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ABSTRACT. In this article, we consider an unconstrained minimization formulation of the non-
linear complementarity problem NCP) when the underlying functions adé-differentiable

but not necessarily locally Lipschitzian or directionally differentiable. We show how, under
appropriate regularity conditions on dfrdifferential of f, minimizing the merit function cor-
responding tof leads to a solution of the nonlinear complementarity problem. Our results give

a unified treatment of such results 16f -functions, semismooth-functions, and for locally Lip-
schitzian functions. We also show a result on the global convergence of a derivative-free descent
algorithm for solving nonsmooth nonlinear complementarity problem.
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1. INTRODUCTION

We consider the nonlinear complementarity problem, denoted by([NC®hich is to find a
vectorz € R" such that

(1.1) x>0, f(z) =0 and(f(z),z) =0,

wheref : R* — R", and(-,-) denotes the usual inner productl®¥. This problem has a
number of important applications in many fields, e.g., in operations research, economic equi-
librium models and engineering sciences (in the form of contact problems, obstacle problems,
equilibrium models,...), seel[5], [17] for a more detailed description. Also, (YCBerves as

a general framework for linear, quadratic, and nonlinear programming. Many methods have
been developed for the solution of the nonlinear complementarity problem, see€,le.q.,![8], [11],
[16], [17], and the references therein. Among these, one of the most popular approaches that
has been studied extensively is to reformulate the (yCRSs an unconstrained minimization
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problem through some merit function, see e.g., the survey paper by Fischer [8]. A function
U : R"™ — [0, 00) is said to be a merit function for NGP) provided that

(1.2) U(z) =0 < z solves NCPRYf).
This leads to the following minimization problem:
(1.3) min U(x).

NCP(f) is solvable if and only if the minimization problein (IL.3) has a minimum value of zero.
One way of constructing such a function is to define the so-called NCP function as follows:
A function¢ : R? — R is called an NCP function if

¢(a,0)=0<ab=0, a>0,b>0.

We call ¢ a nonnegative NCP function f(a, b) > 0 onRR2. Given¢ for the problem NCFPf),
we define

[ (21, fi()) ]

(1.4) o(x) = | o, fi(x))

| 6, fal2)) |

and call®(z) an NCP function for NCPf). We call® a nonnegative NCP function for NCP)
if ¢ is nonnegative. If the NCP function is nonnegative, then we define the merit funictaan
x by

(15) U(w) =D Bilw) = > ol fi(x)),

where®d : R* — R” and¢ : R? — R.
In this paper, we consider the following nonnegative NCP functions:

(1)
(1.6) Qi(z) = oy, fi(x))

«

) 1 2
= 5 max“{0, z; fi(z)} + 5 [prB(zi, fi(2))]

= %maxz{O,% filz)} + % {ml + filz) - \/m} |

where¢rp : R? — R is called the Fischer-Burmeister function and> 0 is a real
parameter.

(2)
(1.7) D,(x) = p(xi, fi))
= i fi(x) + % [max*{0,z; — afi(x)}
—|—max2{0, filx) —az;} — I? - fz(x)z} )

and wherex > 1 is any fixed parameter.

Yamada, Yamashita, and Fukushimal[35] proposed the NCP functi¢n in (1.6) to solve the
NCP in (1.1). In[.B), whemx = 0, the NCP function reduced to the squared Fischer-
Burmeister function. The NCP function if (1.7) was proposed by Mangasarian and Solodov
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[23]. For f aC' function, Yamada, Yamashita, and Fukushimé [35] proved tha¥the cor-
responding to the NCP function ih (1.6) iS’8 and nonnegative merit function. Fgra C*
function, Mangasarian and Solodadv [23] proved that¥i{e’) based on the NCP function in
(1.7) is aC* and nonnegative merit function. Jiang[19] generalized some resultsin [23] to the
case where the considered function is directionally differentiable.

In this paper, we extend/generalize these results to nhonsmooth functions whichFadmit
differentiability, but are not necessarily locally Lipschitzian or directionally differentiable. Our
results are applicable to any nonnegative NCP functions satisfying Lémina 3.4, but for sim-
plicity, we consider the Yamada, Yamashita, and Fukushima fundtiop (1.6) and the implicit
Lagrangian functior (1]7).

The basic motivations of using the conceptsibidifferentiability and H-differential are:
H-differentiability implies continuity, any superset of @h-differential is anH-differential,
and H -differentials enjoy simple sum, product, chain rules, a mean value theorem and a second
order Taylor-like expansion, and inverse and implicit function theorems, seel[13],/[14], [15]. An
H-differentiable function is not necessarily locally Lipschitzian or directionally differentiable.
The Fréchet derivative of a differentiable function, the Clarke generalized Jacobian of a locally
Lipschitzian function[[1], the Bouligand differential of a semismooth function [27], and the
differential of Qi [28] are particular instances &f-differentials; moreover, the closure of the
H-differential is an approximate Jacobian|[18].

For some applications aoff-differentiability to optimization problems, nonlinear comple-
mentarity problems and variational inequalities, see &.g. [31], [34]land [33].

The paper is organized as follows. In Secfign 2, we recall some definitions and basic facts
which are needed in the subsequent analysis. In S€dtion 3, we describedifferential of
the Yamada, Yamashita, and Fukushima function, implicit Lagrangian function and their merit
functions. Also, we show how, under appropriate regularity -conditions o -aifferential
of f, finding local/global minimum ofl (or a ‘stationary point’ of’) leads to a solution of
the given nonlinear complementarity problem. Our results unify/extend various similar results
proved in the literature fo€!, locally Lipschitzian, and semismooth functions [3], [4]] [7],

9], [12], [17], [19], [20], [22], [23], [35], [36]. Moreover, we present a result on the global
convergence of a derivative-free descent algorithm for solving a nonsmooth nonlinear comple-
mentarity problem.

2. PRELIMINARIES

Throughout this paper, we consider vector®ihas column vectors. Vector inequalities are
interpreted componentwise. We denote the inner-product between two veetodg in R™ by
eitherz”y or (x,y). For a matrix4, A; denotes the ith row ofl. For a differentiable function
f:R* — R™, V f(z) denotes the Jacobian matrix pfatz.

We need the following definitions from![2], [26].

Definition 2.1. A matrix A € R"*" is calledPq (P) if V2 € R™, z # 0, there existg such
thatz; # 0 andz; (Ax); > 0 (> 0), or equivalently, every principle minor of is nonnegative
(respectively, positive).

2.1. H-differentiability and H-differentials. We now recall the following definition from
Gowda and Ravindran [15].

Definition 2.2. Given a functionf’ : 2 C R™ — R™ where() is an open set ifR™ andz* € (2,
we say that a nonempty subget:*) (also denoted b¥’»(x*)) of R™*™ is an H-differential of
F atz* if for every sequencéz*} C Q) converging tar*, there exist a subsequenge® } and
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a matrixA € T'(z*) such that
(2.1) F(;r:kf) — F(z*) — A(:ckj —z*) = O(HJz:;C —z*]).
We say thatF' is H-differentiable atc* if F' has anH -differential atz*.

Remark 1. As observed in[34], if a functio’ : (2 C R" — R™ is H-differentiable at a point
z, then there exist a constaht> 0 and a neighbourhoog(z, §) of z with

(2.2) |F () = F(z)|| < Ll|x — 7[|, Yo € B(z,0).

Conversely, if condition] (2]2) holds, théf(z) := R™*" can be taken as aH-differential of
F atz. We thus have, ir] (2/2), an alternate descriptiott/edlifferentiability. However, as we
see in the sequel, it is the identification of an appropriaidifferential that becomes important
and relevant.

Clearly any function locally Lipschitzian at will satisfy (2.2). For real valued functions,
condition [2.2) is known as the ‘calmness’ Bfat z. This concept has been well studied in the
literature of nonsmooth analysis (see![30, Chapter 8]).

In the rest of this section we show that the Fréchet derivative of a Fréchet differentiable
function, the Clarke generalized Jacobian of a locally Lipschitzian function, the Bouligand
subdifferential of a semismooth function, and thelifferential of aC-differentiable function
are particular instances éf-differentials [15].

2.2. Fréchet differentiable functions. Let F' : R” — R™ be Fréchet differentiable at € R”
with a Fréchet derivative matrix (= Jacobian matrix derivati/@)F'(z*)} so that

Fz) = F(z") = VE(@")(x — 27) = of[[z — =7|]).
ThenF is H-differentiable with{V F'(z*)} as anH -differential.

2.3. Locally Lipschitzian functions. Let F': 2 C R" — R™ be locally Lipschitzian at each
point of an open s&b. For x* € (), define the Bouligand subdifferential 6fatz* by

OpF(x*) = {lim VF(2*) : ¥ — 2% 2% € Qp},

where() is the set of all points if2 where F' is Fréchet differentiable. Then, the (Clarke)
generalized Jacobian/[1]

OF (z*) = co0pF(z")
is an H-differential of F' at z*.

2.4. Semismooth functions. Consider a locally Lipschitzian functiof : @ C R" — R™ that
is semismooth at* € € [24], [27], [29]. This means that for any sequen¢e— z*, and for
anyV; € 8F(3:"),

F(a*) = F(2") = Vi(a" — 2") = o(||2" — 2])).
Then the Bouligand subdifferential
OpF(z*) = {lim VF(2") : 2F — 2% 2% € Qp}

is an H-differential of F' atz*. In particular, this holds if’ is piecewise smooth, i.e., there exist
continuously differentiable functions; : R — R™ such that

F(z) € {Fi(z), Fa(z),...,F;(z)} VYzeR™
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2.5. C-differentiable functions. Let F' : R” — R" beC'-differentiable[[28] in a neighborhood
D of z*. This means that there is a compact upper semicontinuous multivalued mapping
T(xz) with z € D andT'(z) C R™" satisfying the following condition at any € D: For any
Ve T(z),

F(z) = F(a) = V(z = a) = of|[z - a]).
Then,F is H-differentiable at:* with T'(z*) as anH -differential.

Remark 2. While the Fréchet derivative of a differentiable function, the Clarke generalized Ja-
cobian of a locally Lipschitzian function|[1], the Bouligand differential of a semismooth func-
tion [27], and theC-differential of aC-differentiable function([28] are particular instances of
H-differentials, the following simple example, taken fram|[13], shows thal{agifferentiable
function need not be locally Lipschitzian and/or directionally differentiable. Consid&;, on

F(z) = xsin (é) for x # 0 andF'(0) = 0.

ThenF is H-differentiable orR with
1 1 1
T(0) =[-1,1] andT(c) = {sin (—) — —cos (—)} for ¢ # 0.

C Cc Cc

We note thatF" is not locally Lipschitzian around zero. We also see thias neither Fréchet
differentiable nor directionally differentiable.

3. THE MAIN RESULTS

For a givenH-differentiable functionf : R™ — R”, consider the associated Yamada, Ya-
mashita, and Fukushima function/implicit Lagrangian function (or any nonnegative NCP func-
tion satisfying Lemm4§) and the corresponding merit functidn:= >~ | ®,. It should be
recalled that

U(z) =0« &(z) = 0 < 7 solves NCRf).
3.1. H-differentials of some NCP/merit functions. First, we compute thé/-differential of

the merit function¥ as given in[(1.p). In what follows;, denotes the vector of ones.

Theorem 3.1. Suppose is H-differentiable atz with T4 (z) as anH -differential.
Then¥ :=3"" | &, is H-differentiable atz with an H-differential given by

Ty(zZ) = {e'B: B € Tp(z)}.

Proof. To describe arf{-differential of U as given in ), let(x) = x1 +--- + x,. Then
U = § o & so that by the chain rule fdi -differentiability, we havel'y (z) = (Tp o T5)(z) as an
H-differential of U atz. SinceTy(z) = {¢’'}, we have

Ty(7) ={e"B: B € Ty(7)}.
This completes the proof. O
Now, we describe thé/-differential of the implicit Lagrangian function.

Theorem 3.2. Suppose thaff : R* — R" is H-differentiable atz with 7'(z) as an H-
differential. Consider® as in ). Then the implicit Lagrangian functioh := """ | @,
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is H-differentiable with ani -differential Ty (z) consisting of all vectors of the forof A + w’
with A € T'(z), v andw are column vectors with entries defined by

@1 w—+ é o max{0, 7 — afi(7)} + max{0, fi(F) — oz} — Fi(7)],

wi= @)+~ [max{0, 7, — afi(@)} ~ 7~ o max{0, £,(z)  az.}].
Proof. First we show that aif/-differential of
(3.2) B(z) =2+ f(z) + % max*{0, 2 — af(z)} + max2{0, f(z) — az} —a* — f(2)?]
is given by

Te(Z) ={B=VA+W: AcT(z), V = diag(v;) andW = diag(w;)
wherev;, w; satisfy(3.1) }.

Let g(z) = max{0,z — af(x)}, h(z) = max{0, f(z) — ax}. For eachA € T'(z), let A" and
A” be matrices such that for=1, ..., n,

{e; — aA;} if 2, —afi(z) >0
(3.3) Ale ¢ {0,e; —aA;} ifZ; —afi(z)=0

{0} if 7, — af;(z) <0,
and

{A4; —ae;}  if fi(Z) —az; >0
(3.4) Al'e ¢ {0, A, —ae;} If fi(Z) —az; =0

{0} if f;(z) —az; <O0.

Then it can be easily verified thad} (z) = {A'|A € T(z)} andT}(z) = {A"|A € T(z)} are
H-differentials ofg andh, respectively. Now simple calculations show tfiat{z) consists of
matrices of the form
(3.5) B = [diag(z) A + diag(f(z))]
+ QL [2diag(g(z)) A"+ 2diag(h(z)) A" — 2diag(z) — 2diag(f(z))],
«

whereA’ andA” for A € T'(z) are defined by[ (3]3) anfl (3.4), respectively.
Sinceg;(z) = 0 whenz; — af;(x) < 0, we have

diag(g(z)) A’ = diag(g(#))(I — aA).
Similarly, diag(h(z)) A” = diag(h(z))(A — o).
Therefore,[(3.5) becomes
(3.6) B= [diag(x) + é [—a diag(max{0,z — af(Z)}) + diag(max{0, f(z) — az})
~ diag(f(2))] A+ {diag( f(@) + é diag(max{0, 7 — af(z)})

—adiag(max{0, f(z) —az})] | = VA+ W,
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whereV andW are diagonal matrices with diagonal entries given[by|(3.1). By Theprem 3.1,
we have

(B.7) Ty(z) ={"(VA+W)=0v"A+w" : A€ T(z),vandw are vectors iR"
with components defined by (3}1)
This completes the proof. O
We describe thé/-differential of the Yamada, Yamashita, and Fukushima function.

Theorem 3.3. Suppose thaf : R* — R” is H-differentiable atz with T'(z) as an H-
differential. Consider the associated Yamada, Yamashita, and Fukushima function

2

(38) D) = § o @]+ 5 o4+ f) = VT TGP

where all the operations are performed componentwise= max{0,z} anda > 0 is a real
parameter. Let

J@)={i: f;(z) =0=z;} and K (z) = {i : 7; > 0, fi(z) > 0}.
Then theH -differential of® is given by
To(Z) ={VA+W: (A V.W,d) € T},
wherelI is the set of all quadruple&4, V, W, d) with A € T'(z), ||d|| = 1, V = diag(v;) and

W = diag(w;) are diagonal matrices with

( brp(Zi, fi(7)) (1 - LU) +ax? fi(z) wheni € K(z)

T3 +fi(2)
(3.9) v = andd? + (A;d)* > 0
orp(Ti, fi(7)) (1 - %) +ai fi(z) wheni¢ J(z)UK(z)
arbitrary when; € J(7)

\ andd? + (A;d)* =0,

( orp(Ti, (7)) (1 — ‘”—) +aZ; f2(z) wheni € K(z)

2+ fi(z)?
w; = andd? + (A;d)*> > 0
balms £(2) (1= 22 )+ () wheni # J(a) U K(0)
arbitrary wheni € J(z)
\ andd? + (A4;d)* = 0.
Proof. Similar to the calculation and analysis of Examples 5-7in [34]. O
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Remark 3.

e The calculation in Theorefn 3.3 relies on the observation that the following i$-an
differential of the one variable function— ¢, at anyt:

{1} ft>0
A ={ {0,1} ift=0
{o} ift<o.

e By Theoren] 3.1, the7-differential Ty (z) of ¥(z) = Y , ®;(z) on the basis of the
square Fischer-Burmeister function consists of all vectors of the fdrh+ w”? with
A € T(z), v andw are column vectors with entries defined py [3.9).

We conclude this subsection with the following lemma that will be needed in the sequel. The
proof is similar to Lemma 3.1 of [12].

Lemma 3.4. Suppose that : R" — R" is H-differentiable atr with 7'(z) as anH -differential.
Suppose thaf is defined as in Theorems B.Z —|3B;differentiable with anH-differential
Ts(Z) as given by

(3.10) To(z) ={VA+W: AeT(z), V=diag(v;) andW = diag(w;)},

and VU is H-differentiable with an/ -differential 7y (z). Then® is nonnegative and the follow-
ing properties hold:

(i) z solves NCP(f)< ®(z) =0. )
(ii) Forie {1,...,n}, v;w; > 0.
(3.11) (iii) Forie {l,...,n}, ®;(z) =0« (v;,w;) = (0,0).
(iv) Forie{l,...,n}withz; > 0andf(z;) > 0, we havey; > 0.
(v) If0 € Ty(z),thend(z) =0 < v =0. J

In the following subsection, we show that under appropriate regularity conditions, a ¥ector
is a solution of the NCPY) if and only if zero belongs t@y () (when the underlying functions
are H-differentiable.)

3.2. Minimizing the merit function under regularity (strict regularity) conditions. We
generalize the concept of a regular (strictly regular) point fiom [3], [6], [22], [25].
For a givenH -differentiable functionf andz € R”, we define the following index sets:

Px):={i:v; >0}, N(z):={i:v; <0},
C(z):={i:v; =0}, R(z) :=P(z) UN(Z),
wherev; are the entries of in (3.10) (e.g.y; is defined in Theorenjs 3.2 —8.3).

Definition 3.1. Considerf, ® as in [1.6) or[(1]7), an@ as [1.5). A vector* € R" is called
strictly regularif, for every nonzero vector € R" such that

(3.12) z2e =0, zp >0, 2y <0,
there exists a vector € R" such that

(3.13) sp >0, sy <0, s¢e =0, and
(3.14) sTAT2 >0 forall A e T(x¥).
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Remark 4. It is possible for® in Definition[3.] to be any nonnegative NCP function satisfying
Lemma3.4.

Theorem 3.5. Supposef : R* — R" is H-differentiable atz with an H-differential 7'(z).
Assumeb is defined as in Theoreihns B.2 —[3.3. Assumetthat }_" | ®,(z) is H-differentiable
at z with an H-differential given by

Ty(z) = {v"A+w" : (A,v,w) € Q},

where(2 is the set all tripleg( A, v, w) with A € T(z), v andw are vectors inR" satisfying

properties (i), (zi¢), and @) in (3.17).

Thenz solves NCPY) if and only if0 € Ty (z) andz is a strictly regular point.

Proof. The ‘if’ part of the theorem follows easily from the definitions. Now suppose ihat
Ty(7) andz is a strictly regular point. Then for somé A + w” € Ty (7),

(3.15) 0=viA+w = ATv+w=0.

We claim that®(z) = 0. Assume the contrary that is not a solution of NCPf). Then by
property(v) in (3.11), we have as a nonzero vector satisfying = 0, vp > 0, vy < 0. Since
z is a strictly regular point, and;w; > 0 by property(iz) in (3.11), by taking a vectos € R”
satisfying [3.1B) and (3.14), we have

(3.16) sTATY >0

and

(3.17) sTw = sfwe + shwp + sywy > 0.

Thus we have” (AT v + w) = s* ATv + sTw > 0. We reach a contradiction tp (3]15). Hence,
7 is a solution of NCPf). O

Now we state a consequence of the above theorem.

Theorem 3.6. Supposef : R* — R" is H-differentiable atz with an H-differential 7'(z).
Assumeb is defined as in Theores B.2 —|3.3.
Assume tha¥ := >"" | ©;(7) is H-differentiable atz with an H-differential given by

Ty(7) = {v"A+w" : (A v,w) € Q},

where() is the set all tripleg( A, v, w) with A € T'(z), v and w are vectors inR"™ satisfying

properties (), (:77), and @) in (3.11).
Further suppose thaf'(z) consists of positive-definite matrices. Then

P(z) =0« 0¢€ Ty(z).

Proof. The proof follows by takings = z in Definition[3.] for a strictly regular point and by
using Theorer 3]5. O

Before we state the next theorem, we recall a definition fiom [32].

Definition 3.2. Consider a nonempty sétin R"*". We say that a matrixl is arow repre-
sentative of’ if for each index: = 1,2, ..., n, theith row of A is theith row of some matrix
C € C. We say that has theow-P,-property(row-P-property) if every row representative of
C is aPy-matrix (P-matrix). We say tha€ has thecolumn®,-property (columnP-property)

if CT = {AT . A € C} has theow-P-property(row-P-property).
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Theorem 3.7. Supposef : R* — R" is H-differentiable atz with an H-differential T'(z).
Assumeb is defined as in Theoreihs B.2 —[3.3. Assumetthat > | ®,(z) is H-differentiable
at z with an H-differential given by

Ty(7) = {v"A+w" : (A v,w) € Q},

where(2 is the set all tripleg A, v, w) with A € T(z), v andw are vectors inR" satisfying

properties (i), (zi¢), and @) in (3.17).
Further, suppose thaf'(z) has the columr2-property. Then

z solves NCPY) if and only if0 € Ty ().

Proof. In view of Theorenfi 3J5, it is enough to show thes a strictly regular point. To see this,
let v be a nonzero vector satisfyi 12). SiAde) has the columm2-property, by Theorem
2 in [32], there exists an indeksuch that, [ATUL. > 0 VA € T(z). Chooses € R" so that
sj = vy ands; = 0 foralli # j. Thens"ATv = v; [ATv], > 0 VA € T(z). Hencez is a
strictly regular point. O

Theorem 3.8. Supposef : R* — R"™ is H-differentiable atz with an H-differential 7'(z).
Assume tha® is defined as in Theoreris B.2 —|3.3. Suppbse- 3" | ®; is H-differentiable
at z with an H-differential given by
Ty(Z) = {vTA+w” : (A,v,w) € Q},
where() is the set all tripleg A, v, w) with A € T(z), v andw are vectors inR" satisfying
properties i7) and @) in (3.11), andv; w; > 0 wheneverd;(z) # 0.
Further, suppose thaf(z) consists oPy-matrices. Then

O(z)=0<0¢€ Ty(z).
Proof. The proof is similar to that of Theoreim 3.7. O
As a consequence of the above theorem, we have the following corollary.

Corollary 3.9. Let f : R* — R" be locally Lipschitzian. Letb be the square Fischer-
Burmeister function. Suppose théit:= > " | ®;(z). Further, assume thals f(z) has the
columnPy-property. Then

U(z) =0« 0€ 0V¥(x).
Proof. We note that by Corollary 1 in [34], every matrix &ty (z) = co dp f(Z) is aPy-matrix.

In fact, by applying Theorein 3.8 withi;(x) = df(x) and using a result by Fischer in [9] that
0¥(x) C Ty, for all z, we obtain the result. O

Remark 5.

e The usefulness of Corollafy 3.9 is seen when the funcfidas piecewise smooth, in
which case)i f(z) consists of a finite number of matrices.

e Itis noted that in[[31]f : R* — R™ is aP(P)-function if f is H-differentiable onR™
and for everyz € R", an H-differential 7 (z) consists ofP,(P)-matrices. A simple
consequence of this result is the following:

Corollary 3.10. Suppos¢g : R — R" is H-differentiable atz with an H-differential 7'(z). As-
sume thafb is defined as in Theorerns B.2 —[3.3. Supposetthat 3" | ®; is H-differentiable
at  with an H-differential given by

Ty(z) = {v"A+w" : (Av,w) € Q},

where 2 is the set all tripleg( A, v, w) with A € T(z), v andw are vectors inR" satisfying
properties i7) and () in (3.11), andv; w; > 0 whenever;(z) # 0.
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Further, suppose that is a Py-function. Then

O(7) =0 0 € Ty(3).

4. DERIVATIVE -FREE DESCENT METHOD

We present a derivative-free descent method which does not require the computation of the
derivatives of the functiorf involved in the NCP and the merit functioin

Descent direction methods were proposed for whiensmooth by the authors in [12], [36]
for solving NCP functions in[ (I]6) and (1.7), respectively. The autharlin [9] obtained similar
results for whery is locally Lipschitzian.

Now our goal is to formulate the derivative-free line search algorithm according/to[[10], [12].
We define the search directicfr) := —V,y U, (, f(x)), for all z € R™ where

U(z) = i(z, f(z)) == Z ®i(z) = Zsb(xi, fi(x)) as in [1.6) and (1]7)

Then we define the functioh: R™ — R by
9(1’) = vlqjl(l‘7 f(x))TVQ\:[Jl(x) f(l')),

whereV,¥,; andV, ¥, denote the partial derivatives &f; with respect to the first variable and
the second variable.
Here is the algorithm.

Algorithm 4.1. Givena, 3 € (0,1), 2° € R", fork =0, 1,2, ..., do the following steps:

(i) If ¥(z*) =0, stop.
(i) Sets* = s(z*) and choose, € {a’|j € N} as large as possible such that

U (a* + tps™) < W(2®) — BLpo(2").

(i) Setz**! = z* + t,.s*. Return to(s).
The following definition is needed in Theorgm4.1.

Definition 4.1 ([10]). A function f : R™ — R" is called comonotone at< R" in the direction
u € R™ if there exists/, ,,) > 0 so that the following inequality holds:

(f(@+tu) = f(2),u) = vew|lf(@ +tu) = f2)]],
for all t > 0 sufficiently small.
The following theorem shows the convergence of Algorithm 4.1.

Theorem 4.1. Supposeg : R" — R™ is H-differentiable and a monotone map.flis comono-
tone at eaclx € R" in each directiornw € R for which the relation

limsup || f(z + tu) — f(2)||/t = +o0
t]0
is satisfied , then Algorithin 4.1 is well defined and any accumulation point of the sequéhce
generated by Algorithiin 4.1 solves the nonlinear complementarity problem.

Proof. SinceH -differentiability implies continuity as noted in[15], the result now follows from
Theorem 5.1 in[[10]. O
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Remark 6. Note that an accumulation point of the sequefick} generated by Algorith@.l
exists if the level set

L(z%) = {x ¢ R"|¥(z) < ¥(2")}
is bounded. The boundednessigf:®) can be established under the assumption fhist a
uniform P-function, seel[9],[19].

Remark 7. Note that the following property does not hold for an implicit Lagrangian function,

4.2) viw; =0+ v, =0=w,; foralli.
For example, when

fi(r) —ax; >0 and xz; — afi(z) <0.
For the Yamada, Yamashita and Fukushima function, we have
4.2) viw; =0<= v, =0=w; foralli.

The property[(4]2) is important in proving the convergence of our algorithm. Thus, the inter-
ested reader can show that the proof of Theorem 51 in [10] is not applicable to an NCP function
based on an implicit Lagrangian function due to the propérty (4.1). Therefore, we cannot prove
the convergence of the algorithm [n [10] for an NCP function based on an implicit Lagrangian
function because the proof of Theorem 5.1 relies on the progerty (4.2). Our algorithm is appli-
cable to the Yamada, Yamashita and Fukushima function and any NCP function possessing the
same properties as the Yamada, Yamashita, and Fukushima function.

5. CONCLUDING REMARKS

We considered a nonlinear complementarity problem correspondidediéferentiable func-
tions, with an associated nonnegative NCP funcfiand a merit functio’(z) := """ |, ®,(z)
and showed that under certain regularity conditions the global/local minimum or a stationary
point of ¥ is a solution of NCPf).

For nonlinear complementarity problems based on the implicit Lagrangian function or/and
the Yamada, Yamashita, and Fukushima function, our results recover/extend various results
stated for nonlinear complementarity problems when the underlying functions are continuously
differentiable (locally Lipschitzian, semismooth, and directionally differentiable). Our results
are applicable to any nonnegative NCP function satisfying Lefnmja 3.4, but for simplicity, we
consider the Yamada, Yamashita, and Fukushima function and the implicit Lagrangian function.
Indeed, as far as the author is aware, solving nonlinear complementarity problems on the basis
of the Yamada, Yamashita, and Fukushima function is considered new when the underlying
functions aref -differentiable.

It worth noting that anf/ -differentiable function need not be locally Lipschitzian/ direction-
ally differentiable; hence the approaches takenin [9], [19] are not applicable toN@Ren
the underlying functions are merely-differentiable.

We note here that similar methodologies undedifferentiability can be carried out for the
following NCP functions:

1)
¢1(a,b) == %minz{a,b}.
(2) 1
02(a,0) = 7 [(ab)” + min*{0, a} + min*{0, b}].
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