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ABSTRACT. A new generalized perturbed trapezoid type inequality is established by Peano ker-
nel approach. Some related results are also given.
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1. INTRODUCTION

In recent years, some authors have considered the perturbed trapezoid inequality

[ s@ar= "5+ s+ L) - )

<Oy — ) (b—a)®,

wheref : [a,b] — R is a twice differentiable mapping ofa, b) with v, = inf,cfp f"(2) >
—oo andl’y = sup,¢(, ) f"(7) < +oo while C'is a constant. (e.g. se€ [1]= [8]) It seems that

the best resulf’ = 1—*6‘2 was separately and independently discovered by the authars of [5] and
[8]. The perturbed trapezoid inequality has been established as

(1.1)
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Moreover, we can also find inl[5] the following two perturbed trapezoid inequalities as

(12) r)dr — "2 (o) + F(0)] +

< 3%4@3 —3)(b—a)*,

wheref : [a,b] — R is a third-order differentiable mapping ¢n, b) with v5 = inf,c(q 4 " ()
> —oo andl'y = sup,c(, 5 f” () < 400, and

b— b—a)? 1
13) wyde— "2 1p(a) + 0]+ )~ 0] < oMb~ ),
wheref : [a,b] — R is a fourth-order differentiable mapping Gm b) with M, = sup |f ()]
z€[a,b]
< 400.

The purpose of this paper is to extend these above results to a more general version by choos-
ing appropriate harmonic polynomials such as the Peano kernel. A new generalized perturbed
trapezoid type inequality is established and some related results are also given.

2. FOR DIFFERENTIABLE MAPPINGS WITH BOUNDED DERIVATIVES

Theorem 2.1.Let f : [a,b] — R be ann-times continuously differentiable mapping> 2 and
such thatM,, := sup,¢, |f™ ()| < oo. Then

b—a b—a)?. , ,
@ |[ f@de -1 + s+ U= L) - pa)
(23]
LN R 10— DR (a 4 b)
2k—2
£ 302k + 1)2 2
V3(ba) if n = 2;
< M, x )
20 A ifn >3,

where[“>1] denotes the integer part &£-.

Proof. It is not difficult to find the identity

(2.2) (—1)”/ To(z)f™ (z) da

Z/abf(m)

U 1Fa) + F0) +

n—1
B [Z] )b — a)2k+1 f(2k a+b
2k+ 1)122k=2 2 )

whereT,,(z) is the kernel given by
{ @) _ Gmale—a! | el o [, atb]

n! 2(n—1)! 12(n—2)! 2
(23) T =
(z—b)"

n!

(b—a)(@—b)"~! | (b—a)?(z—b)" 2 ath
+ 2(n—1)! + 12(n—2)! if =€ (%,b} .
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Using the identity[(2]2), we get

@4 | [t b_Ta[f(a) 400+ P 0) ~ pa)
SRk = )b — )y (at D
_; 2k+1 122k—2 fe (T)

_ / To(2)f™ () da| < M, / T ()] da.

For brevity, we put

_ @—Tl_?)"‘g {@ a0 ag(x —a)  n(n— 11)2(5 - a)z} |
N ReT)
and
e = S B B
- @_Tf)“ [(x b2 (b—a)(x=b)  nn-— 11)2(b_ a) |
cefert)

It is clear thatP, (z) andQ,(z) are symmetric with respect to the lime= “2 for n even, and
symmetric with respect to the poi(ﬂﬂ, 0) for n odd. Therefore,

+b

/\T ]dx—Q/ Py ()| da

_ n+1 1 o 1
_ (b ";) / g2 {tQ oy R )] ‘ dt
nltn 0

3
by substitutionz = a + >%t, and it is easy to find that,(t) := =2 [t —nt + ”(” Dl is
always nonnegative g, 1] for n > 3. Thus we have

/01 ()| dt = /01 {2 {tQ —nt+ n(ng_ ﬂ dt = %

forn > 3, and

1
[ irateyae =
0 0
to 1 2
:/ <t2—2t+ >dt—/ (t2—2t+—>dt,
0 3 to 3

J. Inequal. Pure and Appl. Math?(2) Art. 47, 2006 http://jipam.vu.edu.au/

! 2
t2—2t+§‘dt



http://jipam.vu.edu.au/

4 ZHENG LIu

wheret, = ‘[ is the unique zero af,(¢) in (0,1). Hence,
b @, n=2,
(2.5) / |T,(z)| dx = .
¢ SrDe 0 123
Consequently, the inequality (2.1) follows from (2.4) and](2.5). O
Remark 2.2. If in the inequality [(2.1) we choose = 2, 3, 4, then we get
b a b—a)? V3
[ =230 @+ s+ L) - )| < Sane - o
b b—a (b—a)? , 1
[ 1@ de =232 5@ + o) + C ) - F@)] < g5 Mal - )

and the inequality] (1]3), respectively.

For convenience in further discussions, we will now collect some technical results related to
(2.3) which are not difficult to obtain by elementary calculus as:

b 0, n Odd,
(2.6) [ T o = n
a —”W;(ﬁﬁ;,;l “ neven.
(b—a)? —
o n =2,
—a)?
(2.7) xrgﬁ)g] |Tn(x)| = \/g(zbw L n =3,
L
(b—a)* —
1 b 720 m =2,
@8)  max |To(o) - ;o [ Tl)ds| =9 " .
z€[a,b] —-a/, (8m>—16m*+2m-+3)(b—a) m > 3.

3(2m+1)122m ’
3. BOUNDSIN TERMS OF SOME LEBESGUE NORMS

Theorem 3.1.Let f : [a,b] — R be a mapping such that the derivatiy& ") (n > 2) is
absolutely continuous ofa, b]. If (™ € L. [a, b], then we have

—a —a)?
6D @dm—b2[ﬂ@+f@n+“12>ww»—fmn
2 /{? )2k+1 ) a+b
_Z 2/<:+1'22k2 f(k)(T)
\/5(2;‘1)37 n:2’
< £

n(n—2)(b—a)™t?!
EEETCES P >3,

where[2;!] denotes the integer part 85 and || /)| := ess sup,¢(, 4 |/ (2)] is the usual
Lebesgue norm oh[a, b].

The proof of inequality[(3]1) is similar to the proof of inequality (2.1) and so is omitted.
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Theorem 3.2.Let f : [a,b] — R be a mapping such that the derivatiyé" = (n > 2) is
absolutely continuous ofa, b]. If ™ € L,[a, b], then we have

b—a b—a). ,
62 |[ fw)de- 2[ﬂ@+f@n+(12>wao—fmn
_ i k(k — )" (At b
3(2k —i—l 122k—2 2
b—a)?
(m% n=2,
<[y x § e ne3
n—1)(n—3)(b—a)™
blaglear 5 g
wherel| /™|, := [”|f(x)| dx is the usual Lebesgue norm dnla, b].
Proof. By using the identity[(2]2), we get
b—a b—a)
iz — 2215 a) + 18] + PR 0) — (a)
B Vi:} (k=1 — @)™ (a + b)
L 3(2k + 11222 2
b b
—| [ s @) de| < max [T,0)] [ 17 (@) do
a z€ a
Then the inequality (3]2) follows from (2.7). O

4. NON-SYMMETRIC BOUNDS

Theorem4.1.Letf : [a,b] — R be a mapping such that the derivatif@ (n > 2) is integrable
With 7, = infoeee S () > —o0 @andly, = sup,¢p,y f™ (z) < +00. Then we have

b—a b—a)?. , ,
@) |[ fwar " @+ o)+ U0 - )
B %] (k= 1)(b—aP* (a—l— b)
£ 3(2k + 1)12%2 2
V3(b—a)?
Fn_’)/n 3(24 ) ) n:2,
=72 1
%, n > 3 and odd,
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’ B (b_a)Q / /
@42 | [ fyde— 0@ + 1)+ S - fa)
[L—l
SRk )0 - @y (at
_kz:; 3(2k + 1)122k-2 f%( 2 )
< [F7V®) = £V (@) = (b — a)]
s n=2,
X \/5(21)1;5(1)3’ n =3,
%#, n > 5and odd,
b o bh— 2
@3) | [ yar "2+ o0+ 1 0) - )
(23]
2 (k= 1)(b— @)™ (atb
_; 3(2k + 1)122k-2 f%( 2 )
< [Cab—a) = fO7V(0) + f" 7V (a)]
(bzg)z, n=2,
X ﬁébl?sa)S’ n =3,
W, n > 5 and odd,
b— b—a)?
) dr Tama) o]+ P ) - ()
S Bk~ Db — a0 (ath
_Z 2k+1'22k et (T)

k=2

m(m = 1D)(b—a)* o .
~3m iy T 0) = £ )

< [fE"0(0) = FE D (a) = Yo (b — a)]

(b—a)* —
720 m =2,
X

(8m3—16m?+2m+3)(b—a)?™
3@2mt1)2em ; m 23,

r)dr " ; (@) + £0) + C 1) - f)
= k: —a)? o (a+b
2k+1 Te=a (T)

k=2

m(m —1)(b—a)*™ om_ -
N 3(2m+1)!22m—2 £ (b) = £ (@)
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(b—a)*
720

(8m3—16m242m+3)(b—a)>™
32m+1)22m ; m23.

< [Pom(b—a) = FED () + [ D(a)] {

Proof. Forn odd andn = 2, by (2.2) and[(2J6) we get

2k+ 1)122k—2 2 )

whereC € R is a constant.
If we chooseC' = 2242 then we have

" gy + o) + ¢ [;”

x)dr — [f'(b) — f'(a)]

[n 1] b
2]{3 + 1 |22k 2 f 2 — 2 . |Tn(x)| dl’

and hence the inequality (4.1) follows from (2.5).
If we chooseC' = +,,, then we have

=9 0y + g + L=

_ Z (b )2k+1 f(zk) a + b
2k + 1)122k—2 2

and hence the inequalitly (4.2) follows from (2.7).
Similarly we can prove that the inequalify (#.3) holds.

By (2.2) and[(Z2.6) we can also get

x)dxr —

['(0) = f'(a)]

< maX |T |/ £ (2) — | da,

[25]
- Z k(k — 1)(b — )2+ jom (a4
£ 3(2k + 1)12%-2 2

m(m —1)(b — a)*™

~3(2m + 1)122m=2 [fEmD () = f& D (a)]

/ab [Tgm(x) —7 i . /ab Tom () dx} (12" (2) — C] de

9

whereC € R is a constant.
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If we chooseC' = ~,,,, then we have

b—a (b—a)?

) dx — [f(a) + f(b)] +

i kj b — a)2k+1 f(2k) a + b
P 2k:+ 1)122k=2 2

o = D0 1) - e )

3(2m + 1)l22m-2
b
/ £ (@) — o]

1 b
Tom(z) — / Tom(z) dx
and hence the inequality (4.4) follows from (2.8). O

< max
z€[a,b]

b—a

Similarly we can prove that the inequalify (#.5) holds.

Remark 4.2. It is not difficult to find that the inequality (4.1) is sharp in the sense that we
can choosef to attain the equality in[(4]1). Indeed, far = 2, we construct the function
= [7([? j(2) dz) dy, where

3+v/3)a+(3—v3)b

I's, a§x<( 5

(3+\/§)a +(3—=v3)b

j(z) = o, << (3—\/§)ag-(3+\/§)b’

FQ, (3 \[)Grg(?ri’\f) S S b’

and forn > 3 and odd, we construct the function

fa) = [ (/ ( sy ) dyn_l) Ay,

where

Yo, <2 <0

Remark 4.3. If in the inequality [(4.1.) we choose = 2, 3, then we recapture the inequalities

(1.7) and|[(I.R), respectively.
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