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ABSTRACT. Using some recent results from nonsmooth analysis, we prove the convergence of
a new iterative scheme to a solution of a nonconvex equilibrium problem.
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1. I NTRODUCTION

Equilibrium problems theory is an important branch of mathematical sciences which has a
wide range of applications in economics, operations research, industrial, physical, and engineer-
ing sciences. Many research papers have lately been written, both on the theory and applications
of this field (see for instance [8, 10] and the references therein).

One of the typical formulations of equilibrium problems found in the literature is the follow-
ing:

(EP) Findx̄ ∈ C such that F (x̄, x) ≥ 0 ∀x ∈ C,

whereC is a convex subset of a Hilbert spaceH andF : H × H → R is a given bifunction
convex with respect to the second variable and satisfyingF (x, x) = 0 for all x ∈ C. Recently,
more attention has been given to developing efficient and implementable numerical methods to
solve (EP), see for example [8] and the references therein. In [8] the author used a modified
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2 MESSAOUDBOUNKHEL AND BUSHRA R. AL-SENAN

proximal method to solve (EP) (see [1]) which generates the sequence{xk+1} by solving the
subproblem:

(SP)

{
Findxk+1 ∈ C such that

F (xk+1, x) + λ−1
k 〈xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ C,

for a givenλk > 0. In this paper, we will study a nonconvex equilibrium problem, by using some
recent ideas and techniques from nonsmooth analysis theory to overcome the difficulties arising
from the nonconvexity of bothC andF . First, we consider the following natural regularization
of (EP):

(GEP) Findx̄ ∈ C such that F (x̄, x) + ρ‖x− x̄‖2 ≥ 0 ∀x ∈ C
for a givenρ ≥ 0, whereC is a closed subset ofH andF : C × C → R is a given bifunction
satisfyingF (x, x) = 0 for all x ∈ C. Note that any (EP) can be written in the form of (GEP)
with ρ = 0.

Problem (GEP) has been denoted in the literature as a uniformly regular equilibrium problem
(see e.g. [10]). It is also interesting to point out that the authors in [10] proved (in Section
3) the convergence of some algorithms in the convex case to a solution of (EP) in the finite
dimensional setting. It has been commented in Section 4 of [10] that a similar technique used
in the convex case can be used for solving the problem (GEP). However, this is just a comment
at the end of the paper [10], with no further explanations.

Let us propose the following appropriate reformulation of the subproblem (SP):

(GSP)

{
Selectxk+1 ∈ C such thatxk+1 ∈ xk +MλkB and

xk−xk+1

λk
∈ ∂pF (xk+1, ·)(xk+1) +Np

C(xk+1),

whereM > 0 is a given positive number. Here∂p (resp.Np) stands for the proximal subdiffer-
ential (resp. proximal normal cone). Under natural assumptions, we will prove the convergence
of a subsequence of the sequence{xk} generated by (GSP) to a solution of (GEP).

This paper is organized as follows. In Section 2, we recall some definitions and results that
will be needed in the paper. In Section 3, we prove the main results of this paper. First, we
prove, in Proposition 3.1, that (GSP) is equivalent to (SP) wheneverC is a convex subset and
F (x, ·) is a convex function for allx ∈ C. In Proposition 3.2, we prove under the uniform-
prox-regularity of the setC and the uniform-regularity of the bifunctionF with respect to the
second variable (see Definition 2.2 below), that the sequence{xk} generated by (GSP) satisfies
some variational inequality. This result is used to prove, in Theorem 3.3, the convergence of a
subsequence of the sequence{xk} to a solution of (GEP), under natural hypotheses and when
the set of solutions of (GEP) is assumed to be nonempty.

2. PRELIMINARIES

Throughout the paperH will denote a Hilbert space. We recall some notation and definitions
that will be used in the paper. Letf : H → R ∪ {+∞} be a function andx any point inH
wheref is finite. We recall that the proximal subdifferential∂pf(x) is the set of allξ ∈ H for
which there existδ, σ > 0 such that for allx′ ∈ x+ δB

〈ξ, x′ − x〉 ≤ f(x′)− f(x) + σ‖x′ − x‖2.

HereB denotes the closed unit ball centered at the origin ofH. Recall now that the proximal
normal cone ofS at x is defined byNp(S, x) = ∂pψS(x) whereψS denotes the indicator
function ofS, i.e.,ψS(x′) = 0 if x′ ∈ S and+∞ otherwise. Note that (see for instance [11])
for convex functions (resp. convex sets) the proximal subdifferential (resp. proximal normal
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AN ITERATIVE METHOD FORNONCONVEX EQUILIBRIUM PROBLEMS 3

cone) reduces to the usual subdifferential (resp. usual normal cone) in the sense of convex
analysis.

Definition 2.1. For a givenr ∈]0,+∞], a subsetC is uniformly prox-regular with respect
to r (we will say uniformlyr-prox-regular) (see [7, 12]) if and only if for all̄x ∈ C and all
0 6= ξ ∈ NP (C; x̄) one has 〈

ξ

‖ξ‖
, x− x̄

〉
≤ 1

2r
‖x− x̄‖2,

for all x ∈ C.

We use the convention1
r

= 0 for r = +∞. Note that it is not difficult to check that for
r = +∞ the uniformr-prox-regularity ofC is equivalent to the convexity ofC, which makes
this class of great importance. Recall that the distance functiondS(·) associated with a closed
subsetS in H is given bydS(x) = inf{‖x − y‖ : y ∈ S} with the conventiondS(x) = +∞,
whenS is empty.

For concrete examples of uniform prox-regular nonconvex sets, we state the following:

(1) The union of two disjoint intervals[a, b] and[c, d] with c > b is nonconvex but uniformly
r-prox-regular with any0 < r < c−b

2
.

(2) The finite union of disjoint intervals is nonconvex but uniformlyr-prox-regular and the
r depends on the distances between the intervals.

(3) The set

{(x, y) ∈ R2 : max{|x− 1|, |y − 2|} ≤ 1} ∪ {(x, y) ∈ R2 : |x− 4|+ |y − 2| ≤ 1}
is not convex but uniformlyr-prox-regular with any0 < r < 1

2
.

(4) More generally, any finite union of disjoint convex subsets inH is nonconvex but uni-
formly r-prox-regular and ther depends on the distances between the sets. For more
examples we refer the reader to [6].

The following proposition recalls an important consequence of the uniform prox-regularity
needed in the sequel. For its proof we refer the reader to [6].

Proposition 2.1. LetC be a nonempty closed subset inH and letr ∈]0,+∞]. If the subsetC
is uniformlyr-prox-regular then for anyx ∈ C and anyξ ∈ ∂pdC(x) one has

〈ξ, x′ − x〉 ≤ 2

r
‖x′ − x‖2 + dC(x′),

for all x′ ∈ H with dC(x′) < r.

The following proposition is needed in the proof of our main results in Section 3. It is due to
Bounkhel and Thibault [5].

Proposition 2.2. LetC be a nonempty closed subset inH and letx ∈ C. Then one has

∂pdC(x) = Np
C(x) ∩ B.

Now we recall the following concept of uniform regularity for functions introduced and stud-
ied in [2] for solving nonconvex differential inclusions.

Definition 2.2. Let f : H → R ∪ {+∞} be a l.s.c. function andO ⊂ dom f be a nonempty
open subset. We will say thatf is uniformly regularoverO with respect toβ ≥ 0 (we will also
sayβ-uniformly regular) if for allx̄ ∈ O and for allξ ∈ ∂pf(x̄) one has

〈ξ, x− x̄〉 ≤ f(x)− f(x̄) + β‖x− x̄‖2 ∀x ∈ O.
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4 MESSAOUDBOUNKHEL AND BUSHRA R. AL-SENAN

We say thatf is uniformly regular over a closed setC if there exists an open setO containing
C such thatf is uniformly regular overO.

A wide family of functions can be proved to be uniformly regular over sets. We state here
some examples from [2].

(1) Any l.s.c. proper convex functionf is uniformly regular over any nonempty subset of
its domain withβ = 0.

(2) Any lower-C2 functionf is uniformly regular over any nonemptyconvex compactsub-
set of its domain. We recall (see [3]) that a functionf : O → R is said to be lower-C2

on an open subsetO of H if relative to some neighborhood of each point ofO there is
a representationf = g − ρ

2
‖ · ‖2, in whichg is a finite convex function andρ ≥ 0. It is

very important to point out that this class of nonconvex functions is equivalent (see for
instance Theorem 10.33 in [11]) in the finite dimensional setting (H = Rn) to the class
of all functionsf : O → R for which on some neighborhoodV of eachx̄ ∈ O there
exists a representationf(x) = maxt∈T ft(x) in which ft are ofC2 onV and the index
setT is a compact space andft(x) and∇ft(x) depend continuously not just onx but
jointly on (t, x) ∈ T × V . As a particular example of lower-C2 functions in the finite
dimensional setting, one hasf(x) = max{f1(x), . . . , fm(x), } whenfi is of classC2.

One could think towards dealing with the class of lower-C2 instead of the class of uniformly
regular functions. The inconvenience of the class of lower-C2 functions is the need forconvexity
and thecompactnessof the setC to satisfy the inequality in Definition 2.2 which is the exact
property needed in our proofs. However, we can find many functions that are uniformly regular
over nonconvex noncompact sets. To give an example we need to recall the following result by
Bounkhel and Thibault [6].

Theorem 2.3.LetC be a nonempty closed subset inH and letr ∈]0,+∞]. ThenC is uniformly
r-prox-regular if and only if the following holds for allx ∈ H; with dC(x) < r; and all
ξ ∈ ∂pdC(x) one has

〈ξ, x′ − x〉 ≤ 8

r − dC(x)
‖x′ − x‖2 + dC(x′)− dC(x),

for all x′ ∈ H with dC(x′) ≤ r.

From Theorem 2.3 one deduces that for any uniformlyr-prox-regular setC (not necessarily
convex nor compact) the distance functiondC is uniformly regular overC + (r− r′)B := {x ∈
H : dC(x) ≤ r − r′} for everyr′ ∈]0, r].

3. M AIN RESULTS

Now, we are in position to state our first proposition.

Proposition 3.1. If C is a closed convex set andF (x, ·) is a Lipschitz continuous convex func-
tion for anyx ∈ C, then (GSP) is equivalent to (SP).

Proof. Let xk+1 ∈ C be generated by (GSP), i.e.,

ζk+1 ∈ ∂pF (xk+1, ·)(xk+1) +Np
C(xk+1),

with ζk+1 = xk−xk+1

λk
. Then there existsξk+1 ∈ Np

C(xk+1) such that

ζk+1 − ξk+1 ∈ ∂pF (xk+1, ·)(xk+1).

By the convexity ofF (xk+1, ·) and the definition of the subdifferential for convex functions we
have

〈ζk+1 − ξk+1, x− xk+1〉 ≤ F (xk+1, x)− F (xk+1, xk+1) ∀x ∈ C
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and so

(3.1) 〈ζk+1, x− xk+1〉 ≤ F (xk+1, x) + 〈ξk+1, x− xk+1〉 ∀x ∈ C.
On the other hand, by the convexity ofC and by the fact thatξk+1 ∈ Np

C(xk+1) we get

〈ξk+1, x− xk+1〉 ≤ 0 ∀x ∈ C.
Combining(3.1) and the last inequality we obtain

F (xk+1, x) + λ−1
k 〈xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ C.

Conversely, assume thatxk+1 is generated by (SP), that is,

F (xk+1, x) + λ−1
k 〈xk+1 − xk, x− xk+1〉 ≥ 0 ∀x ∈ C.

Let h(x) := F (xk+1, x) + 〈ζk+1, xk+1 − x〉. Then the last inequality yields

h(x) ≥ h(xk+1) ∀x ∈ C.
This means thatxk+1 is a minimum ofh overC. Thus

0 ∈ ∂h(xk+1) +NC(xk+1) = ∂F (xk+1, ·)(xk+1)− ζk+1 +NC(xk+1)

and so

(3.2) ζk+1 ∈ ∂F (xk+1, ·)(xk+1) +NC(xk+1).

On the other hand, sinceF (xk+1, ·) is Lipschitz continuous and convex there existsM > 0 such
that for allx, y one has

|F (xk+1, x)− F (xk+1, y)| ≤M‖x− y‖.
Let ε > 0 be small enough and letb ∈ B. Then, takingy = xk+1 andx := xk+1 + εb in the last
inequality yields

|F (xk+1, x)| ≤M‖x− xk+1‖ = Mε‖b‖ ≤Mε.

and so
〈ζk, εb〉 = 〈ζk, x− xk+1〉 ≤ F (xk+1, x) ≤Mε,

and hence〈ζk, b〉 ≤M, for all b ∈ B, which ensures that‖ζk‖ ≤M .
Thus, this inequality and (3.2) ensure thatxk+1 is generated by (GSP). �

Proposition 3.2. If C is uniformlyr-prox-regular and if for anyx ∈ C, the functionF (x, ·) is
γ-Lipschitz andβ-uniformly regular overC, then(GSP ) can be written as follows

λ−1
k 〈xk − xk+1, x− xk+1〉 ≤ F (xk+1, x) +

(
γ +M

2r
+ β

)
‖x− xk+1‖2, ∀x ∈ C.

Proof. Let xk+1 ∈ C be generated by(GSP ), i.e,

ζk+1 ∈ ∂pF (xk+1, ·)(xk+1) +Np
C(xk+1) and‖ζk+1‖ ≤M,

with ζk+1 = xk−xk+1

λk
. Then there existsξk+1 ∈ ∂pF (xk+1, ·)(xk+1) such that

ζk+1 − ξk+1 ∈ Np
C(xk+1).

SinceF (xk+1, ·) is γ-Lipschitz, then (see for instance [11])∂pF (xk+1, ·)(xk+1) ⊂ γB and so
‖ξk+1‖ ≤ γ. Hence‖ζk+1 − ξk+1‖ ≤M + γ. By Proposition 2.2 we obtain

ζk+1 − ξk+1 ∈ Np
C(xk+1) ∩ (γ +M)B = (γ +M)∂pdC(xk+1).

Then by Proposition 2.1 and by the uniform prox-regularity ofC we get

(3.3) 〈ζk+1 − ξk+1, x− xk+1〉 ≤
γ +M

2r
‖x− xk+1‖2, ∀x ∈ C.
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6 MESSAOUDBOUNKHEL AND BUSHRA R. AL-SENAN

On the other hand, by the fact thatξk+1 ∈ ∂pF (xk+1, ·)(xk+1) andF (xk+1, ·) is β-uniformly
regular overC we have

〈ξk+1, x− xk+1〉 ≤ β‖x− xk+1‖2 + F (xk+1, x)− F (xk+1, xk+1) ∀x ∈ C.
Combining(3.3) and the last inequality we obtain

〈ζk+1, x− xk+1〉 ≤ F (xk+1, x) +

(
γ +M

2r
+ β

)
‖x− xk+1‖2 ∀x ∈ C

This completes the proof of the proposition. �

Now, we state and prove our main theorem.

Theorem 3.3. LetC be a closed subset of a Hilbert spaceH and letF : C × C → R be a
bifunction. Let{xk}k be a sequence generated by (GSP). Assume that:

(1) C is uniformlyr-prox regular;
(2) C is ball compact, that is,C ∩MB is compact for anyM > 0;
(3) The solution set of (GEP) is nonempty;
(4) F is σ-strongly monotone, i.e.,F (x, y) + F (y, x) ≤ −σ‖x− y‖2 ∀x, y ∈ C;
(5) F is upper semicontinuous with respect to the first variable, i.e.,

lim sup
x′→x

F (x′, y) ≤ F (x, y) ∀x, y ∈ C;

(6) For anyx ∈ C, the functionF (x, ·) is β-uniformly regular overC;
(7) For anyx ∈ C, the functionF (x, ·) is γ-Lipschitz;
(8) There existsλ > 0 such thatλk ≥ λ for all k;
(9) The positive numberρ satisfiesγ+M

2r
+ β ≤ ρ ≤ σ

2
;

Then, there exists̃x ∈ C which solves (GEP) such that a subsequence of{xk} converges to
x̃.

Proof. Let x̄ ∈ C be a solution of (GEP). By settingx = xk+1 in (GEP) and taking into account
the strong monotonicity ofF and the assumptionρ ≤ σ

2
, we get

F (xk+1, x̄) ≤ −ρ‖x̄− xk+1‖2.

This combined with Proposition 3.2 gives

〈ζk+1, x̄− xk+1〉 ≤
(
−ρ+

γ +M

2r
+ β

)
‖x̄− xk+1‖2.

So,

(3.4) 〈xk − xk+1, x̄− xk+1〉 ≤ λk

(
−ρ+

γ +M

2r
+ β

)
‖x̄− xk+1‖2.

Define now the auxiliary real sequenceφk = 1
2
‖xk − x̄‖2. It is direct to check that

(3.5) 〈xk − xk+1, x̄− xk+1〉 = φk+1 − φk +
1

2
‖xk+1 − xk‖2.

It follows that

φk+1 − φk ≤ −1

2
‖xk+1 − xk‖2 + λk

(
−ρ+

γ +M

2r
+ β

)
‖x̄− xk+1‖2.

Using the assumptionρ ≥ γ+M
2r

+ β yields

φk+1 ≤ φk.
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Therefore, the sequence{φk} is a non increasing non negative sequence and so it is convergent
to some limit and bounded by some positive numberα > 0. By (3.4) and (3.5) and by the
assumptionρ ≥ γ+M

2r
+ β we have

1

2
‖xk+1 − xk‖2 ≤ φk − φk+1.

Therefore, by the assumption (8)

‖ζk+1‖ = λ−1
k ‖xk+1 − xk‖ ≤ λ−1‖xk+1 − xk‖,

and solimk→∞ ζk+1 = 0. On the other hand, since‖xk‖ ≤ ‖x̄‖ +
√

2α andC is ball com-
pact there exists a subsequence{xkn} which converges to some limit̃x ∈ C. Note that this
subsequence satisfies

(3.6) 〈ζkn+1, x− xkn+1〉 ≤ F (xkn+1, x) +

(
γ +M

2r
+ β

)
‖x− xkn+1‖2, ∀n, ∀x ∈ C.

Thus, by lettingn→∞ in the inequality (3.6) and by taking into account the upper semiconti-
nuity of F with respect to the first variable, we obtain

0 ≤ F (x̃, x) +

(
γ +M

2r
+ β

)
‖x− x̃‖2, ∀x ∈ C.

Therefore, the assumptionρ ≥ γ+M
2r

+ β concludes

F (x̃, x) + ρ‖x− x̃‖2 ≥ 0 ∀x ∈ C,

which ensures that the limit̃x is a solution of (GEP). �

Remark 3.4.

(1) An inspection of our proof of Theorem 3.3 shows that the sequence{xk} generated by
(GSP) is bounded, if and only if, there exists at least one solution of (GEP).

(2) Our main Theorem 3.3 extends Theorem 2.1 in [8] from the convex case to the noncon-
vex case.
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