended by applying Chebyshev sys-
tems:

Definition 1.2. Letw = (wy,...,w,) be a Chebyshev system over the real interval
I. Afunctionf : I — R is said to begeneralized convex with respectdoif, for all
elements < --- < z,, of [, it satisfies the inequality

S (o) S (@n)

w (o) w(wn)

(=1

There are other alternatives to express tha generalized convex with respect
to w, for example,f is generalizedw-convexor simply w-convex If the underlying
n-dimensional Chebyshev system can uniquely be identified from the context, we
briefly say thatf is generalized:-convex

If w is the polynomial Chebyshev system, the definition leads to the notion of
higher-order monotonicity which was introduced and studied by T. Popoviciu in a

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 4 of 101
Go Back
Full Screen

Close

sequence of paper&(, 22, 21, 24, 23, 27, 29, 25, 30, 28, 26, 31, 33, 32, 34, 35].
A summary of these results can be found36][and [17]. For the sake of uniform in pure and applied
terminology, throughout the this paper Popoviciu’s setting is called polynomial con- mathematics
vexity. That is, a functiory : I — R is said to bgolynomiallyn-convexif, for all issn: 1443-575k

journal of inequalities

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

elements, < --- < x, of I, it satisfies the inequality

f(xo) .. flzn)
1 1
(—1)"| o - T[>0
zo o gt

Observe that polynomiall2-convex functions are exactly the “standard” convex
ones. The case, when the “generalized” convexity notion is induced by the special
two dimensional Chebyshev system(z) := 1 andws(z) := z, is termedstandard
settingandstandard convexityrespectively.

The integral average of any standard convex functfon [a,b] — R can be
estimated from the midpoint and the endpoints of the domain as follows:

f(a;—b> - bia/abf(x)dxg f(a);f(b)

This is the well known Hadamard’s inequalityL{]]) or, as it is quoted for historical
reasons (seelp], [18] for interesting remarks), the Hermite-Hadamard-inequality.

The aim of this paper is to verify analogous inequalities for generalized convex
functions, that is, to give lower and upper estimations for the integral average of
the function using certain base points of the domain. Of course, the base points
are supposed to depend only on the underlying Chebyshev system of the induced
convexity.

For this purpose, we shall follow an inductive approach since it seems to have
more advantages than the deductive one. First of all, it makes the original motiva-
tions clear; on the other hand, it allows us to use the most suitable mathematical
tools. Hence sophisticated proofs that sometimes occur when using a deductive ap-
proach can also be avoided.
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SECTION 2 investigates the case of polynomial convexity. The base points of the
Hermite—Hadamard-type inequalities turn out to be the zeros of certain orthogonal
polynomials. The main tools of the section are based on some methods of numerical
analysis, like the Gauss quadrature formula and Hermite-interpolation. A smoothing
technique and two theorems of Popoviciu are also crucial.

In SECTION 3 we present Hermite—Hadamard-type inequalities for generalized
2-convex functions. The most important auxiliary result of the proof is a charac-
terization theorem which, in the standard setting, reduces to the well known char-
acterization properties of convex functions. Another theorem of the section estab-
lishes a tight relationship between standard and generalizedvexity. This result
has important regularity consequences and is also essential in verifying Hermite—
Hadamard-type inequalities.

The general case is studied iESTION 4. The main results guarantee only the
existence and also the uniqueness of the base points of the Hermite—Hadamard-type
inequalities but offer no explicit formulae for determining them. The main tool of
the section is the Krein—Markov theory of moment spaces induced by Chebyshev
systems. In some special cases (when the dimension of the underlying Chebyshev
systems are “small”), an elementary alternative approach is also presented.

SECTION 5 is devoted to showing that, at least in the two dimensional case and
requiring weak regularity conditions, Hermite—Hadamard-type inequalities are not
merely the consequences of generalized convexity, but they also characterize it.

Specializing the members of Chebyshev systems, several applications and ex-
amples are presented for concrete Hermite—Hadamard-type inequalities in both the
cases of polynomial convexity and generalizedonvexity. As a simple conse-
guence, the classical Hermite—Hadamard inequality is among the corollaries in each
case as well.

The results of this paper can be found %4, 5, 6, 7] and [1]. In what follows,
we present them without any further references to the mentioned papers.
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2. Polynomial Convexity

The main results of this section state Hermite—Hadamard-type inequalities for poly-
nomially convex functions. Let us recall that a functipn I — R is said to be
polynomiallyn-convexif, for all elementszy < --- < z, of I, it satisfies the in-

equality
f(o) o [flan)
1 . 1
(_1>n ) - Ty > ()
zot o gt

In order to determine the base points and coefficients of the inequalities, Gauss-type
guadrature formulae are applied. Then, using the remainder term of the Hermite-
interpolation, the main results follow immediately for “sufficiently smooth” func-
tions due to the next two theorems of Popoviciu:

Theorem A. ([17, Theorem 1. p. 387]JAssume thaf : I — R is continuous and
n times differentiable on the interior gt Then,f is polynomiallyn-convex if and
only if f™ > 0 on the interior ofI.

Theorem B. ([17, Theorem 1. p. 391JAssume thaf : I — R is polynomially
n-convex anch > 2. Then,f is (n — 2) times differentiable ang™~?) is continuous
on the interior ofI.

To drop the regularity assumptions, a smoothing technique is developed that guar-
antees the approximation of polynomially convex functions with smooth polynomi-
ally convex ones.
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2.1. Orthogonal polynomials and basic quadrature formulae

In what follows, p denotes a positive, locally integrable function (brieflyeight
function) on an intervall. The polynomialsP” and( are said to b@rthogonal on
la, b] C I with respect to the weight functignor simply p-orthogonal onfa, b] if

b
(P,Q), = / PQp =0.

A system of polynomials is called @orthogonal polynomial system da,b] C I
if each member of the system jsorthogonal to the others o, b]. Define the
moment®f p by the formulae

b
g = / 2*p(x)dx (k=0,1,2,...).

Then, then!” degree member of the-orthogonal polynomial system dn, b] has
the following representation via the momentspof

L opo - pna
l’ . e n
A R (|

Clearly, it suffices to show tha®, is p-orthogonal to the special polynomialsz,
..,z" 1. Indeed, fork = 1,... n, the first and thegk + 1)** columns of the
determinan{ P, (x), z*'), are linearly dependent according to the definition of the
moments.
In fact, the moments and the orthogonal polynomials depend heavily on the inter-
val[a, b]. Therefore, we use the notiopg, ;) andP,,(, ; instead ofu;, and P, above
when we want to or have to emphasize the dependence on the underlying interval.

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 8 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

Throughout this section, the following property of the zeros of orthogonal poly-
nomials plays a key role (se89]). Let P, denote then® degree member of the
p-orthogonal polynomial system dn,b]. Then, P, hasn pairwise distinct zeros
& <--- <& inja, bl

Let us consider the following

b n
2.1) | a=3 et
ab k=1 n Mihaly Bessenyei
(22) / fp _ Cof(a) + Z Ckf(gk)a vol. 9, iss. 3, art. 63, 2008
@ k=1
b n Title Page
(2.3) [ do=3eut@) + cuns (o)
@ k=1 Contents
b n
(2.4) [ do=cof@+ Y ct() + crasb) “ | »
a k=1 < >
Gauss-type quadrature formulae where the coefficients and the base points are to be Page 9 of 101
determined so that(1), (2.2), (2.9) and @.4) are exact wherf is a polynomial of
degree at mostn—1, 2n, 2n and2n+ 1, respectively. The subsequent four theorems Go Back
investigate these cases. Full Screen
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Furthermore,&;, . . ., &, are pairwise distinct elements &f, b[, and ¢, > 0 for all
k=1,...,n.

This theorem follows easily from well known results in numerical analysis (see

[13], [14], [39]). For the sake of completeness, we provide a proof.

Proof. Firstassume thdt, . . ., &, are the zeros of the polynomig)}, and, for allk =
1,...,n, denote the primitive Lagrange-interpolation polynomialsihy: [a,b] —
R. That s, @)
P,(x
- if x
L) =4 G-gPG) "7

If @ is a polynomial of degree at moat — 1, then, using the Euclidian algorithm,
() can be written in the fornd) = PP, + R wheredeg P,deg R < n — 1. The
inequalitydeg P < n — 1 implies thep-orthogonality ofP? and P,,:

b
/ PP,p=0.

On the other handleg R < n— 1 yields thatR is equal to its Lagrange-interpolation
polynomial:

R= Z R(&) L.
k=1

Therefore, considering the definition of the coefficienits . ., ¢, in formula ¢.5),
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we obtain that

/aprz/abPPnp+/abRp= 3 R(ék)/abLkp

k=1
n

=Y aR(&) = Y (P& Pa(&r) + R(&)) = Y Q&)
k=1 k=1 k=1
That is, the quadrature formul&.() is exact for polynomials of degree at most
2n — 1.
Conversely, assume thai. () is exact for polynomials of degree at m@st— 1.
Define the polynomiady by the formulaQ(z) := (z — &) - - - (x — &,) and letP be
a polynomial of degree at most— 1. Then,deg PQ < 2n — 1, and thus

b
/ PQp = et P(E)Q(E) + -+ + eaP(EQ(Es) = 0.

Therefore? is p-orthogonal taP. The uniqueness af, implies that?,, = «,,Q, and
&1, ..., &, are the zeros of,. Furthermore,4.1) is exact if we substitut¢ := L,
and f := L2, respectively. The first substitution gives ), while the second one
shows the nonnegativity @f,. For further details, consult the bod&d, p. 44]. [

Theorem 2.2.Let P, be then'* degree member of the orthogonal polynomial system
on [a, b] with respect to the weight functign(z) := (x —a)p(z). Then(2.2) is exact

for polynomialsf of degree at mosin if and only if&y, .. ., &, are the zeros of,,

and

(2.6) = | Paipta)ds,
1 b (x —a)P,(x)
&7) e R A
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Furthermore,&;, . . ., &, are pairwise distinct elements &f, b[, and ¢, > 0 for all
k=0,...,n.

Proof. Assume that the quadrature formufad) is exact for polynomials of degree
at most2n. If P is a polynomial of degree at moat — 1, then

b b
/ Ppa = / (LL’ - a)P(x)p(x)dx = Cl<§1 - a’)P(gl) +oeee Cn(gn - a)P(én)
Applying Theoren?.1to the weight functior, and the coefficients

Caik *= Ck(fk - CL);

we get that,, ..., &, are the zeros oP, and, for allk = 1,...,n, the coefficients
cq:x Can be computed using formula ). Therefore,

RO A 1C) _ [’ z=a)Pi(a)
e —a) = | s = [ e
Substitutingf := P? into (2.1), we obtain that

1 b,
= P2p.
0 Pz<a>/a nP

Thus ¢.6) and @.7) are valid, and;, > 0for k=0,1,...,n.

Conversely, assume thgt . . ., £, are the zeros of the orthogonal polynomia|
and the coefficients,, . .., ¢, are given by the formula2(7). Define the coefficient
co by ¢y = fabp —(¢1 4+ -+ + ¢,). If Pis apolynomial of degree at mo3t, then
there exists a polynomid@) with deg @) < 2n — 1 such that

P(z) = (x — a)Q(z) + P(a).
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Indeed, the polynomiaP(x) — P(a) vanishes at the point = a, hence it is divisible
by (z — a). Applying Theoren?.1again to the weight functiop,,

b
/ Qpa - Ca;lQ(gl) +--+ Ca;nQ(gn)

holds. Thus, using the definition of, the representation of the polynomigland
the quadrature formula above, we have that

| Pap@is= [ (2 - 0@ + Pl)sa)ds

=) al& — a)Q(&) + Y Pla)e

k=0

= coP(a) + ) e ((& — a)Q(&) + Pla))

=cP(a) + > P (&),

which yields that the quadrature formula) is exact for polynomials of degree at
most2n. Therefore, substituting := P? into (2.2), we get formulaZ.6). ]

Theorem 2.3.Let P, be then'* degree member of the orthogonal polynomial system
on [a, b] with respect to the weight functigfi(z) := (b—x)p(z). Then(2.3) is exact
for polynomialsf of degree at mostn if and only iféy, . . . ¢, are the zeros of’,,
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and

1 b (b—z)P,(2) Ve
(@8) =375 | &) P &)
(2.9) i = PL@ / P(2)p()d.

Furthermore,&;, ..., &, are pairwise distinct elements &f, o[, and ¢, > 0 for all
k=1,...,n+1.

Hint. Applying a similar argument to the previous one to the weight fungtfome
obtain the statement of the theorem. O

Theorem 2.4.Let P, be then'" degree member of the orthogonal polynomial system

on[a, b] with respect to the weight functigsj. Then(2.4) is exact for polynomialg
of degree at mosin + 1 if and only if¢,, . . ., &, are the zeros oF,, and

1 b )
(2.10) co = W/a (b — x)P:(z)p(x)dz,
_ 1 - — P
I e ) v L

1 ’ )
(2.12) Cnil = W/a (x —a)P:(z)p(z)dx.

—a)

Furthermore,&;, . .., &, are pairwise distinct elements &f, b[, and ¢, > 0 for all
k=0,...,n4+ 1.

Proof. Assume that the quadrature formufa4) is exact for polynomials of degree
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at most2n + 1. If P is a polynomial of degree at moat — 1, then

[ piti= [(6-0 - ap@pee
B )6 — PE) et ealb— €6 — PG
Applying Theoren?.1to the weight functionp’ and the coefficients
Capik = Cr(b— &) (§k — @),

we get thatty, ..., &, are the zeros oP, and, for allk = 1,...,n, the coefficients
cap:k CaN be computed using formula ). Therefore,

Substitutingf := (b — z)P?(x) andf := (z — a) P?(z) into (2.1), we obtain that

o — ﬁ / (b— ) P2(2)p(x)dz,

1 b
Cnt1 = m/ (z — a)PZ(fv)p(fC)d:v-
Thus ¢.10), (2.11) and .12 are valid, furthermore;, > 0fork =0,...,n + 1.
Conversely, assumeth@t . . ., &, are the zeros aP,, and the coefficients, . . ., ¢,
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are given by the formula?(11). Define the coefficients, andc,,,, by the equations

b n
| 0= aparts = b - a) + Y- )

[ @ aptads =Y e~ a) + el a).

k=1

If P is a polynomial of degree at maat + 1, then there exists a polynomi@l with
deg @ < 2n — 1 such that

(b—a)P(x)=(b—x)(z—a)Q(z)+ (x —a)P(b) + (b — z)P(a).

Indeed, the polynomialb — a)P(z) — (z — a)P(b) — (b — x)P(a) is divisible by
(b — z)(x — a) sincex = a andz = b are its zeros. Applying Theorefn1 again,

b
/ Q:OZ = Cap1Q(&1) + -+ + Capn@Q(&n)

holds. Thus, using the definition af andc,, 1, the representation of the polynomial
P and the quadrature formula above, we have that

=) [ Pz
= [ (b= 2)(e ~ 0)Q(a) + o = ) P(B) + (b~ 2)P(a)) pla)i

=Y al - &6 - 9Q(&)

b b
+PO) [ (o= applo)ds + P(a) [ (6= o)pla)ds
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most2n + 1. Therefore, substituting :=

k

k=

n

cr(b — &) (§r — a)Q(&r)

=1

+Co b—CL

+ Z Ck(fk — (I)P
k=1

e ((b— &) (& — a)Q(&) +
+co(b—a)P(a ) + ny1(b — a) P(b)

—I—ch —a

which yields that the quadrature formula4) is exact for polynomials of degree at
(b—x)P?(x)andf := (x — a) P%(z) into

n

+chb &) P

(2.4), formulae £.10 and ¢.12) follow.

Let f : [a,b] — R be a differentiable functiony, . ..
elements ofa, b], and1 < r < n be a fixed integer. We denote the Hermite interpo-
lation polynomial byH, which satisfies the following conditions:

fllee) (k=1,...,

We recall thatleg H = n + r — 1. From a well known result, (se&3, Sec. 5.3, pp.

H(xy) =
Hl(mk) =

b) + Cn+1(b —

a)P(b)

(& — a)P(b) + (b — &) P(a))

P(&) + cny1(b — a)P(b),

, T, be pairwise distinct

n),
T).
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230-231)), for allz € [a, b] there exist® such that

~ we(T)w ()

(2.13) () = Hiz) = = FESE 000,

where
wr(x) = (r —x1) -+ (& — ).
2.2. An approximation theorem

It is well known that there exists a functignwhich possesses the following proper-
ties:

() p: R — R, isE>,I. e, itis infinitely many times differentiable;
(i) suppp C [-1,1];
(i) [peo=1.

Using, one can define the functign for all ¢ > 0 by the formula

) =¢(%)  (weR).

Then, as it can easily be checked,satisfies the following conditions:
() v :R—R,iISE>;

(i) suppp. C [—€,¢];

(i) [, e = 1.
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Let/ C R be anonempty open intervel,: I — R be a continuous function, and
chooses > (. Denote the convolution of andy. by f., that is

foa) = / Fwesz—y)dy  (zeR)

where f(y) = f(y) if y € I, otherwisef(y) = 0. Let us recall, thatf. — f
uniformly ase — 0 on each compact subinterval 6f and f. is infinitely many
times differentiable ofR. These important results can be found for examplely [
p. 549].

Theorem 2.5.Let I C R be an open intervalf : I — R be a polynomiallyn-
convex continuous function. Then, for all compact subinteriall C I, there
exists a sequence of polynomiatlyconvex ands> functions( f;) which converges
uniformly to f on[a, b].

Proof. Choosez, b € I andg, > 0 such that the inclusiofu — ¢¢, b+ £] C I holds.
We show that the function. f : [a,b] — R defined by the formula

f(z) = flz —¢)
is polynomiallyn-convex onfa, b] for 0 < e < gy. Leta <z < --- < x, < band
k < n — 1 be fixed. By induction, we are going to verify the identity

Tef(x()) e T&f<xn) Tsf<x0) e Tsf<wn)
1 . 1 1 e 1
T T To— € Ty —€
(2-14) :13]8_1 o wiq - (350 _ 5>k—1 . (l‘n _ 8)k—l
x/g ce IZ :E’S e mfl
1;871 o zn1 xg—l . !
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If & = 1, then this equation obviously holds. Assume, for a fixed positive integer
k <n —2,that ¢.14) remains true. The binomial theorem implies the identity

T <§)5k+ (T)ek_l(m —e)+ -+ (IZ) (z — )k

Thatis,(z — ¢)* is the linear combination of the elements —¢, ..., (z — ¢)* and
x*. Therefore, adding the appropriate linear combination of2tie. . ., (k + 1)
rows to the(k + 2)"? row, we arrive at the equation

Tef(xo) Tef(xn> Tsf(IO) Taf(mn)
1 1 1 1
Ty — € Ty — € Ty — € Ty — €
(IO N 6)lcfl (xn N E)kfl (xo o E)kfl (xn o g)kfl
zk zk (w9 — &)* (1, —e)*
xlg-‘rl .ZU]:L+1 IIS+1 xl;fl-‘rl
[)38._1 :L,Z.fl Ig.—l lefl

Hence formula?.14) holds for all fixed positive: wheneverl < £ < n — 1. The
particular casé: = n — 1 gives the polynomiah-convexity of 7. f. Applying a
change of variables and the previous result, we get that
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f(t)gps(xn - t)
1
Ln dt
f(xn—s)
1
Tn we(8)ds
xz:_l
7o f (n)
1

Tn e(s)ds >0,

which shows the polynomial-convexity of f. on [a, b] for 0 < e < &.
To complete the proof, choose a positive integgsuch that the relatiogrO < &o

holds. If we define:;, and f;, by ¢, := ﬁ andf; := f., fork € N, then0 < ¢; <

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 21 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

€0, and thug f; )32, satisfies the requirements of the theorem. O]

2.3. Hermite—Hadamard-type inequalities

In the sequel, we shall need two additional auxiliary results. The first one investi-
gates the convergence properties of the zeros of orthogonal polynomials.

Lemma 2.1. Let p be a weight function ofw, b], and(a;) be strictly monotone de-
creasing,(b;) be strictly monotone increasing sequences suchdhat a, b; — b
anda; < b;. Denote the zeros d?,,,; by &, ..., &n.j, WhereP,, ; is them!" de-
gree member of the||,, ;,;-orthogonal polynomial system ¢am;, b;], and denote the
zeros ofP,, by &, ..., &, whereP,, is them! degree member of theorthogonal
polynomial system ofa, b]. Then,

jh_)rgloflﬂ;j:é-k (k:Lvn)

Proof. Observe first that the mappir@, b) — px[a,4 IS cOntinuous, therefore.(,; s,
— ;a5 NENCER,,.; — P, pointwise according to the representation of orthogonal
polynomials. Take > 0 such that

&k — €, & + €[Cla, b],

& — e, & +elN& —e,&+e[=0 (k#1, k,le{l,...,m}).
The polynomialP,, changes its sign ol§, — ¢, & + <[ since it is of degree: and it
hasm pairwise distinct zeros; therefore, due to the pointwise convergéhcealso
changes its sign on the same interval up to an index. That is, for sufficientlyjlarge
kg €1k — &,k + el [

The other auxiliary result investigates the one-sided limits of polynomially
convex functions at the endpoints of the domain. Let us note that its first assertion
involves, in fact, two cases according to the parity of the convexity.
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Lemma 2.2. Let f : [a,b] — R be a polynomiallyz-convex function. Then,
() (=1)"f(a) = limsup, ,o(—1)"f(1);

(i) f(b) > limsup,_, o f(1).
Proof. It suffices to restrict the investigations to the even case of asséiliamly

since the proofs of the other ones are completely the same. For the sake of brevity,

we shall use the notatiofy. (a) := limsup,_,,,, f(¢). Take the elements, := a <

xy =t < --- <z, of [a,b]. Then, the (even order) polynomial convexity pf
implies
fla) f@) flx2) .. flan)
1 1 1 1
t To T i >0
a"t gt xg_l oot

Therefore, taking the limsup as— « + 0, we obtain that

fla) fi(a) flx2) f(n)
1 1 1 . 1
a a To - Tp > ()
a[nfl anfl x;t—l xzfl
The adjoint determinants of the elemelfits.,), ..., f(z,) in the first row are equal

to zero since their first and second columns coincide; on the other lf&ndand
f+(a) have the same (positive) Vandermonde-type adjoint determinant. Hence, ap-
plying the expansion theorem on the first row, we obtain the desired inequality

f(a) = f(a) > 0. O

W

& x
%
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The main results concern the cases of odd and even order polynomial convexity

separately in the subsequent two theorems.

Theorem 2.6.Letp : [a,b] — R be a positive integrable function. Denote the zeros

of P, by¢&,, ... &, whereP,, is them'™ degree member of the orthogonal polyno-
mial system offu, b] with respect to the weight functide — a)p(z), and denote the
zeros ofQ,, by n.,...,n, where@,, is them'™ degree member of the orthogonal
polynomial system ofa, b] with respect to the weight functidh — z)p(z). Define
the coefficientsy, ..., a,, and 3y, ..., G,,.1 by the formulae

1,
ap = %/a P2 (x)p(x)dz,

1 " (z —a)Pu(x) \da
R /a (z — fk)P&(fk)m )

and

1 " (b—2)Qm(x) N
B 1= b_nk/a (ﬁ—nk)@n(ﬁk)p( )z,

1 b,
Bm+1 = m/a Q- (x)p(x)dz.

If a function f : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m b m
apf(a) + Y anf(&) < / Fp <7 Bef () + Bia f (D).
k=1 @ k=1

Proof. First assume that is (2m + 1) times differentiable. Then, according to
TheoremA, f2™+) > 0 on|a, b[. Let H be the Hermite interpolation polynomial
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determined by the conditions

H(a) = f(a),
H (&) = f(&),
H'(&) = f'(&)-

By the remainder tern?(13) of the Hermite interpolation, if is an arbitrary element
of Ja, b[, then there exist8 €|a, b[ such that

1) = ) = GRS e,

Thatis,fp > Hp on [a, b] due to the nonnegativity of ™+ and the positivity of
p. On the other hand{ is of degre&m, therefore Theorer.2 yields that

b b m m
[ g0z [ Ho=aut@)+ 3" ant(6) = aof (@) + Y- anf (&)

For the general case, I¢tbe an arbitrary polynomiall{2m + 1)-convex function.
Without loss of generality we may assume that> 1; in this case,f is continu-
ous (see Theorerid). Let (a;) and(b,) be sequences fulfilling the requirements of
LemmaZ2.1. According to Theorer.5, there exists a sequence®t, polynomially
(2m + 1)-convex functiong f; ;) such thatf;; — f uniformly on|a;, b;] asi — oc.
Denote the zeros of,,.; by &1, ..., &n.; Where P, is them! degree member
of the orthogonal polynomial system ¢a;, b;] with respect to the weight function
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follows that
a0 fisg(a;) + > s fig (Sess) S/ fisip-
k=1 aj

Taking the limitsi — oo and thenj — oo, we get the inequality

m b
oo (liminf /(1)) + > onf(e) < | 1o
This, together with Lemma.2, gives the left hand side inequality to be proved. The
proof of the right hand side inequality is analogous, therefore it is omitted. [

The second main result offers Hermite—Hadamard-type inequalities for even-
order polynomially convex functions. In this case, the symmetrical structure dis-
appears: the lower estimation involves none of the endpoints, while the upper esti-
mation involves both of them.

Theorem 2.7.Let p : [a,b] — R be a positive integrable function. Denote the
zeros ofP, by &4, ..., &, whereP,, is them!" degree member of the orthogonal
polynomial system ofu, b] with respect to the weight functionz), and denote
the zeros o), 1 by ni,...,n,,_1 Where@,,_; is the (m — 1)** degree member
of the orthogonal polynomial system @an b] with respect to the weight function
(b — x)(z — a)p(x). Define the coefficients, ..., «,, and fy,..., By by the

formulae
= ’ Pn(2) x)dx
o /a (z — fk)P/n(§k)p< )d
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and

1 b )
Bo = b—a)Q? (a)/a(b_x) m—1(x)p(x)dz,

m—1
1 " (b~ 2)(x — Q)Qu-1()
. /
OG-0k G-mGam
1 b Hermite-Hadamard-type
5777, — / r—a Tan T )plx de Inequalities
! (b_a) g@—l(b) a ( ) 1( ) ( ) Mihaly Bessenyei
If a functionf : [a, b] — R is polynomially(2m)-convex, then it satisfies the follow- e (55 Gl 55 PO
ing Hermite—Hadamard-type inequality
m b m—1 Title Page
< < .
> a6 < [ 1o<tosta) + DESUSEEIC —
Proof. First assume thaf is n = 2m times differentiable. Therf®*™ > 0 on]a, b] K A
according to Theoren®. Consider the Hermite interpolation polynomiél that < >

interpolates the functioifi in the zeros of?,, in the following manner:
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side of the inequality to be proved:

b b m m
/ fPZ/ Hp=> o H(&) =Y arf (&)
a a k=1 k=1

Now consider the Hermite interpolation polynomiélthat interpolates the function
f atthe zeros of),,,_; and at the endpoints of the domain in the following way:

H(a) = f(a),
H(n) = f(m),
H' () = f' (k)

H(b) = f(b).

By the remainder tern?(13 of the Hermite interpolation, it is an arbitrary element
of Ja, b[, then there exists@c|a, b[ such that

(z —a)(z = b)(x—m)* - (& = 1hn-1)’

(o).

The factors of the right hand side are nonnegative except for the factob) which
is negative, hencé¢p < Hp. On the other hand{ is of degree2m — 1, therefore
Theorem?.4yields the right hand side inequality to be proved:

b b m—1
[ do< [ Ho=puti@)+ Y A + A
@ e k=1

— Gof(@) + 3 B () + Bt ().
k=1

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 28 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

From this point, an analogous argument to the corresponding part of the previous
proof gives the statement of the theorem without any differentiability assumptions
on the functionf. O

Specializing the weight functiop = 1, the roots of the inequalities can be ob-
tained as convex combinations of the endpoints of the domain. The coefficients of
the convex combinations are the zeros of certain orthogonal polynomigsidrin -

. . . . . Hermite-Hadamard-type
both cases. Observe that interchanging the role of the endpoints in any side of the Inequalities
inequality concerning the odd order case, we obtain the other side of the inequality. Mihdly Bessenyei
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1 1 1
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Pn(z) = . . . . : Contents
™ m;JrZ T 2m1+1 4« 4
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following Hermite—Hadamard-type inequality

[ s

<> apf(Mka+ (1= Ap)b) + anf (D).

k=1

aof(a) + Zakf (1= Mp)a+ Ad) <

Proof. Apply Theorem2.6 in the particular setting whea := 0, b := 1 and the
weight function isp = 1. Then, as simple calculations shaf, is exactly themn!"
degree member of the orthogonal polynomial systenjOoh] with respect to the
weight functionp(z) = z (see the beginning of this section). TherefoR, has
m pairwise distinct zero§ < \; < --- < \,, < 1. Moreover, the coefficients
ap, - . ., a,, have the form above. Define the functiéi: [0, 1] — R by the formula

F(t):= f((1—t)a+1b).

It is easy to check thak' is polynomially (2m + 1)-convex on the intervalo, 1].
Hence, applying Theorem 6 and the previous observations, it follows that

/ " F#)dt > agF(0) + zm: 0 F ()

= apf(a +Zakf (1= Ap)a + \b).
k=1
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For verifying the right hand side one, define the function [a,b] — R by the
formula

p(r) = —fla+b—x).
Then,yp is polynomially(2m + 1)-convex ona, b]. The previous inequality applied
ony gives the upper estimation of the Hermite—Hadamard-type inequalif for]

Theorem 2.9. Let, form > 1, the polynomialsP,, and @,,_; be defined by the
formulae

11 %
1
l‘ = —_—
Pm(x) — . 2 m:}—l ’
mo 1 1
z m+1 2m
1 1
1 23 m(m+1)
" 1 A R
Q 71(1_) — 34 (m+1)(m+2)
11 ) :
x miD)(m+2) @m-12m
Then, P,, hasm pairwise distinct zeros\, ..., A\, in |0,1[ and @,,_; hasm — 1

pairwise distinct zerogy, ..., un—1 in 0, 1], respectively. Define the coefficients
Ay ..., 0y andﬂo,...,ﬁm by

L ! P (z) "
%“1A<x—Mﬂ%uwd
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and

1 ! )
b= / (1 - 0)Q2_y (x)dz,
o 1 ! 35(1 —JU)mel(fL’) .
ﬁh_ﬂ—umml(x—wWﬁﬂmﬂ’

1 1
Bm = m/o ‘TQ?nfl('x)d:E

If a functionf : [a, b] — R is polynomially(2m)-convex, then it satisfies the follow-
ing Hermite—Hadamard-type inequality

ZO{kf 1 — /\k)a—l— )\k

< Bof(a) + Z Brf (1= m)a+ pd) + B f (b).

Proof. Substitute: := 0,b := 1 andp = 1 into Theoren®.7. Then,FP,, is exactly the
m'" degree member of the orthogonal polynomial system on the int@rvdlwith
respect to the weight function(z) = 1; similarly, @Q,,_; is the (m — 1) degree
member of the orthogonal polynomial system on the intejdal] with respect to
the weight functiorp(z) = (1 — z)z. Therefore(),, hasm pairwise distinct zeros
0< A\ < - <Ay <land@,,_; hasm—1 pairwise distinct zero8 < j; < --- <
um—1 < 1. Moreover, the coefficientsy,...,a,, andj,..., 3, have the form
above. To complete the proof, apply Theorérion the functiont : [0,1] — R

defined by the formula
F(t) = f((1—t)a+1b).
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2.4. Applications

In the particular setting whem = 1, Theoren?.8reduces to the classical Hermite—
Hadamard inequality:

Corollary 2.1. If f : [a,b] — R is a polynomially2-convex (i.e. convex) function,
then the following inequalities hold

f <a—2|_b> = biCL/a'bf(x)daj = f(a);rf(b)

In the subsequent corollaries we present Hermite—Hadamard-type inequalities in

those cases when the zeros of the polynomials in The@r&reind Theoren?.9can
explicitly be computed.

Corollary 2.2. If f : [a,b] — R is a polynomially3-convex function, then the
following inequalities hold

1 a+ 2b 3,(2a+b\ 1

o+ 37 (02 < oo e < 85 (250 + o
Corollary 2.3. If f : [a,b] — R is a polynomially4-convex function, then the
following inequalities hold

%f <3+\/§a+3—6\/§b> +%f (3—6\/§a+3+\/§b>

6 6
<@+ 3r(“50) + 510,
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Corollary 2.4. If f : [a,b] — R is a polynomially5-convex function, then the

following inequalities hold

164+4v6 . [44+V6 6—+6
f a+ b
36 10 10

+16—\/6f<4—\/6a+6+\/66>

36 10 10
1 b
/ f(z)dx

“b—a
16 — —
- 6 \/éf 6+\/6a+4 \/éb
36 10 10

164+v6,(6-v6  4+6
N +ff V6 4+ V6,
36 10 10

1
§f(a) +

coefficientss,, for the right hand side inequality, respectively.
Casen =6
The zeros ofPs:

5—v15 1 5+15
10 2 10
the corresponding coefficients:
5 4 5
18 9 18

) 150

In some other cases analogous statements can be formulated applying Theo-
rem 2.9. For simplicity, instead of writing down these corollaries explicitly, we
shall present a list which contains the zeroghf(denoted by\,), the coefficients
oy, for the left hand side inequality, also the zeros(pf (denoted byuy), and the

™

&F ¢

*
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The zeros of),:

5—v5 545
10 7’ 10
the corresponding coefficients:
1 ) )

127 127 127 12
Casen = 8
The zeros ofP;:

1 V52547030 1 /525 — 7030

2 70 T2 70 ’
1 925 —70v/30 1 n V9525 + 70v/30

2 70 T2 70 ’
the corresponding coefficients:

V30

72

30
VB
72

IO,
IO,

The zeros of);:

1 V21 1 1
2 147 27 2
the corresponding coefficients:

1 49 16 49 1

20" 180" 457 180" 20
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Casen =10
The zeros ofP;:

1 245 + 1470 1 245 — 14/70

2 42 2 12 !
11 V25— VT0 1 V254 14VTO
20 2 42 2 42 !

the corresponding coefficients:

322 —13v/70 322+ 13v70 64 32241370 322 — 1370

1800 ’ 1800 T 2257 1800 ’ 1800
The zeros of)y:

1 147 +42V7 1 /147 — 427

2 42 ) 42 ’
L, V47— 2V7 1 N V147 + 4247
2 42 2 42 ’

the corresponding coefficients:
1 14—V7 14+V7T U+VT 14-V7T 1
30’ 60 60 60 ' 60 7 30

Casen = 12 (right hand side inequality)
The zeros of)s:

1 495 +66v/15 1 495 — 6615

2 66 T2 66 ’
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1 1 495 — 6615 1 /495 + 6615

27 2 66 T2 66 ’
the corresponding coefficients:

1 124 — 74/15 124+ 715 128

42’ 700 700 525
124+ 715 124 — 715 1
700 700 7 42°

During the investigations of the higher—order cases above, we can use the sym-
metry of the zeros of the orthogonal polynomials with respedt/®y and therefore
the calculations lead to solving linear or quadratic equations. The first case where
“casus irreducibilis” appears is = 7; similarly, this is the reason for presenting
only the right hand side inequality for polynomiall2-convex functions.
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3. Generalized2-Convexity

In terms of geometry, the Chebyshev property of a two dimensional system can
equivalently be formulated: the linear combinations of the members of the system
(briefly: generalized lingsare continuous; furthermore, any two points of the plain
with distinct first coordinates can be connected by a unique generalized line. That is,
generalized lines have the most important properties of affine functions. These prop-
erties turn out to be so strong that most of the classical results of standard convexity,
can be generalized for this setting.

First we investigate some basic properties of generalized lines of two dimensional
Chebyshev systems. Then the most important tool of the section, a characterization
theorem is proved for generaliz&dconvex functions. Two consequences of this
theorem, namely the existence of generalized support lines and the property of gen-
eralized chords are crucial to verify Hermite—Hadamard-type inequalities. Another
result states a tight connection between standard(@andv,)-convexity, and also
guarantees the integrability ¢f,,w,)-convex functions. Some classical results of
the theory of convex functions, like their representation and stability are also gener-
alized for this setting.

3.1. Characterizations via generalized lines

Let us recall thatw,,w,) is said to be &Chebyshev systepver an intervall if
wi,ws : I — R are continuous functions and, for all elements y of I,

wi(z) wi(y)

wa(z) wa(y) =0
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generalized convex with respect(to,,w-) or briefly: generalized-convexif, for
all elementse < y < z of [, it satisfies the inequality

f@)  fly)  f(2)
wi(z) wi(y) wi(z) | >0.
wa () wa(y) wa(2)

Clearly, in the standard setting this definition reduces to the notion of (ordinary) ST EETEIHR
convexity. Let(w;,w>) be a Chebyshev system on an interaand denote the set IS

of all linear combinations of the functions, andw, by (w,w,). We say that a
functionw : I — R is ageneralized lingf it belongs to the linear hullw;, w>). The
properties of generalized lines play the key role in our further investigations; first we

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

need the following simple but useful ones. Title Page

Lemma 3.1. Let (wy,w;) be a Chebyshev system over an inter¥al Then, two Contents

different generalized lines dfv;,w;) have at most one common point; moreover,

if two different generalized lines have the same value at sprae I°, then the 4« 44

difference of the lines is positive on one sidé @fhile negative on the other side of < >

. In particular,w; andws, have at most one zero; moreoverif(resp. w-) vanishes

at somet € I°, thenw, is positive on one side gfwhile negative on the other. Page 39 of 101

Proof. Due to the linear structure dfv;,ws), without loss of generality we may Go Back

assume that one of the lines is the constant zero line. Then, the other generalized Full Screen

line w has the representationv; + Sw,, with a? + 3% > 0.

The first assertion of the theorem is equivalent to the property.ilas at most Close
one zero. To show this, assume indirectly thét) andw(n) equal zero fo # n;
that is, journal of inequalities
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By the Chebyshev property ¢&;,w-), the base determinant of the system is non-
vanishing, therefore the system has only trivial solutions: 0 and3 = 0 which
contradicts the property? + 32 > 0.

An equivalent formulation of the second assertion is the following:(§) = 0
for some interior point, thenw > 0 on one side of while w < 0 on the other. If
this is not true, then, according to the previous result and Bolzano’s thearésn,
strictly positive (or negative) on both sides¢fFor simplicity, assume that(¢) > 0
for ¢t # ¢. Define the generalized line* by w* := —fw; + aw,. Then,(w,w*) is
also a Chebyshev systemuif< y are elements of, then

w(z)  w(§) ‘:‘ a [ w1 () Wl(y)‘
w(z) w(y) =0 o] | wz) way)
= (@ )| ) e o

Therefore, taking the elements< ¢ < y of I, we arrive at the inequalities

wz) w(@) | _ )
W) W) |- et
0< w*(g) w*(y) ‘ = (y) (5)7

which yields the contradiction that*(¢) is simultaneously positive and negative.
For the last assertion, notice that w,; and the constant zero functions are special
generalized lines and apply the previous part of the theorem. O

The mostimportant property 0f , w-) guarantees the existence of a generalized
line “parallel” to the constant zero function, which itself is a generalized line as
well (see below). Moreover, as it can also be shon, w,) fulfills the axioms of
hyperbolic geometry.
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Lemma 3.2. If (w1, ws) is a Chebyshev system on an intervakhen there exists
w € (w1,ws) such thatw is positive on/°.

Proof. If w; has no zero in°, thenw := w; orw := —w; (according to the sign of
wiy) will do. Suppose that, () = 0 for some¢ € I°. Due to LemmaB.1, without
loss of generality we may assume that

wi(z) <0 (x <& xzel),
wi(y) >0 (y>& yel)

Choose the elemenis< ¢ < y of I. The Chebyshev property 601, w;) and the
negativity ofw; (z)ws(y) implies the inequality

w2(y) w2($)
o(y) " @)

Hence

(3.1) a 1= sup {wQ(y)] < inf {wg(m)] ;

y>€ w1 (y) v<€ |wi(x)

moreover, both sides are real numbers. We show that the generalized line defined by

w 1= aw; — wy IS positive on the interior of.

First observe that takes a positive value at the poitindeed, by the definition
of w we havew(§) = awi(§) — wa(§) = —wo(€); on the other hand, fay > &, the
positivity of w; (y) and the Chebyshev property @f;, ws) yields —ws (&) > 0.

If y > &, then the definition ofv implies

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 41 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

multiplying both sides by the positive (y) and rearranging the terms we gety) :=

aw (y) — wa(y) > 0.
If z < &, then inequality §.1) gives that

wz(x),

a < ;
~ wi(z)

multiplying both sides by the negativg (x) and rearranging the obtained terms, we
arrive at the inequality(z) := aw; (z) — wa(z) > 0.

To complete the proof, it suffices to show thaalways differs from zero on the
interior of the domain. Assume indirectly thatn) := aw;(n) — ws(n) = 0 for
somen € I°. Clearly,n # ¢ sincew(§) > 0. Thereforew;(n) # 0 anda can be
expressed explicitly:

_ wa(n)
wi(n)

If £ <, choosey € I such that) < y hold. By the positivity ofv; (n)w; (y) and the
Chebyshev property dfv;, ws),

_wa(n) _ wa(y)
= <
wi(n)  wi(y)
which contradicts the definition af. Similarly, if ¢ > 7, chooser € I such that

x < nis valid. Then, the positivity of; (z)w;(n) and the Chebyshev property of
(w1, we) iMply the inequality

which contradicts{.1). O
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As an important consequence of Lemfa, a Chebyshev system can always be

replaced equivalently by a “regular” one. In other words, assuming positivity on the
first component of a Chebyshev system, as is required in many further results, is not
an essential restriction. Moreover, the next lemma also gives a characterization of

pairs of functions to form a Chebyshev system.

Lemma 3.3. Let (wq,w,) be a Chebyshev system on an interzat R. Then, there
exists a Chebyshev systénj, w;) on I that possesses the following properties:

() wi is positive on/°;
(i) w3/wyi is strictly monotone increasing aff;
(iii) (w1, wq)-convexity is equivalent tau;, w3)-convexity.

Conversely, itv;,w, : I — R are continuous functions such that is positive and
wo/wy is strictly monotone increasing, théw,, w,) is a Chebyshev system over

Proof. Lemma3.2guarantees the existence of real constar#ed such thatww; +
Bws > 0 holds for allx € I°. Define the functionsy,w; : I — R by the formulae

wy = awy + Pwe, wy = —fwy + aws.

Choosing the elements< y of I and applying the product rule of determinants, we
get

wi(z) wily) ’:‘ a B |wl(x) wl(y)‘
wi(z) wi(y) =B a| | w(z) wy)
S5 S |
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Therefore,(w},w3) is also a Chebyshev system over Assuming thatv} is posi-
tive, as it can easily be checked, the Chebyshev property;jotu;) yields that the
functionw} /w? is strictly monotone increasing on the interior/of

Lastly, let f : I — R be an arbitrary function and < y < z be arbitrary
elements of . Then, by the product rule of determinants,

flx)  fly) f(z) 1 0 0 fx)  fly) f(z)

y) wi(z) |=|0 a B |-|wl(x) wily)

y) wi(2) 0 =03 a| | w(r) way)
flx)  fly)  f(2)

= (a? + %) - wlg ) wi(z) |,

y) w
wa(w) wa(y) wa(z)

which shows that the functiofiis generalized convex with respect to the Chebyshev
system(wy, wy) if and only if it is generalized convex with respect to the Chebyshev
system(wy, ws).

3
€
=

—~

The proof of the converse assertion is a simple calculation, therefore it is omitted.

]

The following result gives various characterizationswof, w, )-convexity via the

monotonicity of the generalized divided difference, the generalized support property

and the “local” and the “global” generalized chord properties.

Theorem 3.1. Let (w;, ws) be a Chebyshev system over an intedvalich thatv, is
positive on/°. The following statements are equivalent:

() f:1I— Ris(w,ws)-coONvex;
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(ii) for all elementse < y < z of I we have that

(y) f(Z)‘ f(z) f(y)‘
wi(y) wi(z) - wi(z) wi(y) |
wi(y) wi(z) ’ T wi(z) wi(y) "
wa(y) wa(2) Wz(x) wa(y)

(i) forall xq € I° there existy, 3 € R such that

w1 (x9) + Bwa(wo) = f(x0),
awi(z) + Pwa(x) < f(x) (x € 1);

(iv) foralln € N, zg, x1,...,x, € Tand Ay, ..., \, > 0 satisfying the conditions

Z Mewr (2) = wi(xg),

k=1

Z AMwa () = wa(xg),

we have that .
o) < Mef (w);
k=1

(v) forall zo, x1, x5 € I and Ay, A\ > 0 satisfying the conditions
)\1C¢)1($1) + )\2&)1(1’2) = wl(l'(]),
)\1&)2(1‘1) + )\2&)2(1‘2) = (,UQ(.%'O),
we have that

f(xo) < Aif(1) + Aaf(22);
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(vi) for all elements: < p < yof I

f(p) < awi(p) + Bwa(p),
where the constants, [ are the solutions of the system of linear equations

f(x) = aw(x) + fws(2),
f(y) = awi(y) + uwa(y).
Proof. (i) = (éi). Assume indirectly thatii) is not true. Then, considering the

positivity of the denominators, there exist elements. y < z of I such that the
inequality

fly)  f(z) ‘ ) ‘ wi(r) wi(y)
wiy) wi(z) y
holds or equivalently,

wi(y) wi(2) wi(z) wi(y)
f(y) <w1(fL’) wr(y) wa(2) ‘—i—wl(z) wo(z) wa(y) ')
) (1] 200 03 || k) )
Subtracting

wi(z) wi(z) ‘

fy)wi(y) wa(z) wa(2)
from both sides and applying the expansion theorem “backwards”, we get

flx)  fly) f(2)
wi(z) wi(y) wi(z)
wa(r) wa(y) wa(z)

wi(r) wi(y) wi(z)
wi(r) wi(y) wi(z)
wa(z) waly) wa(z)

f(y) > wi(y)
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The (w1, we)-convexity of f implies that the right hand side of the inequality is non-
negative, while the left hand side equals zero, which is a contradiction.
(11) = (ii7). Fix xg € I°. Then, for all element§ < 2y < z of I,

f(6) f(xo)‘ f (o) f(x)‘
wi(§) wi(zo) - wi(zo) wi(z)
wi(§)  wi(wo) ‘ T | wilmo) wi(z) ‘
w (&) wa(wo) wy (o) wa(w)
holds, therefore
f((l’o)) ((x)) ’
b xiil:fo wi(zo) wi(x)

is a real number. The positivity assumption©onguarantees that the coefficient
can be chosen such thab, (x) + Sws(z9) = f(xo) is satisfied. Rewrite the desired
inequalityaw, () + fws(z) < f(x) in the equivalent form

(3:2) 3 fzo)  f(x) ’go.

2(z0) wa(z) wi (7o) wi(z)

Zl (z0) wi(w) '

The definition of3 guarantees that it is valid if, < z. Assume that < z, and
choosé€ € I such thatr < zy < £ hold. Then, applyindii), we have the inequality
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Observe that the denominator of the right hand side is positive, therefore, after rear-
ranging this inequality, we get

f((xo)) f((%‘

| wilzo) w wi(xg) wi(x) f(xo) f(z)

(o) m(g)‘ “alito) wale) ‘+ o) wi(a) ’SO’
w(zo) w2(§)

which, and the choice gf immediately implies §.2).

(i4i) = (iv). First assume that, = =, = --- = z,. We recall thatv, (zo)
andws (o) cannot be equal to zero simultaneously due to Lerfirfigtherefore one
of the conditions gives the identity”,_, A, = 1, and the inequality to be proved
trivially holds. If xq, x4, ..., z, are distinct points of, then it necessarily follows
xo € I°. Indeed, ifinf(7) € I and indirectlyz, = inf(/), then we have the inequal-
ities

wi (o)wa(zg) — wi (k) wae(ze) > 0
forallk =1,...,n since(w,w,) is a Chebyshev system dnfurthermore, at least
one of them is strict. Multiplying thé'" inequality by the positive,, and summing
from 1 to n, we obtain

wi (o) Z Apwo (1) > wa(xo) Z w1 ().

k=1 k=1

But, due to the conditions, both sides have the common valug,)w-(z), which
is a contradiction. An analogous argument gives that the gase sup(/) is also
impossible, therefore it follows that, € 7°.
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Choosen, 7 € R so that the relations

awy(zg) + Pwa(xo) = f
awy(x) + Pwa(x) < f

(l’o),

(x)  (zel)

are valid. Then, substituting = z,, into the last inequality and applying the condi-
tions, we get that

Z Aef(xg) > Z Agowr (zx) + Z A Sws ()
k=1 k=1 k=1

= Oéu)l(l'()) + ﬁu&(l’o) = f($0)7

which gives the desired implication.

(1v) = (v). Taking the particular case= 2 in (iv), we arrive atv).

(v) = (vi). According to Cramer’s rule, for all elements< p < y of I, the
system of linear equations

Mwi () + Aawi (y) = wi(p),
Mws () + Aawa(y) = wa(p),
has unique nonnegative solutiohsand)\,. Therefore, using the definition efand

B,
f(p) < Mf(z) + A f(y)
=\ (awi (z) + Bwa(x)) + A2 (awi (y) + Bwa(y))
= a(Mwi(z) + Aawi () + B (Mwa () + Aows(y))
= aw1(p) + aws(p).
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(vi) = (7). Expressing the unknownsand s with w;(z),w;(y) andw;(p), the
inequality f (p) < aw;(p) + Bws(p) can be rewritten into the form

wi(z) wi(y) f@)  f(y) flx)  fy)
walr) waly) 'f D=1 @) o) [0 F] L) anly) |27
or equivalently
f@) f)  fy)
0<| wix) wilp) wily) |,
wa(r) wa(p) waly)
which completes the proof. ]

In the particular setting where, (z) := 1 andwy(z) := z, this theorem reduces
to the well known characterization properties of standard convex functions. Now the
last two assertions coincide: both of them state that the function’s graph is under the
chord joining the endpoints of the graph. Let us note that in most of the literature,
the notion of (standard) convexity is defined exactly by this property (see the last
assertion of the obtained corollary).

Corollary 3.1. Let/ C R be an interval. The following statements are equivalent:
(i) f: 1 — Risconvex (in the standard sense);
(if) for all elements: < y < z of I we have that

fly) = f@) _ [(2) = fy),
y—xr T z-y

(i) for all xy € I° there existy, 5 € R such that

a+ Brg = f(xo), a+ fBx < f(x) (z €I);
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(iv) forall n € N, zg,z1,...,z, € T and\q, ..., A\, > 0 satisfying the conditions

ZM =1, Z)\kﬂsz = Ty,
k=1 k=1
we have that .
f(o) < ZMf(%)%
k=1

(v) forall o, x1, 29 € I and\q, Ay > 0 satisfying the conditions

)\1 -+ )\2 = 1, )\11’1 + )\233’2 = Xy,

we have that

f(xo) < Aif(z1) + Aaf(w2).

If the base functions); andw, are twice differentiable with a positive Wronski
determinant, then a twice differentiable functipn I — R is (wy, ws)-convex if and
only if the Wronski determinant of the systei, w,ws) is nonnegative (Bonsall,
[2]). This result can also be deduced from Theofem

As it is well known, (standard) convex functions are exactly those ones that can
be obtained as the pointwise supremum of families of affine functions. As a direct
consequence (and also another application) of TheGrénan analogous statement
holds for(w,,ws)-convex functions.

Corollary 3.2. Let(w;,ws) be a Chebyshev system over an open intefvahen, a

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 51 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

functionf : I — R is generalized convex with respect(ta , w,) if and only if
f(z) = sup{w(z)|w € (wi,ws), w < [}

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

Proof. Assertion(izi) of Theorem3.limmediately implies the representation above.
For the sufficiency part, assertion) of Theorem3.1is applied. Fix the element,

of the open interval. Take a generalized line = aw; + Bws such thatv < f,
with the elements:, 2, of I and the nonnegative coefficients, \, that fulfill the
conditions

A1wq (ml) + Aawy (1’2) = w1 (ﬂfo) Hermite-Hadamard-type
A1Wa (;pl) + )\2w2(1-2> = WQ(Z'O)‘ Inequalities
Mihaly Bessenyei
Then’ vol. 9, iss. 3, art. 63, 2008
Mf (1) + Ao f(22) > Mw(w1) + Agw(w2)
= A1 (awi (1) + Bwa (1)) + s (awr (z2) + Bws(zs)) Title Page
= a()\lwl (I ) + )\2&)1( )) ()\10«)2(!1?1) + /\2&)2(332)) Contents
= aw (7g) + Bwa(mg) = w(xp). < >
That is, A1 f(z1) + Aaf (22) > w(x) for all w < f, hence, according to the repre- < >
sentation, it follows that\, f(x1) + Ao f(x2) > f(z0). Thereforef is convex with
respect tqwy, ws). O FEEB &2 6ff 100,
Go Back
3.2. Connection with standard convexity
Full Screen
The convexity notion induced by two dimensional Chebyshev systems turns out to be e
always reducible to standard convexity with the help of a composite function. This
connection enables us to generalize many classical results for the case wof)- journal of inequalities
convexity directly. in pure and applied
mathematics

Theorem 3.2. Let (w;,w>) be a Chebyshev system on an open intefvalich that

wy is positive. The functiofi : I — R is (wy,ws)-convex if and only if the function tssn HA3STSE
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g : wy/wi(I) — R defined by the formula

is convex in the standard sense.

Proof. In this case the functiow,/w; is continuous and strictly monotone increas-
ing, according to Lemma.3. Therefore, the image of the intervaby the function
wy /wy IS @ nonempty open interval. Consider the identity

f(x)  fly) f(2)
wi(z) wiy) wi(z)
wa(z) waly) wa(2)

(ffw)(@)  (ffw)(y)  (f/wi)(2)
= w1 (z)w1 (y)wr(2) 1 1 1
(wo/wi)(x) (w2/w1)(y) (wo/wi)(2)
g(u) g(v) g(w)
=wi () (Ywi(z)| 1 1 1

where

u=(wfw)(@) o= (w/w)ly)  w=(w/wi)(2).

The positivity ofw; forces both sides to be simultaneously positive, negative or zero.

That is, the functiory is (wy,ws)-convex if and only if the functior is convex in
the standard sense. O]

Theoren3.2yields strong regularity properties for generalized convexity. For ex-
ample,(wy, wy)-convex functions defined on compact intervals are integrable, which
is essential in formulating the main result of the section.
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Theorem 3.3. Let (w1, wsy) be a Chebyshev system on an interallf a function
f I — Ris (wy,wy)-convex, then it is continuous di. Moreover, f is bounded
on each compact subinterval 6f

Proof. Without loss of generality we may assume thatis positive on/°. If the

function f is (w;,wq)-convex onl, then the composite function in the previous
theorem is convex in the standard sense/ar= w./w;(I). Therefore, by the well
known regularity properties of convex functiods continuous or/°. On the other

hand, we have that
f = Wl . g o) <ﬂ) ,
w1

and the right hand side is continuous Bnwhence the continuity of the functiof
follows.

To prove thatf is bounded on the compact subinterjalb] of I, we shall apply
Theorem3. 1. Take a generalized line which suppoftat an arbitrary point, € I°.
Then, inequality(iii) implies thatf is bounded from below on theholeinterval /.
On the other hand, putting:= « andy := binto (vi), we get thatf is also bounded
by a certain generalized line from above[anb]. Hencef is bounded. ]

Definition 3.1. Let (w;,w,) be a Chebyshev system on an interaland w €
(w1,ws) a generalized line which is positive dA. A functionf : I — R is called
generalizedy-convex with respect tov, wy) if, for all elementse < y < z of I, the
following inequality holds:

f@) +wlx) fly) —wly) f(z)+w(z)
wi(z) wi(y) wi(2) > 0.
wa () wa(y) wa(z)
Substitutingu (z) := 1, wy(z) := x andw := £/2, the definition gives the notion
of e-convexity. By well known resultg-convexity is stable: everrconvex function
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is “close” to a (standard) convex function. As another application of TheGrém
we prove an analogous result f@r, , w,)-convex functions.

Corollary 3.3. Let (w;,ws) be a Chebyshev system on an inter¥dlrthermore
w € (w1,wq) be a generalized line which is positive 6h A functionf : I — R
is generalizedv-convex with respect tQu;,w,) if and only if there exist functions
f,g: I — Rsuch thaty is (w, wp)-convex||h|| < ||w||, and f = g + h.

Proof. Assume thaty has the representation= aw; + Sws and define the gener-
alized linesw} andw} by w} := aw; + fw, andw; = —fw; + aw,, respectively.
Then, according to Lemma 3, the functionw; /wj is strictly monotone increasing
and the generalized-convexity of f is equivalent to the inequality

f@)+wiz) fly) —wily) f(2)+wi(z)
wi () wi(y) wi(2) > 0.
w; () w3 (y) w;(2)
Dividing both sides by the positive; (z)w;(y)wi(2), then substituting the argu-
mentsu = (w3 /wi)(x), v = (W /w)(y) andw = (w;/wi)(2), we get the inequality
Fluy+1 Fv)—1 F(w)+1

1 1 1 >0
v

w\ —1
F = i o <ﬁ) )
wi  \wp

That is, F' satisfies the inequality af-convexity withe = 1. Therefore, there exist
functionsG, H : I — R such thatG is convex (in the standard sensg}{|| < 1 and

where
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F = G + H or equivalently,
f:wi‘-Go(w—i)—i—wi‘-Ho (w_z) =g+ h.
w w

1 1

Then, TheorenB.2 and Lemma3.3 guarantee théw;, ws)-convexity of g, while
simple calculations implyja|| < ||w]|- O

3.3. Hermite—Hadamard-type inequalities

The main result provides Hermite—Hadamard-type inequalities for gener&ized
convex functions.

Theorem 3.4. Let (w;,wy) be a Chebyshev system on an inteffab] such thato,
is positive orja, b[, furthermore, lep : [a, b] — R be a positive integrable function.
Define the point and the coefficients c;, ¢, by the formulae

(=) (k) -t

a

and
Jywip wi(b) wi(a)  Jwip
e )| e e
' wi(a) wi(b) |’ ? wi(a) wy(b)
wa(a) wa(b) wa(a) wa(b)

If f : [a,b] — R is an (wy,wy)-convex function, then the following Hermite—

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 56 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

Hadamard-type inequality holds

b
cf(€) < / fp < erfla) + caf (B)

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

Proof. By the definitions of the point and the constant we have the formulae

f;ww _ w2 (§)
fabwlp wi (€)

and ,
[ wrn =),
which yields the identity

b
/ wop = cws(§).

That is, the left hand side of the Hermite—Hadamard-type inequality to be proved
is exact forf = w; and f = ws, respectively. Letf : [a,b] — R be an arbitrary
(w1, ws)-convex function and choose 3 € R such that the relations

awy (§) + fwa(§) = f(6),
awy (7) + Puy() < f(),

are satisfied for alt € [a, b]. By Theorem3.1, such real numbers exist sing¢és an
interior point of the domain. Multiplying the last inequality by the positive weight
function p, we arrive at

[ toza [ [ o= alea©) + sane) =este

which results in the left hand side inequality.
To verify the right hand side one, observe first that the coefficiendédc, are
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the solutions of the following system of linear equations
b
/ w1p = crwi(a) + cowy (b),

b
/ wap = crwi(a) + caws ().

In other words, the right hand side of the Hermite—-Hadamard-inequality is exact,
again, forf = w; andf = wy. Let f : [a,b] — R be an arbitranfw;, w,)-convex
function. By Theoren3.1, if the real numbera and/ are the solutions of the system

of linear equations

f(a) = awi(a) + Bws(a),
f(b) = aw(b) + Bwa (D),

then
f(z) < awi(z) + Bwa(z)

for all z € [a,b]. Multiplying this inequality by the positive weight functign we
get that

b b b
/fpéa/ w1p+ﬂ/ wap

= a(cwi(a) + cowi (b)) + B(crws(a) + cowa (b))
= ¢;(aw;(a) + Pws(a)) + ca(aws (b) + Bwa(b)) = c1.f(a) + c2f (b),

thus the proof is complete. O
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3.4. Applications

Simple calculations show that by setting(z) := 1, wo(z) := 2 andp = 1, Theo-
rem3.4reduces to the classical Hermite—Hadamard inequality.

Corollary 3.4. If f : [a,b] — R is a (standard) convex function, then

(52t [ 11320

The subsequent corollaries present further Hermite—Hadamard-type inequalities
for generalized convex functions where the underlying Chebyshev systems of the
induced convexity are the hyperbolic, trigonometric, exponential and power systems
(to see that the pairgyv;,w-) form a Chebyshev system in each case, consult the
converse part of Lemma 3).

Corollary 3.5. If f : [a,b] — R is a(cosh, sinh)-convex function, then

2sinh <b 3 a) f (“‘2”9) < /abf(x)dx < tanh (b;“> (f(a) + f(b)).

Proof. If w; := cosh andwy := sinh, thenw, is positive andv,/w; = tanh is
strictly monotone increasing; hence, according to Lendna(w;,w,) is a Cheby-
shev system an@, /w;)~! = artanh. Applying the addition properties of hyperbolic
functions for the identities = (b+a)/2+ (b—a)/2 anda = (b+a)/2— (b—a)/2,
the integrals ofu; andw, can be written into product form via the formulae

b
b h—
/ cosh zdz = sinh(b) — sinh(a) = 2 cosh ( ‘ga) sinh ( . a) |
b p—
/ sinh xdx = cosh(b) — cosh(a) = 2sinh (b "2‘ Cl) <inh (b . a) |
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Therefore,

and

To determine the coefficients of the right hand side, first we calculate the numerator

of ¢;:
2 cosh (HT“
2smh HT‘L

= 2sinh (

= 2sinh (b _
= 2sinh (b _

¢ — artanh ff sinhzdr \  b+a
f(f cosh xdz 2
= —fabcosizdx = 2¢inh b+ a.
cos

) sinh ( ;“)

) sinh (

a

a

) sinh (b — b

)

)=

b

cosha 2cosh (%) sinh (2%

2

sinha 2sinh (HT“) sinh (b_T“

cosh b
;“) sinh b

= 2sinh b— ) (cosh (HTG) sinh b — sinh <Z)—|—Ta> cosh b)
42—a) = 2sinh? (b_

Similarly, the numerator of the coefficient can be obtained as follows:

|

+a

a

a

)

b
a) cosh a — cosh (%) sinh a)
— a) = 2sinh? (b _

On the other hand, the denominators in both cases coincide and have the common

)
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value

cosha coshb , ' b—a b—a
sinha  sinhb ‘ = sinh(b — a) = 2sinh (T) cosh ( 5 ) ,

therefore
tanh b—a
C1 = = .
1 Co an 5

Replacing the Chebyshev systémsh, sinh) with (cos, sin), the obtained Hermite—
Hadamard-type inequality is analogous to the previous one due to the similar addi-
tional properties of trigonometric and hyperbolic functions.

]

Corollary 3.6. If f : [a,b] C] — 7, 5[— Ris a(cos, sin)-convex function, then

2an (U50) 1 () < [ s < van (P50 (500 + 500,

Observe that both of the previous two Hermite—Hadamard-type inequalities in-
volve the midpoint of the domain; moreover, dividing by- a and taking the limit
a — b, the coefficient of the left hand sides tendslfavhile the coefficient of the
right hand sides tends 2. Therefore these inequalities can be considered as the
“local” version of the Hermite—Hadamard inequality.

We say that a functiorf : I — R is log-convexif the composite function
folog : exp(I) — R is convex (in the standard sense). In terms of generalized
convexity, log-convex functions are exactly tfie exp)-convex ones (consult The-
orem3.2). The next corollary gives a Hermite—Hadamard-type inequality for log-
convex functions @), [10)).
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Corollary 3.7. If f : [a,b] — R is a(1, exp)-convex function, then

(b—a)f (1Og exp(b) — eXp(a))

b—a
/ fla
: (exi@)>a)—e:f;?)> 1)t (1 L ) 1O

The last corollary concerning the case of “power convexity” also reduces to the
classical Hermite—Hadamard inequality on substitutinrg 0 andg = 1:

Corollary 3.8. If p < ¢q, p,q # —1andf : [a,b] C]0,c0[— R is an(z?, x%)-convex
function, then

(bp-H _ ap+1)q ( g+1 )pf q§/<p F1)(brH — qott)
p+ 1 patl — ga+l (q + 1)(bp+1 _ ap—i—l)
/ f(x)dx

(bPT1 —gPt1)p (b9t1 —qat1)pP (b9t —qat1)aP (bPT1 —gPt1)qd

p+1 - q+1 q+1 - q+1
= arb? — aabr fla)+ arb? — aabr f(0)

The proofs of the last three corollaries need similar calculations as the first one,
therefore they are omitted.
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4. Generalized Convexity Induced by Chebyshev Systems

In this section we formulate Hermite—Hadamard-type inequalities for generalized
convex functions where the underlying Chebyshev system of the induced convexity
is arbitrary. The proofs of the main results are based on the Krein—Markov theory
of moment spaces induced by Chebyshev systems. According to this theory, the
vector integral of a Chebyshev system can uniquely be represented as the linear
combination of the values of the system in certain base points of the domain. The
number of the points and also the points themselves, depend only on the Chebyshev
system and its dimension: it turns out that the cases of odd and even order convexity
must be investigated separately. In fact, this is exactly the deeper reason for the
analogous phenomenon in the case of polynomial convexity. Once the base points
of the representations are determined, its coefficients are obtained as the solutions
of a system of linear equations. With the help of the representations and the notion
of generalized convexity, the Hermite—Hadamard-type inequalities can be verified
using integration and pure linear algebraic methods.

In the previous sections when the basis or the dimension of the studied Chebyshev
systems was quite special, the base points of the Hermite—Hadamard-type inequal-
ities could be explicitly given. Unfortunately, under the present general circum-
stances, we can guarantee only éxestencgand the uniqueness) of the base points,
but cannot give any explicit formulae for them

Lastly, motivated by Rolle’s mean-value theorem, an alternative and elementary
approach is presented for the cases when the Hermite—Hadamard-type inequalities
involve at most one interior base point of the domain. Some examples are also
presented of these particular cases.
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4.1. Characterizations and regularity properties

Let w = (wy,...,w,) be a Chebyshev system over an interi/aind denote the set

of all linear combinations of its members by, ... ,w,). A function is calledgen-
eralized polynomia(belonging to the system in question) if it is the element of the
linear spanwy, ...,w,). In terms of generalized polynomials, generalized convex-
ity can be characterized in a geometrical manner. Namely, a function is generalized
convex if and only if it intersects its generalized polynomial that interpolates the
function in any prescribed points alternately. (The number of the points depends on
the dimension of the underlying Chebyshev system.) More precisely, we have the
following

Theorem 4.1. Let w = (wy,...,w,) be a Chebyshev system over an interal
Then, for a functiory : I — R, the following statements are equivalent:

(i) fis generalized convex with respectuo

(i) forall y; < --- < gy, in I, the generalized polynomial of wy, ..., w, deter-
mined uniquely by the interpolation conditions

f(yk>:w(yk) (k:17"'7n)
satisfies the inequalities
(D™ (fy) —w®) =20 (Y <y < Yps1, k=0,...,n)
under the conventiong, := inf I andy,, 1 := sup [;

(iii) keeping the previous notations and settings, for fiked {0,...,n}, the fol-
lowing inequality holds

(D)™™ (f(y) —w®) >0 (g <y < Yrs1)-
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Proof. First of all, in order to simplify the proof, two useful formulas are derived.
Denote the: — 1 tuple obtained by dropping thé" component ofw by w,,, and de-

fine the determinant®,, D4, ..., D,,, and the generalized polynomiabfw,, ..., w,
by
= | wy) - wy) |
— f ( 1) T f (yn) Hermite-Hadamard-type
wk yl ... Wiy, (yn> Inequalities
n ( 1 k+1D Mihaly Bessenyei
= k . vol. 9, iss. 3, art. 63, 2008
k=1
Due to the Chebyshev property @f the determlnant_)o is positive, hence the defi- Title Page
nition of w is correct. Fixy € 1. Applying the expansion theorem to the first column
of the following determinant, we get the identity Contents
f) fly) - flyn) « »
4.1 =D —w(y)).
@) p Jed e B byt - et P
Moreover, ify, < y < ypi1 anc_j(xo,_xl, - , ) denote_-s thg increasing rearrange- Page 65 of 101
ment of (y; v1, . . ., yn), the previous identity can be written into the form
Go Back
f(Io) f($1) f(xn) _(_1\k .
)| S med o e o) - ) Full sreen
For the implication:) = (i), observe that4.1) guarantees the required inter- Close

polation property ofu in the pointsy;, ..., y,. Clearly,w is uniquely determined.
Suppose thaf : I — R is generalizedi-convex with respect taw. Then, the pos-
itivity of D, and formula {.2) yield the inequalities to be proved. The implication
(11) = (44i) is trivial. The proof of(ziz) = (i) is completely the same as the
proof of the first assertion. O
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In the standard setting and fixikg= 1, assertior(iii) gives the classical defini-

tion of standard convexity: a function is convex (in the standard sense) if and only

if it is “under” the chord of the graph. Moreover, substituting= 2, we also get a
new characterization of generalizegtonvexity that completes Theoreinl. How-
ever, the most important application of Theorém guarantees strong regularity
properties for generalized convex functions.

Theorem 4.2. Let w = (wy,...,w,) be a Chebyshev system over an interal

If f: I — R is a generalizech-convex function with respect to this system and

n > 2, thenf is continuous on the interior of. Furthermore,f is bounded on each
compact subinterval af.

Proof. Choosey, € I° and fixzy < z; < --- < z, in I so thatr; = y, hold.

Denote the generalized polynomialswf, . . ., w, that interpolatev, in the points
To...,Tn_q @nday, ...z, byw® andw®, respectively. We assume thats even
(the argument in the odd case is analogous). Then, according tf Theorem?.1,

we have the inequalities

w(Z)(y) ye [x(h‘rl]’
w

wD(y) > wy(y)
< wo ®)(y) Y € [r1, 73]

w(y) < woly)

On the other handy™ (o) = wo(yo) andw® (yo) = wo(yo). Therefore, due to the
continuity of the generalized polynomials? andw(®, we get that both the left and
right hand side limits ofv, exist at the poing, and

IN IV

lim wo(y) = wo(yo),
Yy—Yo—0

i =
y—gﬂo wo(y) Wo(yo)>

which yields the continuity afy, at the interior poing, of I.
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To prove the second assertion, we may assumelthata, b]. It is sufficient to
show thatw, is locally bounded at the endpoints Of Fix xg < z; < -+ < z,
in I so thatry = a hold, and denote the generalized polynomialsof. . ., w,, that
interpolatey, in the points, . . ., z,_1 andzy, . . ., z, by w™ andw®, respectively.
We assume that is even (the odd case is very similar). Then, by the previous
theorem again, we have the inequalities

wO(y) 2 wo(y) 2w (y) g€ [zo,21].

On the other hand, the functions? andw® are continuous, therefore bounded on
[a,b]. Hencewy is bounded in a right neighborhood of the endpaintit can be
similarly proved thatv, is locally bounded at the left endpoitt ]

In particular, generalized convex functions are integrable on any compact subset
of the domain. Let us also mention that the special ease2 gives the statement
of Theorem3.3via another approach in the proof.

4.2. Moment spaces induced by Chebyshev systems

The geometric study of moment spaces induced by Chebyshev systems was system-

atically developed by M. G. Krein. Independently and simultaneously, S. Karlin and
L. S. Shapley elaborated the geometry of moment spaces induced by the polynomial
system. Some of the results of their research play a key role in further investigations.

Definition 4.1. Letw := (wy,...,w,) be a Chebyshev system fanb| and denote
the set of all nondecreasing right continuous functions defindd,@hby %([a, b]).
The set

M = {c ER"|c= /ab wdo, o € B([a. b])}

is called themoment space ab.
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It can be shown thawz,, is a closed convex cone. More precisely, it is the smallest
closed convex cone that contains the parameterized auft)evheret traverses the
interval [a, b]. For details, seell, pp. 38-41]. The following notion makes the
formulation of many theorems quite convenient.

Definition 4.2. Theindex I(c) of a pointc € ./, is the minimal number of points
&1, ..., & INarepresentation

c= Z apw (&)
k=1

under the convention thab(a) and w(b) are counted with half multiplicity, while
w(§) for € €la, b] receives a full count. The poings, . . ., §,, are called therootsof
the representation.

By the celebrated theorem of Carathéodory (£3)] each point belonging to
the conical hull of a given subset & can be represented as a cone combination
involving at mostn points of the subset. Due to the Chebyshev property o0&
surprisingly better upper bound can be established: it turns out that the elements of
-, are cone combinations of approximately2 points of the range ofv. More
precisely, the boundary and the interior.&f,, denoted by Bd#,, and Int.#,, can
be characterized via the subsequent two theorems due to Krein and Markov.

Theorem C. ([16, Theorem 2.1. p. 42]A vectorc € ., is a boundary point
of #, if and only if I(c) < n/2. Moreover, every: € Bd.#, admits a unique
representation
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Theorem D. ([16, Theorem 3.1. p. 44; Remark 3.1. pp. 45-46; Corollary 3.1. p.
47.]) For eachc € Int.#,, there exist precisely two representations of ind@x =
n/2. Distinguishing the even and odd cases, the representations in question are the

following.
Casen = 2m:
c= Z &kw(ﬁk) (fk E]CL, b[ ), Hermite-Hadamard-type
k=1 Inequalities
m—1 Mihaly Bessenyei
c=fow(a) + Y Brw(m) + Bnw(d)  (nx €la,b]); vol. 9, iss. 3, art. 63, 2008
k=1
Casen = 2m + 1: Title Page
c=aw(a) + Y omw(&) (& €la,bl), Contents
- k=1 <« >
c=> Brw(n) + Bnaw(®) (i €la,b]). < 4
k=1

. . . . Page 69 of 101
The roots of the representations in both cases strictly interlace.

Let/ C R be areal interval and) := (w1, ...,w,) be a Chebyshev system over Go Back
I. Then, for pairwise distinct elements . . ., ¢, of I, the vectoraw(t;), ..., w(t,) Full Screen
are linearly independent. This simple observation immediately implies o
ose

Theorem 4.3.The coefficients and the roots of the representations above are uniquely
determined. journal of inequalities

Now we present a sufficient condition for a pointo belong to the interior of E;ﬁfn?;g;pp"ed
the set.#,. This condition guarantees that the inequalities of the main results have = " *= ~
exactly the required form. :

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

Theorem 4.4.Letw = (wy,...,w,) be a Chebyshev system pnb] and letp :
la, b] — R be a positive integrable function. Then,

b
c::/ wp € Int.#,.

Proof. Let us recall that#, is a closed subset @™. On the other hand, the pos-
itivity of p yieldsc € ., therefore it suffices to prove thatZ Bd.#Z,,. Assume

indirectly thatc € Bd.#,,. We shall distinguish two cases according to the parity of

n.

Casen = 2m + 1. The indirect assumption and Theoréimplies I(c) < m
sinceI(c) increases at most/2. For simplicity, assume that(c) = m. Then
there are two further possibilities: the representationiafolves eithem pairwise
distinct interior base point§ < --- < &, or m — 1 pairwise distinct interior base
pointsé; < --- < &,,_1 plus both the endpointsandb, respectively. In the first case
we have the representation

Cc = Z Oékw(fk>
k=1
Due to the Chebyshev property @fand the positivity ofp, we arrive at

0<|wt)o(t) w(&) - wltm)ptn) @En) Wtmer)pltmsr) |

fort, €)&1,&[ (K =1,...,m)where¢, := a and¢,,,; := b. After integration
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with respect tdty, . . ., t,,+1) and using the above representation,ofre have
0<| [Swp w(&) - [& wp wl&n) [ wp
= ;01 wp w(&) oowp w(€n) e wp’
— 51 wp w(&) - ;:_1 wp w(&n) f wp‘
- f: wp w(&) [ wp wlE) L ow(§) | =0

since the last column is the linear combination of the even indexed columns. Thus

we get the desired contradiction.
Now consider the other case whehas the representation

m—1

c=apw(a) + Z aw(&) + apw(b).
k=1

Due to the Chebyshev property @fand the positivity ofp again, we arrive at

0<|wla) wt)pt:) w&) - WEn1) Wtw)p(tn) w(b) |

for ¢, €]&-1,&[ (kK = 1,...,m) where¢, := a and¢§,, := b. An analogous
argument to the previous one leads to contradiction.

Casen = 2m. Similarly to the odd case, now we may assume thal =
m — 1/2. Then there are two possibilities: the representation iokolves either
the endpoint andm — 1 pairwise distinct interior base poinfg < --- < &,,_1 Or
the endpoinb andm — 1 pairwise distinct interior base poinfs < --- < &,,_1.
Applying the same method as above, both cases lead to contradiction againl

II\'_
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4.3. Hermite—Hadamard-type inequalities

The main results concern the cases of even and odd order generalized convexity

separately. First we establish Hermite—Hadamard-type inequalities for the odd order
one.

Theorem 4.5.Letw = (wy,...,wsn+1) be a Chebyshev system pnb] andp :
la,b] — R be a positive integrable function. There exist uniquely determined base
pointséy, ..., &, andny, ..., n, Of |a, b[ such that
m b
aw(a) + Y () = /
k=1 a
The coefficientsy, ..., a,, andgy, ..., B,,.1 are positive and uniquely determined,

too. Furthermore, for any generalizea-convex functiory : [a, b] — R, the follow-
ing Hermite—Hadamard-type inequality holds

wp =Y Brw(m) + Burrw(b).

k=1

m b m
cof(@) + Y anf(&) < [ o< B m) + s S 0)
k=1 a k=1

Proof. Let us note thatfp is integrable ona, b by Theorem4.2. The proofs of

the left and right hand side inequalities need similar methods, therefore, we shall
verify only the left hand side one. Theorem! guarantees thaﬁab wp IS an interior

point of the moment space?,, hence (see Theorem and Theorem.3) it has the
representation

b m
(4.3) [ wr=aw(@+ - aw(e)
a k=1
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where the coefficients,, . . ., «,,, and interior base pointg, .. ., £, are determined

uniquely. Defining, := a and¢,,,., := b, consider the following system of linear

equations
§m+1 m
/ wp = cow (&) + Z(Ck/ wp + ckw(fk))
gm =1 fk 1

where the unknowns arg, i, c1, ..., ¢, c,,. Due to the Chebyshev property of
and the positivity of, its base determinant

D::) w(&o) f£01 wp w(&) - fé;n wp w(fm)‘

is positive. Therefore, the system has a unique solutign}, ¢y, ..., ¢, cn). On

) m?

the other hand, representatichd) shows thatag, —1, a,...,—1,a,,) is also a
solution. Thusgg, a1, ..., a, can be obtained by Cramer’s Rule:

)f wp w(&) - [ wp w(&) [
—— §k+1 . Em+1
ak—D)w@w dwe I & |

Suppose now that, : [a,b] — R is a generalize®m + 1)-convex function with
respect taw. Then, for all elements; of |¢, &..1[, the following inequality holds:

f(&)  flto) -+ fl&m) [(tm)
02‘ w(to) -+ wW(m) @(tm) ‘

Multiplying both sides by the positive(t,) - - - p(t,,,) and integrating on the product
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[€0,&1] X -+ X [Em, Emyr] With respect tdty, . . ., t,,), We arrive at the inequality

F&) Sfe o F(Em) g’"“fp‘

w(&) [fo wp w(&n) [T wp
| re) e F&m) S ot [0 fp
| w&) [ wp w(&m) fé wp+-+ [T wp
&) g e ) fffp
| we) [ wp W) [, w

Observe that the adjoint determinants of each ele %ﬁt fpinthe last expression
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AR
Page 74 of 101
b
_ Z) w(& ék wp f£k+1 v [T wp ‘f(fk) Go Back
h=1 Full Screen
Here the coefficient of fpis the positive determinar®, while the the coefficients -
of f(&), ..., f (&) are exactly the numerators @f, . . . , a,,, (See above), since the 0se
last columnf w can be replaced b Sty wp. After rearranging, we get the left journal of inequalities
hand side of the Hermite— Hadamard§ -type inequality. l in pure and applied
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base points;, ..., &, andny, ..., n,_1 of]a, b[ such that
m b m—1
Z apw (&) = / wp = Pow(a) + Z Brw(nr) + Bnw(D).
k=1 a k=1
The coefficientsy, ..., a,, and jy, ..., 5, are positive and uniquely determined,

too. Furthermore, for any generalizea-convex functiory : [a, b] — R, the follow-
ing Hermite—Hadamard-type inequality holds

m b m—1
S anf(&) < [ fo < Af@)+ Y Aefm) + A f0)
k=1 @ k=1

Proof. To prove the left hand side inequality, take the unique interior base points

&, ..., &y, and coefficientsy, . . ., «, fulfilling the representation
b m
(4.4) / wp=> apw(é)
a k=1

guaranteed by Theoreim4. Definingé, := a and¢,,,; := b, consider the following
system of linear equations

£m+1 m £k
/ wp = (CZ / wp + Ckw((fk))
ém k:

1 Ek—1

where the unknowns ar¢, ¢y, ..., ¢’ , ¢,,. Due to the Chebyshev property @fand
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is positive, hence the system has a unique solyibre, . . ., ¢, ¢,,). On the other
hand, the representatior.{) shows that(—1,a4,...,—1,«,,) is also a solution.
Thus, the coefficients can be obtained by Cramer’s Rule:

_ 1 &1 &2 m Em+1
al—a‘ Jowp [wp - fgmflwp w(&n) Jo wp’,

_ 1 &1 §k+1 Em+1
@k—ﬁl‘fo“’ﬂ skl wp [ e “’P"

Suppose now thaf : [a,b] — R is a generalized2m)-convex function with
respect taw. Then, for all elements, of |¢x, &..1[, the following inequality holds:

f(to) f(&) - fl&m) [f(tm
o< I 08 I &)

Therefore,
Q| e e fe) e S [
= 5)1 wp w(&) - w(&) m+1 wp
B IS {3V IR () fgfp+ LT
[Fwp wE) o w0 [Swpt ot [ wp
| e f&) f(&m) fabf,o
Jo wp w(&) wén) [fw

In the last expression, the adjoint determinant of each ele!ﬁféfﬂfp are equal to
zero since their columns are linearly dependent dué.tt).(Appﬁ/ing the expansion
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theorem to the first row, we arrive at the inequality

& o wien |- [0

Ui we Jwe o o w6 [wp |16
_kz_;‘ f§1 gk 1 wp j‘ik+1

Here the coefficient ofab fpis the positiveD;; moreover, the coefficients ¢f(¢; ),
.., f(&,) are exactly the numerators of, ..., «,, since the last colum[fb wp

can be replaced byf’"“ wp. After rearranging, we get the left hand side of the
Hermite— Hadamard type inequality.

For the right hand side inequality, take the uniquely determined interior base
pointsn, ..., n,_1 and coefficients), . . . , 5,, so that the representation

0< ‘ f;ol wp w()

fab wp ’f(fk:)‘

b
(4.5) / wp = fow(a +Zﬁkw M) + Bmw(D)

holds. Definingn, := a andn,, := b, con3|der the following system of linear
equations

Nm m—1 Nk
/ wp = cow(no) + Z (cZ/ wp + ckw('nk)> + (),
Mm—1 k=1

Me—1
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is positive, hence the system has a unique solutipny, c1,...,¢ 1, Cm—1,Cm.-

The representation4(5) shows that( Gy, —1, 51, ..., Bm-1, —1, Gn) IS also a solu-
tion, therefore Cramer’s Rule can be applied:
1
60 = F fnzl wp w(nl) nm 1 f’? wp w nm) ,
2
1 m
b= 5 | @) L we [ wp e [ wp w(nm) |
]- m— m
B = 3~ | @) " wp [ wp w(nea) [ wp ’ .
2

These coefficients are positive since even changes are needed to transfer the column
177"11 wp to the adequate place.
If a function f : [a,b] — R is a generalize@2m)-convex with respect ta, then

we arrive at the inequality

o< | {0 o fo fm) T fp fom) [ fo
- Jyo wp @) Sl wp wn) ) wp

whence an analogous argument to the previous one completes the proof. [

4.4. An alternative approach in a particular case

To prove the main results, the main point is the existence of the representations of
TheoremD. These representations can also be considered as systems of nonlinear
equations where the unknowns are the coefficients and the base points. The number
of the equations and the unknowns coincide in each case. In those cases when only
one interior base point is involved, the solubility of the system of equations can
directly be verified without applying the Krein—Markov theory of moment spaces.
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Theorem 4.7.Letw = (wy,ws, ws3) be a Chebyshev system|anb] andp : [a, b] —
R be a positive integrable function. Then, there exist unique elengentsf |a, b]
and uniquely determined positive coefficients:; andd;, d, such that

b
aw(a) + cw(é) = / wp = diw(n) + dow(b).

Furthermore, if a functiory : [a,b] — R is generalized-convex with respect t@,
then the following Hermite—Hadamard-type inequality holds

b
cf(a) + eaf (€) < / fo<dif(n) +dof (b).

Proof. We shall restrict the process of the proof only on the existence of the interior
point¢. To do this, define the functiof : [a,b] — R by the formula

w1 (a) famwlp fbwlp
) b
wo(a) fa wap [ wop
w3(a) fam w3p fa w3p
Then, F' is continuous orja,b] and F'(a) = F(b) = 0. Further on,F(z) # 0 if
x €la, b] due to the Chebyshev property @fand the positivity ofp. For simplicity,

we may assume théat is positive ona, b[. Therefore, by Weierstrass’ theorem, there
exists¢ €la, b] such that

Fa)=| wa) [Twp [wp|=

(Q_T?F
Assume that: €]¢, b]. Then, the maximal property gfyields the inequality
_ w
05> F@-FEQ _| oy Jewr o,
Jer e
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The central column of the determinant tendsut(f) asx tends to¢ since the fol-
lowing estimations are valid for = 1, 2, 3:

Mine ;) Wi fgp - fg WEp  MaX[e 4] W fgp

minw, = - < = < = = max wg.
€] Jer Jer Jer €]
Therefore

| w(a) w(e) [fwp|<0.

Choosingr € [a, £[ and using the maximal property 6fagain, we get the opposite
inequality with the same argument and arrive at the identity

| w(a) w(e) [lwp|=0.

Thus, the linear independence®fa) andw(¢) yields that there exist coefficients
c; andc, such that

clw(a)+cgw(§)—/ wp.

The right hand side inequality can be verified with an analogous argument, therefore

the proof is omitted. O

Let us note, that if the weight functiomis continuous, then the functioh is
differentiable and Rolle’s mean-value theorem can directly be applied.
The representations of Theorein/ are linear with respect to the coefficients.

Therefore, in concrete cases, the main difficulty lies in determining the interior base
points¢ andn. Without claiming completeness, we list some examples of when they

can be determined explicitly.
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Example 1. If the Chebyshev systefm; , w,ws) is defined orja, b] by wy(z) = 1,
wo(z) = sinh z, ws(x) = coshz andp = 1, then

€9 artanh( sinhb — sinha — (b — a) cosha) L

coshb — cosha — (b — a)sinha
sinhb —sinha — (b —a)coshb)
coshb — cosha — (b — a)sinh b

n=2 artanh(

Proof. With the above setting, the left hand side representation of Thedrene-
duces to the following system of nonlinear equations

b
Cl+C2:/ ldx =0b—a,
o
¢y sinha + ¢y sinh € = / sinh xdx = cosh b — cosh a,

b
c1cosha + ¢ cosh & = / cosh zdx = sinh b — sinh a,

where the three unknowns afg ¢, and§, respectively. Multiplying the first equa-
tion bysinh ¢ and subtracting it from the second one, then multiplying again the first
equation bycosh ¢ and subtracting it from the third one, the coefficieptcan be
eliminated and it follows

co(sinh € — sinha) = coshb — cosha — (b — a)sinha
ca(cosh & — cosha) = sinhb — sinha — (b — a) cosh a.

Applying the well known additional properties of hyperbolic functions for the iden-
tities¢ = ((+a)/2+ (£ —a)/2anda = (£ +a)/2 — (£ — a)/2, the left hand side
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of both equations can be written in product form:

2¢5 cosh (HTQ) sinh ((S_Ta) = cosh b — cosha — (b — a)sinha,

2¢9 sinh (HTQ) sinh <§—Ta) = sinh b — sinha — (b — a) cosh a.

Hermite-Hadamard-type

The left hand side of the first equation differs from zero siéicg a. Therefore, Inequalities
dividing the second equation by the first one, we get the equation Mihély Bessenyei

vol. 9, iss. 3, art. 63,
§+a sinhb — sinha — (b — a) cosha 9,iss. 3, art. 63, 2008
tanh =

2 ~ coshb —cosha — (b — a)sinha’
Title Page
whence the desired expressiorfa$ obtained. For determining we shall consider
the following system of nonlinear equations: Clorlteinis
d1+d2:b—a7 « i
dy sinh n 4 ds sinh b = cosh b — cosh a, < 4
dy coshn + dy cosh b = sinh b — sinh a. Page 82 of 101
In this case, the coefficiedt can be eliminated with a similar method to the previous Go Back
one. The new system of equations, due to the additional formulae again, can be I
written in the form
Close

b
2d; cosh <ﬂ> sinh (_77) = cosh b — cosha — (b — a) sinh b,
2 2 journal of inequalities
b b— in pure and applied
2d, sinh (%) sinh (T”) — sinhb — sinha — (b — a) cosh b, pisruinl i
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This system, analogously to the previous case, yields the equation

tanh b+mn\ sinhb—sinha— (b—a)coshb
2 ) coshb—cosha— (b—a)sinhb’

whence the base pointcan be expressed easily. H

The proofs of the subsequent examples are similar to the previous one, therefore

they are omitted.

Example 2. If the Chebyshev systefw,, w», ws) is defined ora, b] C] — «, 7| by
wi(z) =1, wy(x) = sinzx, ws(z) = cosxz andp = 1, then

¢ = 2arctan (sma—smb—i— (b—a)cosa> L

cosa —cosb — (b—a)sina
sina —sinb+ (b—a)cosb
cosa —cosb — (b—a)sinb

n = 2arctan <

Example 3. If the Chebyshev systefm; , w,ws) is defined orja, b] by wy (z) = 1,
wo(z) = expz, ws(x) = exp 2z andp = 1, then

- exp 2b — exp 2a — 2(b — a) exp 2a
=lo —expa
2(expb —expa — (b—a)expa) pay

log [ &P 2b —exp2a — 2(b—a)exp2b ext b
= —ex .
" & 2(expb—expa— (b—a)expb) P

Example 4. If, for p > 0, the Chebyshev systeim,, ws, w3) is defined orja, b] C
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[0, +00[ byw; (z) = 1, wy(z) = 2P, w3(z) = 2* andp = 1, then

(v 1 b2l _ 2ol (2p+ 1)(b— ) ) 1/p
§_<2p+1' Pt — artt — (p+1)(b — a)a? _a) ’
(p+1 b — 2t — (2p + 1) (b — )b 1/p
B (2p+1 ot —at — (p+ D) (b—a)br ) '

The particular casg = 1 of the last example gives a corollary of Theoré&rfifor
polynomially 3-convex functions. FoB dimensional Chebyshev systems generated
by arbitrary power functions, the interior base points in general, cannot be expressed
explicitly.

The proof of Theorem .7 is applicable for generalizeziconvexity, and gives a
different approach to that followed in Theoreml. We can also state the right hand
side Hermite—Hadamard-type inequality for generalizenvex functions.

Theorem 4.8. Let w = (w;,ws,ws,ws) be a Chebyshev system pnb] and p :
la,b] — R be a positive integrable function. Then, there exist a unique elegneint
la, b[ and uniquely determined positive coefficients:, c3 such that

/ wp =cw(a) + cow(&) + csw(b).

Furthermore, if a functiory : [a,b] — R is generalizedi-convex with respect t@,
then the following Hermite—Hadamard-type inequality holds

b
/ fo < erf(a) + eaf (€) + e (b).

Hint. Apply the same argument as in the proof of Theorémfor the function
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F : [a,b] — R defined by the formula

w(a) [Lwoip w®) [l
Foyi=] o) 7 p w0) =] 20) ot ) Sy
wa(a) [Twip wa(d) fzbw‘lp

O

For example, ifw(z) := (coshz, sinh z, cosh 2z, sinh 2), then one can check
that the interior base point of the inequality is exactly the midpoint of the domain.
Unfortunately, the method fails if someone tries to use it for proving the left hand
side of the Hermite—Hadamard-type inequality for a generalizednvex function
since, by the even case of Theorenthe existence of two interior base points should
be guaranteed. For similar reasons, the “existence” part in the proof of Théorem
cannot be applied for generalizeeconvex functions i, > 4.
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5. Characterizations via Hermite—Hadamard Inequalities

Under some weak regularity conditions, the Hermite—Hadamard-inequbhiyac-
terizes(standard) convexity (sedT, Excersice 8. p. 205]). The aim of this section
is to verify analogous results f@w, , wy)-convexity. To do this, the most important
auxiliary tool turns out to be some characterization properties of continunaus,
generalize®-convex functions.

5.1. Further properties of generalized lines

In what follows, two properties of generalized lines are crucial. The first one im-
proves the statement of Lemrfi&2 and states that, on compact intervals, generalized
lines are uniformly non bounded.

Lemma 5.1. Let (wy,ws) be a Chebyshev system on an intervalThen, for any
compact subinterval af and positive numbek, there exists € (w;,ws) such that
w > K on the compact subinterval.

Proof. According to LemmaB.2, there exist coefficients, 5 such that the general-
ized lineaw; + PBw, is positive on the interior of. Therefore, iffx, y] is a compact
subinterval ofl, m := min{aw, (t) + Sws(t) |t € [x,y]} > 0. Defining the coeffi-
cientsa* ands* by the formulae

. aK . BK
ot = — G5 = —,
m m
the generalized line := a*w; + $*w, is strictly greater thadk on [z, y]. O

The second important property concerns the convergence of generalized lines. It
turns out that pointwise convergence is not only a necessary but a sufficient condition
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for the uniform convergence of sequences of generalized lines. Let us note that an
analogous result remains true for generalized polynomials in the higher-order case.

Lemma 5.2. Let (w;,w,) be a Chebyshev system on an interalurthermore, let
w = aw; + fwy andw,, = a,w + Gywe (n € N) be generalized lines. Then, the
following statements are equivalent:

(i) there exist elements < y of I such that,(z) — w(z) andw,(y) — w(y);
(i) the sequences, andg, are convergent, withv, — o and g, — (;
(i) w, — w uniformly on each compact subset/of

Proof. (i) = (ii). Applying Cramer’s Rule and the convergence properties,of)
andw,(y), one can easily get that

w(z) wa(x) ‘ wn(x)  wo(x) ‘

fo 19w @) | wealy) waly) |
wq(z) wg(m)‘ n—oo | wy(x) w2(x)’ A,
wi(y) wa(y) wi(y) wa(y)

The convergence gf, can be obtained similarly.
(17) = (i17). Let|[x,y] be a compact subinterval df andt € [z, y| arbitrary.
Due to the continuity of the functions, andws, there existg > 0 such that

max{suprw1<t> |, sup | ws (1) r} < K.

[z.9] [z,y]
Therefore,
|wn(t) —w(t) | = [onwi(t) — awi(t) + Bawa(t) — Bwa(t) |
< lom —allwi(t) [ +] 8y — Bllwa(t) |
<K(lan—a|+]8,—8]) =0
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asn — oo; hencew,, — w uniformly on|z, y].
(i73) = (4). Trivial. O

Under the assumption of continuity, if a function is not convex, then it must be
locally strictly concave somewhere. The following theorem generalizes this result

for non (wy, wo)-convexity.

Theorem 5.1.Let (w;, ws) be a Chebyshev system on an intedzeFurthermore, let

f : I — R be a continuous function. Then, the following assertions are equivalent:

() fisnot(wy,ws)-convex;

(i) there exist elements < y of I such thatw < f on |z, y[ wherew is the
generalized line determined by the properties

(i) there exist elements < p < y of [ and a generalized line such thatv > f
on [z, y|. Moreover

flz) <w(z), f(p)=wlp), fly)<w(y);

(iv) there exist® € I° such thatf is locally strictly (w,ws)-concave ap, that is,
there exist elements < p < y of I such that, forallz < u < p < v < y, the
following inequality holds:

f(w)  f(p)  f(v)
wi(u) wi(p) wi(v) | <0
wa(u) wa(p) wa(v)
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Proof. (i) = (i7). If fis not(w,ws)-convex, then there exist elements< p < yo

of I such thatv(p) < f(p), wherew is the generalized line determined by the
propertiesv(zy) = f(zo) andw(yo) = f(yo) (See assertiofwi) of Theorem3.1).
Define the function¥ : [z, 9] — R by F' := f — w, and the elements andy by
the formulae

zi=sup{t|F(t) =020 <t <p},
y:=inf{t|F(t)=0,p<t <y}

Clearly,zo < z < p < y < y, hold; moreoverf'(z) = F(y) = 0 andF' > 0 on
|z, y[ due to the continuity of. Thatisw(z) = f(z),w(y) = f(y) andf(t) > w(t)
forall t €]z, y.

(17) = (di7). Take the elements < y of I and the generalized line fulfilling
the properties(z) = f(x), w(y) = f(y) andw|jzy; < [z Define, for allt € R,
the family of “parallel” generalized lines; by the conditions

w(r) = w(x) + t, wi(y) = w(y) +t.

Observe first thaty|(,,) > f|, for “sufficiently large”t. Indeed, take the gener-
alized linew* satisfying the inequality*|(, ,; > max f|;, and choose > 0 such
thatw,(z) > w*(x) andw(y) > w*(y) hold. (The existence ab* is guaranteed

by Lemma5.1.) Then,w|,y > w*|,y due to LemmaB.1 hencew; |z > fz.y-

On the other hand, a similar argument to the previous one yields the inequalities
wt|[z7y] < whm’y] < f‘[%y] for all t < 0. Therefore,

to := inf{t € R|wi|zy > flzy} € R.

By definition, w;, > f on [z,y]. Assume indirectly that this inequality is strict.
Then, according to the continuity e, and f, there exists > 0 such that

f—|-€<wt0
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on[z,y]. Consider the sequence of generalized lingdetermined by the conditions

wn () == w(x) +tg — %, wn(y) == w(y) +to — %

Lemmas3.1 implies that(w, ) is strictly monotone increasing; further, according to
Lemmab5.2, w, — wy, uniformly on the compact intervak, y| sincew,(z) —
wy, () andw, (y) — wi, (v). Hence, there exists ay € N satisfying the inequalities Hermite-Hadamard-type

Inequalities

Mihaly Bessenyei
Wny < Wiy < Wy + = / 4

2 vol. 9, iss. 3, art. 63, 2008

Comparing this to the previous one, it follows that

€ Title Page
f+§ <wn0 <u}t0,
Contents
which contradicts the definition of sincew,, can also be written in the form,_ /.. pp )

Therefore, the choicg,, satisfies the requirements.
(1ii) = (iv). Due to the continuity of the functiong andw, we may assume < >
thatp is the minimal element dfc, y[ fulfilling the properties of the assertion. Then,

fu) <w(u)if z <u<pandf(v) < w(v)if p < v <y. Therefore, Baneiges

fw) e f@) | ] e wp) w) o0 Bk
wi(u) wi(p) wi(v) | <| wi(u) wi(p) wi(v) Full Screen
wa(u) wa(p) wa(v) wo(u) wa(p) wa(v) Close
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The next result shows thé&t, , w,)-convexity, similarly to the standard one, is a
pointwise property.

Corollary 5.1. Let(w;, w2) be a Chebyshev system over the open intervairther-
more f : I — R is a given function. Then, the following assertions are equivalent:

(i) fis (w1, ws)-cONVex;

(i) f islocally (wy,ws)-convex that is, each element of the domain has a neigh-
borhood where it igw;, wy)-convex;

(i) fis continuous and, for ajp € I, there exist elemenis< p < y of I such that
p) wi(v) | >0

forallx <u <p<wv<y(.e., fislocally convexat each point).

Hint. The implications(i) = (ii) and(i7) = (izi) are trivial. For the implication
(1ii) = (i), the last assertion of Corollafy 1 can be applied, which, in the case of
indirect assumption, immediately leads to contradiction. O

5.2. Hermite—Hadamard-type inequalities and(w; , w» )-convexity

The main results are presented in three theorems. The first and the second ones
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for all elements: < y of [a, b], the functiong (z, y) andc(x, y) by the formulae

Slavy) = (ﬂyl (@) L eny) = Jeww

wy Jowip wi(§(z,y))

Then, a continuous functiofi : [a,b] — R is generalized convex with respect to
(w1,ws) if and only if, for all elements < y of [a, ], it satisfies the inequality

c(z,y)f /1M

Proof. The necessity is due to Theorein!. For the converse assertion, note first
that the mappindz, y) — £(z,y) is continuous in each variable and takes its value
between: andy since it is a Lagrange-type mean-value. Furthert,y) and{(z, y)

are constructed so that all generalized lines (i.e., the linear combinationsamid

w-») are solutions of the functional equation

(5.1) (. y)o(E(e,y)) = / "o (w<y).

(For details, see the proof of Theoréiml.) Assume thaif satisfies the inequality
of the theorem and, indirectly, is nab;, ws)-convex. Then, according to assertion
(77i) of Theoremb5.1, there exist elements < p < y of I and a generalized line
such thatf < w on|z,y] and

flz) <w(z), f(p)=wlp), fly)<w(y).
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follows that

dx@ﬂa%mwg/ﬂw</ﬂwzcwWw@@m»

On the other hand, both sides have the common v&lue:) f (p), which is a con-
tradiction. O

Theorem 5.3. Let (w;,wy) be a Chebyshev system over an inteffwab] such that

wy Is positive onla, b, furthermorep : [a,b] — R is a positive integrable function.

Define, for all elements < y of [a, b], the functions: (z,y) and cz(z,y) by the
formulae

Bon o] “f o]
e \ o) m) | YT M@W
o2) () n(r) wnly)

Then, a continuous functiofi : [a,b] — R is generalized convex with respect to

(w1, w9) if and only if, for all elements < y of [a, b], it satisfies the inequality

/WwSQuww@wumeﬂw.

Proof. The necessity is due to Theoréeiml again. Conversely, note first that(x, y)

andcs(z, y) are constructed such that all generalized lines (i.e., the linear combina-

tions ofw; andws) are the solutions of the functional equation

(5.2) /y wp = c1(z,y)w(z) + 2, y)w(y).
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(For details, see the proof of Theoreml.) Assume indirectly thaf is not(wy, ws)-
convex. Then, according to asserti@f) of Theoren®.1, there exist elements < y
of I and a generalized line such thatv(z) = f(z), w(y) = f(y) andw < f on
|z, y[. Therefore,

/ywp < /y fr <cl(x,y)f(z)+coz,y)f(y)

= a(@, y)w(z) + ez, y)w(y),
which contradicts¥.2). O

Theorem 5.4. Let (wy,w;) be a Chebyshev system band f : I — R be a contin-
uous function. Keeping the notations of Theofefiand Theoren®.2, f is (wq, ws)-
convex if and only if, for all elemenis< y of /, it satisfies the inequality

c(z. ) f(§(x.y) < ez, 9)f (@) + ez, y) f(y)-

Proof. The necessity part has already been proved in TheGrémFor the suffi-
ciency, observe first that the functions:;, ¢, and¢ are constructed so that all the
generalized lines are solutions of the functional equation

c(z,y)w(E(z,y) = alz, (@) + ez, y)wly)  (z<y)

since both sides have the common valifevp. Assume indirectly that a function

f : I — R satisfies the inequality of the theorem and is not generalized convex with
respect tdw;, ws). Then, there exist elements< y of I and a generalized line
fulfilling the conditions

w(x) = f({E), w|]z,y[ < f|]x,y[7 W(y) = f(y)

Hermite-Hadamard-type
Inequalities

Mihaly Bessenyei
vol. 9, iss. 3, art. 63, 2008

Title Page
Contents
44 44
< >
Page 94 of 101
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:besse@math.klte.hu
http://jipam.vu.edu.au

due to Theorens. 1. Therefore, taking the above observation into consideration, one
can immediately get that

C(l‘,y)f(f(&?,y)) < Cl(x7y>f(x
(

= a(, y)w(z

which is a contradiction. O

To give a unified view, the previous results are combined in the subsequent corol-
lary. This corollary, Theoren3.1, Corollary 3.2, Theorem3.2 and Corollary5.1

together are a comprehensive characterization of generalized convexity induced by

two dimensional Chebyshev systems.

Corollary 5.2. Let(wy,ws>) be a Chebyshev system bsuch thatv, is positive on
I°, further,p : I — R is a positive integrable function. Keeping the notations of
Theoren®.2, Theorenb.3and Theorend.4, the following assertions are equivalent
for any functionf : I — R:

(i) f is generalized convex with respect(to, w»);

(i) fis continuous and, for all elements< y of I, satisfies the inequality
Y
c(z,y) f(&(,y)) < / fo;
(i) f is continuous and, for all elements< y of I, satisfies the inequality

/ " fp < e, y) f(@) + eala, ) F(9);
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(iv) fis continuous and, for all elements< y of I, satisfies the inequality
c(z, ) f(E(x,y) < aalz,y) (@) + ealz,y) f(y).

The question arises, quite evidentiyhether Hermite—Hadamard-type inequali-
ties also characterize generalized convexity in the general case orTioogive an

affirmative answer even in the polynomial case remains an open problem and may
be the subject of further studies.
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