

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 2, Article 47, 2006

SOME INEQUALITIES OF PERTURBED TRAPEZOID TYPE

ZHENG LIU

Institute of Applied Mathematics
Faculty of Science
Anshan University of Science and Technology
Anshan 114044, Liaoning, China
lewzheng@163.net

Received 21 June, 2005; accepted 16 March, 2006 Communicated by J.E. Pečarić

ABSTRACT. A new generalized perturbed trapezoid type inequality is established by Peano kernel approach. Some related results are also given.

Key words and phrases: Perturbed trapezoid inequality; *n*-times continuously differentiable mapping; Absolutely continuous. 2000 *Mathematics Subject Classification.* 26D15.

1. Introduction

In recent years, some authors have considered the perturbed trapezoid inequality

$$\left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le C(\Gamma_{2} - \gamma_{2})(b-a)^{3},$$

where $f:[a,b]\to\mathbb{R}$ is a twice differentiable mapping on (a,b) with $\gamma_2=\inf_{x\in[a,b]}f''(x)>-\infty$ and $\Gamma_2=\sup_{x\in[a,b]}f''(x)<+\infty$ while C is a constant. (e.g. see [1] – [8]) It seems that the best result $C=\frac{\sqrt{3}}{108}$ was separately and independently discovered by the authors of [5] and [8]. The perturbed trapezoid inequality has been established as

(1.1)
$$\left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \\ \leq \frac{\sqrt{3}}{108} (\Gamma_{2} - \gamma_{2}) (b-a)^{3}.$$

ISSN (electronic): 1443-5756

© 2006 Victoria University. All rights reserved.

Moreover, we can also find in [5] the following two perturbed trapezoid inequalities as

(1.2)
$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \leq \frac{1}{384} (\Gamma_{3} - \gamma_{3})(b-a)^{4},$$

where $f:[a,b]\to\mathbb{R}$ is a third-order differentiable mapping on (a,b) with $\gamma_3=\inf_{x\in[a,b]}f'''(x)>-\infty$ and $\Gamma_3=\sup_{x\in[a,b]}f'''(x)<+\infty$, and

$$(1.3) \qquad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le \frac{1}{720} M_{4} (b-a)^{5},$$

where $f:[a,b]\to\mathbb{R}$ is a fourth-order differentiable mapping on (a,b) with $M_4=\sup_{x\in[a,b]}|f^{(4)}(x)|<+\infty.$

The purpose of this paper is to extend these above results to a more general version by choosing appropriate harmonic polynomials such as the Peano kernel. A new generalized perturbed trapezoid type inequality is established and some related results are also given.

2. FOR DIFFERENTIABLE MAPPINGS WITH BOUNDED DERIVATIVES

Theorem 2.1. Let $f:[a,b] \to \mathbb{R}$ be an n-times continuously differentiable mapping, $n \geq 2$ and such that $M_n := \sup_{x \in [a,b]} |f^{(n)}(x)| < \infty$. Then

$$(2.1) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \\ - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)! 2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \\ \leq M_{n} \times \begin{cases} \frac{\sqrt{3}(b-a)^{3}}{54} & \text{if } n=2; \\ \frac{n(n-2)(b-a)^{n+1}}{3(n+1)! 2^{n}} & \text{if } n \geq 3, \end{cases}$$

where $\left[\frac{n-1}{2}\right]$ denotes the integer part of $\frac{n-1}{2}$.

Proof. It is not difficult to find the identity

$$(2.2) \quad (-1)^n \int_a^b T_n(x) f^{(n)}(x) \, dx$$

$$= \int_a^b f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^2}{12} [f'(b) - f'(a)]$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)}\left(\frac{a+b}{2}\right),$$

where $T_n(x)$ is the kernel given by

$$(2.3) T_n(x) = \begin{cases} \frac{(x-a)^n}{n!} - \frac{(b-a)(x-a)^{n-1}}{2(n-1)!} + \frac{(b-a)^2(x-a)^{n-2}}{12(n-2)!} & \text{if } x \in \left[a, \frac{a+b}{2}\right], \\ \frac{(x-b)^n}{n!} + \frac{(b-a)(x-b)^{n-1}}{2(n-1)!} + \frac{(b-a)^2(x-b)^{n-2}}{12(n-2)!} & \text{if } x \in \left(\frac{a+b}{2}, b\right]. \end{cases}$$

Using the identity (2.2), we get

(2.4)
$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right) \right| = \left| \int_{a}^{b} T_{n}(x) f^{(n)}(x) dx \right| \leq M_{n} \int_{a}^{b} |T_{n}(x)| dx.$$

For brevity, we put

$$P_n(x) := \frac{(x-a)^n}{n!} - \frac{(b-a)(x-a)^{n-1}}{2(n-1)!} + \frac{(b-a)^2(x-a)^{n-2}}{12(n-2)!}$$

$$= \frac{(x-a)^{n-2}}{n!} \left[(x-a)^2 - \frac{n(b-a)(x-a)}{2} + \frac{n(n-1)(b-a)^2}{12} \right],$$

$$x \in \left[a, \frac{a+b}{2} \right]$$

and

$$Q_n(x) := \frac{(x-b)^n}{n!} + \frac{(b-a)(x-b)^{n-1}}{2(n-1)!} + \frac{(b-a)^2(x-b)^{n-2}}{12(n-2)!}$$

$$= \frac{(x-b)^{n-2}}{n!} \left[(x-b)^2 + \frac{n(b-a)(x-b)}{2} + \frac{n(n-1)(b-a)^2}{12} \right],$$

$$x \in \left[\frac{a+b}{2}, b \right].$$

It is clear that $P_n(x)$ and $Q_n(x)$ are symmetric with respect to the line $x = \frac{a+b}{2}$ for n even, and symmetric with respect to the point $(\frac{a+b}{2},0)$ for n odd. Therefore,

$$\int_{a}^{b} |T_{n}(x)| dx = 2 \int_{a}^{\frac{a+b}{2}} |P_{n}(x)| dx$$

$$= \frac{(b-a)^{n+1}}{n!2^{n}} \int_{0}^{1} \left| t^{n-2} \left[t^{2} - nt + \frac{n(n-1)}{3} \right] \right| dt$$

by substitution $x=a+\frac{b-a}{2}t$, and it is easy to find that $r_n(t):=t^{n-2}\left[t^2-nt+\frac{n(n-1)}{3}\right]$ is always nonnegative on [0,1] for $n\geq 3$. Thus we have

$$\int_0^1 |r_n(t)| \, dt = \int_0^1 t^{n-2} \left[t^2 - nt + \frac{n(n-1)}{3} \right] dt = \frac{n(n-2)}{3(n+1)}$$

for $n \geq 3$, and

$$\int_0^1 |r_2(t)| dt = \int_0^1 \left| t^2 - 2t + \frac{2}{3} \right| dt$$
$$= \int_0^{t_0} \left(t^2 - 2t + \frac{2}{3} \right) dt - \int_{t_0}^1 \left(t^2 - 2t + \frac{2}{3} \right) dt,$$

where $t_0 = 1 - \frac{\sqrt{3}}{3}$ is the unique zero of $r_2(t)$ in (0,1). Hence,

(2.5)
$$\int_{a}^{b} |T_{n}(x)| dx = \begin{cases} \frac{\sqrt{3}(b-a)^{3}}{54}, & n = 2, \\ \frac{n(n-2)(b-a)^{n+1}}{3(n+1)!2^{n}}, & n \ge 3. \end{cases}$$

Consequently, the inequality (2.1) follows from (2.4) and (2.5).

Remark 2.2. If in the inequality (2.1) we choose n = 2, 3, 4, then we get

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le \frac{\sqrt{3}}{54} M_{2} (b-a)^{3},$$

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le \frac{1}{192} M_{3} (b-a)^{4}$$

and the inequality (1.3), respectively.

For convenience in further discussions, we will now collect some technical results related to (2.3) which are not difficult to obtain by elementary calculus as:

(2.6)
$$\int_{a}^{b} T_{n}(x) dx = \begin{cases} 0, & n \text{ odd,} \\ \frac{n(n-2)(b-a)^{n+1}}{3(n+1)!2^{n}}, & n \text{ even.} \end{cases}$$

(2.7)
$$\max_{x \in [a,b]} |T_n(x)| = \begin{cases} \frac{(b-a)^2}{12}, & n = 2, \\ \frac{\sqrt{3}(b-a)^3}{216}, & n = 3, \\ \frac{(n-1)(n-3)(b-a)^n}{3(n!)2^n}, & n \ge 4. \end{cases}$$

(2.8)
$$\max_{x \in [a,b]} \left| T_{2m}(x) - \frac{1}{b-a} \int_{a}^{b} T_{2m}(x) \, dx \right| = \begin{cases} \frac{(b-a)^{4}}{720}, & m = 2, \\ \frac{(8m^{3} - 16m^{2} + 2m + 3)(b-a)^{2m}}{3(2m+1)!2^{2m}}, & m \ge 3. \end{cases}$$

3. BOUNDS IN TERMS OF SOME LEBESGUE NORMS

Theorem 3.1. Let $f:[a,b] \to \mathbb{R}$ be a mapping such that the derivative $f^{(n-1)}$ $(n \geq 2)$ is absolutely continuous on [a,b]. If $f^{(n)} \in L_{\infty}[a,b]$, then we have

$$(3.1) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \\ - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)! 2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right) \right| \\ \leq \|f^{(n)}\|_{\infty} \times \begin{cases} \frac{\sqrt{3}(b-a)^{3}}{54}, & n=2, \\ \frac{n(n-2)(b-a)^{n+1}}{3(n+1)! 2^{n}}, & n \geq 3, \end{cases}$$

where $\left[\frac{n-1}{2}\right]$ denotes the integer part of $\frac{n-1}{2}$ and $\|f^{(n)}\|_{\infty} := ess \sup_{x \in [a,b]} |f^{(n)}(x)|$ is the usual Lebesgue norm on $L_{\infty}[a,b]$.

The proof of inequality (3.1) is similar to the proof of inequality (2.1) and so is omitted.

Theorem 3.2. Let $f:[a,b] \to \mathbb{R}$ be a mapping such that the derivative $f^{(n-1)}(n \geq 2)$ is absolutely continuous on [a,b]. If $f^{(n)} \in L_1[a,b]$, then we have

$$(3.2) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \\
- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)! 2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \\
\leq \|f^{(n)}\|_{1} \times \begin{cases} \frac{(b-a)^{2}}{12}, & n=2, \\ \frac{\sqrt{3}(b-a)^{3}}{216}, & n=3, \\ \frac{(n-1)(n-3)(b-a)^{n}}{3(n!)2^{n}}, & n \geq 4, \end{cases}$$

where $||f^{(n)}||_1 := \int_a^b |f(x)| dx$ is the usual Lebesgue norm on $L_1[a,b]$.

Proof. By using the identity (2.2), we get

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right) \right|$$

$$= \left| \int_{a}^{b} T_{n}(x) f^{(n)}(x) dx \right| \leq \max_{x \in [a,b]} |T_{n}(x)| \int_{a}^{b} |f^{(n)}(x)| dx.$$

Then the inequality (3.2) follows from (2.7).

4. Non-Symmetric Bounds

Theorem 4.1. Let $f:[a,b] \to \mathbb{R}$ be a mapping such that the derivative $f^{(n)}(n \ge 2)$ is integrable with $\gamma_n = \inf_{x \in [a,b]} f^{(n)}(x) > -\infty$ and $\Gamma_n = \sup_{x \in [a,b]} f^{(n)}(x) < +\infty$. Then we have

$$(4.1) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \\ - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)! 2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \\ \leq \frac{\Gamma_{n} - \gamma_{n}}{2} \times \begin{cases} \frac{\sqrt{3}(b-a)^{3}}{54}, & n = 2, \\ \frac{n(n-2)(b-a)^{n+1}}{3(n+1)! 2^{n}}, & n \geq 3 \text{ and odd,} \end{cases}$$

$$(4.2) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right) \right|$$

$$\leq \left[f^{(n-1)}(b) - f^{(n-1)}(a) - \gamma_{n}(b-a) \right]$$

$$\times \begin{cases} \frac{(b-a)^{2}}{12}, & n=2, \\ \frac{\sqrt{3}(b-a)^{3}}{216}, & n=3, \\ \frac{(n-1)(n-3)(b-a)^{n}}{3(n!)2^{n}}, & n \geq 5 \text{ and odd,} \end{cases}$$

$$(4.3) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right) \right|$$

$$\leq \left[\Gamma_{n}(b-a) - f^{(n-1)}(b) + f^{(n-1)}(a) \right]$$

$$\times \begin{cases} \frac{(b-a)^{2}}{12}, & n=2, \\ \frac{\sqrt{3}(b-a)^{3}}{216}, & n=3, \\ \frac{(n-1)(n-3)(b-a)^{n}}{3(n!)2^{n}}, & n \geq 5 \text{ and odd,} \end{cases}$$

$$(4.4) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right)$$

$$- \frac{m(m-1)(b-a)^{2m}}{3(2m+1)!2^{2m-2}} [f^{(2m-1)}(b) - f^{(2m-1)}(a)] \right|$$

$$\leq [f^{(2m-1)}(b) - f^{(2m-1)}(a) - \gamma_{2m}(b-a)]$$

$$\times \begin{cases} \frac{(b-a)^{4}}{720}, & m=2, \\ \frac{(8m^{3}-16m^{2}+2m+3)(b-a)^{2m}}{3(2m+1)!2^{2m}}, & m \geq 3, \end{cases}$$

$$(4.5) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right)$$

$$- \frac{m(m-1)(b-a)^{2m}}{3(2m+1)!2^{2m-2}} [f^{(2m-1)}(b) - f^{(2m-1)}(a)] \right|$$

$$\leq \left[\Gamma_{2m}(b-a) - f^{(2m-1)}(b) + f^{(2m-1)}(a)\right] \begin{cases} \frac{(b-a)^4}{720}, & m=2, \\ \frac{(8m^3 - 16m^2 + 2m + 3)(b-a)^{2m}}{3(2m+1)!2^{2m}}, & m \geq 3. \end{cases}$$

Proof. For n odd and n = 2, by (2.2) and (2.6) we get

$$(-1)^{n} \int_{a}^{b} T_{n}(x) [f^{(n)}(x) - C] dx$$

$$= \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)]$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right).$$

where $C \in \mathbb{R}$ is a constant.

If we choose $C = \frac{\gamma_n + \Gamma_n}{2}$, then we have

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \leq \frac{\Gamma_{n} - \gamma_{n}}{2} \int_{a}^{b} |T_{n}(x)| dx.$$

and hence the inequality (4.1) follows from (2.5).

If we choose $C = \gamma_n$, then we have

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] - \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \le \max_{x \in [a,b]} |T_{n}(x)| \int_{a}^{b} |f^{(n)}(x) - \gamma_{n}| dx,$$

and hence the inequality (4.2) follows from (2.7).

Similarly we can prove that the inequality (4.3) holds.

By (2.2) and (2.6) we can also get

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right)$$

$$- \frac{m(m-1)(b-a)^{2m}}{3(2m+1)!2^{2m-2}} [f^{(2m-1)}(b) - f^{(2m-1)}(a)] \right|$$

$$= \left| \int_{a}^{b} \left[T_{2m}(x) - \frac{1}{b-a} \int_{a}^{b} T_{2m}(x) dx \right] [f^{2m}(x) - C] dx \right|,$$

where $C \in \mathbb{R}$ is a constant.

If we choose $C = \gamma_{2m}$, then we have

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right|$$

$$- \sum_{k=2}^{\left[\frac{n-1}{2}\right]} \frac{k(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-2}} f^{(2k)} \left(\frac{a+b}{2}\right)$$

$$- \frac{m(m-1)(b-a)^{2m}}{3(2m+1)!2^{2m-2}} [f^{(2m-1)}(b) - f^{(2m-1)}(a)] \right|$$

$$\leq \max_{x \in [a,b]} \left| T_{2m}(x) - \frac{1}{b-a} \int_{a}^{b} T_{2m}(x) dx \right| \int_{a}^{b} |f^{(2m)}(x) - \gamma_{2m}| dx$$

and hence the inequality (4.4) follows from (2.8).

Similarly we can prove that the inequality (4.5) holds.

Remark 4.2. It is not difficult to find that the inequality (4.1) is sharp in the sense that we can choose f to attain the equality in (4.1). Indeed, for n=2, we construct the function $f(x) = \int_a^x \left(\int_a^y j(z) \, dz \right) dy$, where

$$j(x) = \begin{cases} \Gamma_2, & a \le x < \frac{(3+\sqrt{3})a+(3-\sqrt{3})b}{6}, \\ \gamma_2, & \frac{(3+\sqrt{3})a+(3-\sqrt{3})b}{6} \le x < \frac{(3-\sqrt{3})a+(3+\sqrt{3})b}{6}, \\ \Gamma_2, & \frac{(3-\sqrt{3})a+(3+\sqrt{3})b}{6} \le x \le b, \end{cases}$$

and for $n \geq 3$ and odd, we construct the function

$$f(x) = \int_a^x \left(\int_a^{y_n} \left(\cdots \int_a^{y_2} j(y_1) \, dy_1 \cdots \right) dy_{n-1} \right) dy_n,$$

where

$$j(x) = \begin{cases} \Gamma_n, & a \le x < \frac{a+b}{2}, \\ \gamma_n, & \frac{a+b}{2} \le x \le b. \end{cases}$$

Remark 4.3. If in the inequality (4.1) we choose n = 2, 3, then we recapture the inequalities (1.1) and (1.2), respectively.

REFERENCES

- [1] P. CERONE, On perturbed trapezoidal and midpoint rules, *Korean J. Comput. Appl. Math.*, **2** (2002), 423–435.
- [2] P. CERONE AND S.S. DRAGOMIR, Trapezoidal type rules from an inequalities point of view, *Handbook of Analytic-Computational Methods in Applied Mathematics*, CRC Press N.Y.(2000), 65–134.
- [3] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications in numerical integration, *Kyungpook Math. J.*, **39** (1999), 331–341.
- [4] X.L. CHENG, Improvement of some Ostrowski-Grüss type inequalities, *Comput. Math. Appl.*, **42** (2001), 109–114.

- [5] X.L. CHENG AND J. SUN, A note on the perturbed trapezoid inequality, *J. Inequal. in Pure and Appl. Math.*, **3**(2) (2002), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.php?sid=181].
- [6] S.S. DRAGOMIR, P. CERONE AND A. SOFO, Some remarks on the trapezoid rule in numerical integration, *Indian J. of Pure and Appl. Math.*, **31**(5) (2000), 489–501.
- [7] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ, Improvement and further generalization of inequalities of Ostrowski-Grüss type, *Computer Math. Appl.*, **39** (2000), 161–175.
- [8] N. UJEVIĆ, On perturbed mid-point and trapezoid inequalities and applications, *Kyungpook Math. J.*, **43** (2003), 327–334.