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ABSTRACT. Using some recent results from nonsmooth analysis, we prove the convergence of
a new iterative scheme to a solution of a nonconvex equilibrium problem.
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1. INTRODUCTION

Equilibrium problems theory is an important branch of mathematical sciences which has a
wide range of applications in economics, operations research, industrial, physical, and engineer-
ing sciences. Many research papers have lately been written, both on the theory and applications
of this field (see for instancel[8, 10] and the references therein).

One of the typical formulations of equilibrium problems found in the literature is the follow-

ing:
(EP) Findz € C suchthat F(z,2) >0 VzeC,

where(C' is a convex subset of a Hilbert spafleand ' : H x H — R is a given bifunction
convex with respect to the second variable and satisfyifig «) = 0 for all x € C. Recently,
more attention has been given to developing efficient and implementable numerical methods to
solve [EP), see for examplel [8] and the references therein.! In [8] the author used a modified
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proximal method to solve (EP) (se€ [1]) which generates the seqyence} by solving the
subproblem:

Find x;,, € C such that
(SP)

F(zpi1,7) + A (g1 — 2, @ — 241) >0 Vo € C,

foragiven), > 0. In this paper, we will study a nonconvex equilibrium problem, by using some
recent ideas and techniques from nonsmooth analysis theory to overcome the difficulties arising
from the nonconvexity of both' and F'. First, we consider the following natural regularization

of (ER):
(GEP) Findz € C suchthat F(z,2) +pllz —z|]> >0 VezeC

for a givenp > 0, whereC'is a closed subset df andF' : C' x C' — R is a given bifunction
satisfyingF (z, z) = 0 for all z € C. Note that any[(EP) can be written in the form [of (GEP)
with p = 0.

Problem[(GEP) has been denoted in the literature as a uniformly regular equilibrium problem
(see e.qg. [[10]). It is also interesting to point out that the authors in [10] proved (in Section
3) the convergence of some algorithms in the convex case to a solutipn]of (EP) in the finite
dimensional setting. It has been commented in Section |4 6f [10] that a similar technique used
in the convex case can be used for solving the problem (GEP). However, this is just a comment
at the end of the papé€r [10], with no further explanations.

Let us propose the following appropriate reformulation of the subproblem (SP):

{ Selectry,, € C such thate, ., € z,, + M\, B and

zk;ikﬂ € OPF(wpq1, ) (Thy1) + No(Trpa),

whereM > 0 is a given positive number. Heé# (resp./N?) stands for the proximal subdiffer-
ential (resp. proximal normal cone). Under natural assumptions, we will prove the convergence
of a subsequence of the sequeiicg} generated by (G$P) to a solution pf (GEP).

This paper is organized as follows. In Sectign 2, we recall some definitions and results that
will be needed in the paper. In Sectioh 3, we prove the main results of this paper. First, we
prove, in Propositioh 3|1, thdt (GSP) is equivalent to (SP) when@\vsra convex subset and
F(z,-) is a convex function for alk € C. In Propositior] 32, we prove under the uniform-
prox-regularity of the set’ and the uniform-regularity of the bifunctiofi with respect to the
second variable (see Definitipn .2 below), that the sequéngegenerated by (G$P) satisfies
some variational inequality. This result is used to prove, in Thegrem 3.3, the convergence of a
subsequence of the sequerag} to a solution of (GEP), under natural hypotheses and when
the set of solutions of (GEP) is assumed to be nonempty.

(GSP)

2. PRELIMINARIES

Throughout the papét will denote a Hilbert space. We recall some notation and definitions
that will be used in the paper. L¢t: H — R U {+oo} be a function and: any point in H
wheref is finite. We recall that the proximal subdifferenti#lf (z) is the set of alk € H for
which there exisb, o > 0 such that for alk’ € = + 0B

(€2 —2) < f(2) = f2) +ofl2’ — 2.
HereB denotes the closed unit ball centered at the origid/ofRecall now that the proximal
normal cone ofS at z is defined byN?(S,z) = 0Pis(x) whereygs denotes the indicator
function of S, i.e.,vs(2’) = 0if ' € S and+oo otherwise. Note that (see for instancel[11])
for convex functions (resp. convex sets) the proximal subdifferential (resp. proximal normal
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cone) reduces to the usual subdifferential (resp. usual normal cone) in the sense of convex
analysis.

Definition 2.1. For a givenr €]0,+oc], a subset is uniformly prox-regular with respect
to r (we will say uniformlyr-prox-regular) (see [7, 12]) if and only if for ait € C' and all

0+# & e NP(C;7) one has
3 > 1 2
— - )< —|z— 2|7,
(i 21 =7

We use the conventioh = 0 for » = +oco. Note that it is not difficult to check that for
r = +oo the uniformr-prox-regularity ofC' is equivalent to the convexity @f, which makes
this class of great importance. Recall that the distance fundtjén associated with a closed
subsetS' in H is given byds(z) = inf{|[z — y[| : y € S} with the conventionls(z) = +oo0,
whens' is empty.
For concrete examples of uniform prox-regular nonconvex sets, we state the following:
(1) The union of two disjoint intervalg, b] and|c, d] with ¢ > b is nonconvex but uniformly
r-prox-regular with any) < r < <2,
(2) The finite union of disjoint intervals is nonconvex but uniformiprox-regular and the
r depends on the distances between the intervals.
(3) The set

{(z,y) € R* tmax{|z — 1], [y — 2/} < 1} U{(z,y) €R*: [w — 4+ ]y — 2| < 1}

is not convex but uniformly-prox-regular with any) < r < %

(4) More generally, any finite union of disjoint convex subset#/ins nonconvex but uni-
formly r-prox-regular and the depends on the distances between the sets. For more
examples we refer the reader o [6].

The following proposition recalls an important consequence of the uniform prox-regularity
needed in the sequel. For its proof we refer the readér to [6].

forallz € C.

Proposition 2.1. Let C' be a nonempty closed subsetdnand letr €]0, +oc]. If the subset”
is uniformlyr-prox-regular then for any € C and anyé € 9?d-(x) one has

2
<£,ZL‘/ - ZE) < ;HZL‘/ - ‘/EH2 + dc(l’/),

forall ' € H withdg(z') <.

The following proposition is needed in the proof of our main results in Sefction 3. Itis due to
Bounkhel and Thibault[5].

Proposition 2.2. Let C be a nonempty closed subsetidnand letx € C. Then one has
Pde(x) = Ni(x) N B.

Now we recall the following concept of uniform regularity for functions introduced and stud-
ied in [2] for solving nonconvex differential inclusions.

Definition 2.2. Let f : H — R U {+o00} be al.s.c. function an® C dom f be a nonempty
open subset. We will say thdtis uniformly regularoverO with respect tg3 > 0 (we will also
say-uniformly regular) if for allz € O and for all§ € 0” f(z) one has

(€ o —1) < f(z) = f(@) + Bz —z|* VoeO.
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We say thatf is uniformly regular over a closed s@tif there exists an open sétcontaining
C such thatf is uniformly regular ovep.

A wide family of functions can be proved to be uniformly regular over sets. We state here
some examples from|[2].

(1) Any l.s.c. proper convex functiofiis uniformly regular over any nonempty subset of
its domain withg = 0.

(2) Any lower-C? function f is uniformly regular over any nonemptpnvex compaciub-
set of its domain. We recall (s€€ [3]) that a functibn O — R is said to be lower="?
on an open subsé? of H if relative to some neighborhood of each pointothere is
a representatiofi = g — £|| - ||?, in which g is a finite convex function and > 0. Itis
very important to point out that this class of nonconvex functions is equivalent (see for
instance Theorem 10.33 in[11]) in the finite dimensional settfiig R™) to the class
of all functionsf : O — R for which on some neighborhodd of eachz € O there
exists a representatiof{z) = max,cr f;(x) in which f; are ofC? onV and the index
setT is a compact space arfid(z) andV f,(x) depend continuously not just anbut
jointly on (¢t,x) € T x V. As a particular example of lowe&?r? functions in the finite
dimensional setting, one hg$z) = max{fi(z), ..., fm(z), } when; is of classC?.

One could think towards dealing with the class of low&rinstead of the class of uniformly
regular functions. The inconvenience of the class of lo@éfunctions is the need faonvexity
and thecompactnessf the setC' to satisfy the inequality in Definition 4.2 which is the exact
property needed in our proofs. However, we can find many functions that are uniformly regular
over nonconvex noncompact sets. To give an example we need to recall the following result by
Bounkhel and Thibault[6].

Theorem 2.3.LetC be a nonempty closed subsetirand letr €]0, +oc]. ThenC'is uniformly
r-prox-regular if and only if the following holds for alt € H; with do(z) < r; and all
¢ € OPdo(x) one has

<€7$, - 'I'>

forall 2’ € H withde(2') <.

8

< - I 2 d / —d
<l = el + dele) - dof),

From Theorem 2|3 one deduces that for any uniformprox-regular se’ (not necessarily
convex nor compact) the distance functiGnis uniformly regular ovet’ + (r —r")B := {x €
H :do(z) < r—1'} for everyr’ €]0,r].

3. MAIN RESULTS

Now, we are in position to state our first proposition.

Proposition 3.1. If C'is a closed convex set arfd z, -) is a Lipschitz continuous convex func-
tion for anyz € C, then [GSP) is equivalent tp (SP).

Proof. Let 2,4, € C be generated by (G§P), i.e.,
Cht1 € O"F(Ths1, ) (@ht1) + NG (@r4),
with ¢, = % Then there existg,+1 € N&(zr+1) such that

Crr1 — &1 € OF (Thy, ) (Trg1).

By the convexity ofF' (x4, 1, -) and the definition of the subdifferential for convex functions we
have

(Cor1 = ka1, @ — Tpy1) < F(wpg1,7) — F(Tppr, Tpp1) Yo €C
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and so
(3.1) (Crov1, v — xpy1) < Fopyr, ) + ka1, @ — 1) Vo € C.
On the other hand, by the convexity @fand by the fact thaf..1 € N (zx11) we get
(€kr1, 0 —xpy1) <0 Vo el

Combining(3.1)) and the last inequality we obtain

F(pyr, ) + 2\ (2 — o, —231) >0 Vo e C.
Conversely, assume that, , is generated by ($P), that is,

F(zri1,7) + 2\ (2 — 23,0 — 231) >0 Vo e C.
Leth(z) := F(xg11,2) + (Cer1, 1 — x). Then the last inequality yields

h(xz) > h(zg41) Vo el
This means that, . ; is a minimum ofh overC'. Thus
0 € Oh(@kt1) + No(Tra1) = OF (Tp1, ) (T41) — CGorr + Ne (@)

and so
(3.2) Qo1 € OF (@41, ) (Tet1) + No(@ita).

On the other hand, sindé(x1, -) is Lipschitz continuous and convex there exists> 0 such
that for allx, y one has

|[F (1, %) = F(@pt1,y)| < M|z —yl|.
Lete > 0 be small enough and léte B. Then, takingy = x;.; andx := x;,1 + €b in the last
inequality yields
|[F (@1, 2)| < Mz — 2| = Me[|p]] < Me.
and so
(Chs €b) = (Chy ¥ — Tpy1) < F(Thy1,7) < Me,

and hencé(, b) < M, for all b € B, which ensures thaf(, || < M.
Thus, this inequality andl (3.2) ensure that, is generated by (G$P). O

Proposition 3.2. If C'is uniformlyr-prox-regular and if for any: € C, the functionF'(z, -) is
~v-Lipschitz and3-uniformly regular overC', then(G.S P) can be written as follows

v+ M
2r

)\El <;Ck — Tpy1,T — $k+1> S F(.Tk+1,-r) -+ ( + B) Hl’ — Qik+1l|2, Yo € C.

Proof. Letx,, € C be generated b{GSP), i.e,
Ch1 € OPF (g1, ) (Tpr1) + No(@prr) and|| G || < M,
with (1 = % Then there exist§, 1 € OPF(xy41, ) (xky1) Such that
Cot1 — Epr1 € No(wpga).

SinceF(xy.1,-) is y-Lipschitz, then (see for instande [1Y F'(xy1 1, -)(xr41) C 7B and so
[€k+1]] < . Hence||(e1 — &kia]| < M + ~. By Propositiorj 2.2 we obtain

Cro1 = &rp1 € No(pga) N (v + M)B = (v + M)0Pde(h41)-
Then by Proposition 211 and by the uniform prox-regularity’ofve get

+ M
(3.3) (Cog1 — kg1, T — Tpg) < 7 o

lz — zpn|?, Vo eC.
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On the other hand, by the fact th@gt,, € 0" F(xky1, ) (2ky1) @nd F(zg41, ) iS S-uniformly
regular overlC' we have

(rr1,® — wpy1) < Bllv — $k+1H2 + F(wpy1,7) — F(2pp1, Tpp1) Vo € C.
Combining(3.3)) and the last inequality we obtain

v+ M
2r

This completes the proof of the proposition. O

(Cha1, T = Tpy1) < Fapp, ) + ( + ﬁ) |2 — zpa||” Vz el

Now, we state and prove our main theorem.

Theorem 3.3. Let C' be a closed subset of a Hilbert spateand letF' : ' x C' — R be a
bifunction. Let{z }, be a sequence generated py (6SP). Assume that:

(1) C'is uniformlyr-prox regular;

(2) C'is ball compact, that is¢’ N MB is compact for any\/ > 0;

(3) The solution set of (GEP) is nonempty;

(4) F is o-strongly monotone, i.e(z,y) + F(y,z) < —ol|lz — y||* Vz,y € C;

(5) F is upper semicontinuous with respect to the first variable, i.e.,

limsup F(2',y) < F(z,y) Vz,y € C;

(6) For anyx € C, the functionF'(z, -) is S-uniformly regular overC,

(7) Foranyx € C, the functionF'(z, ) is v-Lipschitz;

(8) There exists\ > 0 such that\, > X\ for all &;

(9) The positive number satisfies't + 3 < p < 2;

Then, there exists € C which solves/(GEP) such that a subsequencgrp} converges to

Z.

Proof. Letz € C be a solution of (GEP). By setting= z;, in (GER) and taking into account
the strong monotonicity of” and the assumption < 7, we get

F(z:1,7) < —p|IT — 2 ||
This combined with Propositidn 3.2 gives

(Cot1, T — Tpg1) < (—P + 1 —;M + ﬁ) |7 — g4 )
So,
(3.4) (Th = Thy1, T — Tpp1) < Mg <—P +7 ;]\/[ + ﬁ) |17 — zg ]
Define now the auxiliary real sequengg= ||z — z||*. Itis direct to check that
(3.5) (Th — Tt 1, T — Tpey1) = Qg1 — Pr + %kaﬂ — ||,
It follows that
et = 00 <~ = aulf + h (=p 4 L5 4 8) - o

Using the assumptiop > % + [ yields

Orr1 < Oy
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Therefore, the sequende,. } is a non increasing non negative sequence and so it is convergent
to some limit and bounded by some positive number 0. By (3.4) and[(3.5) and by the
assumptiorp > 2 + 3 we have

1
§||$k+1 — 2l < @k — Prya-
Therefore, by the assumption (8)
1Gks1ll = X llzwrr = 2all < A7 Hlapsr — @],

and solimy_.«, (x+1 = 0. On the other hand, sindee,|| < ||Z|| + V2o andC' is ball com-
pact there exists a subsequerag, } which converges to some limit € C. Note that this
subsequence satisfies

v+ M
2r

Thus, by letting: — oo in the inequality[(3.6) and by taking into account the upper semiconti-

nuity of F' with respect to the first variable, we obtain

v+ M
2r

(3.6) (Crpi1,® — xp41) < Fp,41,2) + < + ﬁ) |z — 2, 1||?, Vn, VoeCl.

0§F(§:,x)+( +ﬁ> |z —2||?, VzeCl.

Therefore, the assumptign> % + (8 concludes
F(z,z)+pllz — %> >0 VoeC,
which ensures that the limitis a solution of (GEP). O

Remark 3.4.

(1) An inspection of our proof of Theorem 8.3 shows that the sequgngegenerated by
(GSR) is bounded, if and only if, there exists at least one solutign of |(GEP).

(2) Our main Theorein 3.3 extends Theorem 2.1in [8] from the convex case to the noncon-
vex case.
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