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ABSTRACT. We define new classes of the fam#ly®, ¥'), in a unit diskU := {z € C, |z| <
1}, as follows: for analytic functiong”(z), ®(z) and ¥(z) so thatR{ ggﬁgzg} >0, z €

U, F(z)*¥(z) # 0 where the operatar denotes the convolution or Hadamard product. More-
over, we establish some subordination results for these new classes.
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1. INTRODUCTION AND PRELIMINARIES .

Let B} be the class of all analytic functiorfd(z) in the open diskU := {z € C, |z| < 1},
of the form

F(z)=1 +Zanz"+o‘_1, 0<a<l,
n=1

satisfyingF'(0) = 1. And let B, be the class of all analytic functiords(z) in the open disk/
of the form

F(Z>:1—Zan2n+a_l, O<04§17 anZO, n:1a2737"'a
n=1

satisfying /'(0) = 1. With a view to recalling the principle of subordination between analytic
functions, let the functiong andg be analytic inU. Then we say that the functighis subor-
dinateto g if there exists a Schwarz functian(z), analytic inU such that

f(z) = g(w(2)), = €U
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We denote this subordination kfy< g or f(2) < g(z), z € U. If the functiong is univalent in
U the above subordination is equivalent to

f(0) =g(0) and f(U) Cg(U).

Let¢ : C? x U — C and leth be univalent inJ. Assume thap, ¢ are analytic and univalent
in U andp satisfies the differential superordination

(1.1) h(z) < 6(p(2)), 21 (), 2°p"(2); 2),

thenp is called a solution of the differential superordination.
An analytic functiory is called asubordinantf ¢ < p for all p satisfying [(1.1). A univalent
functiong such thap < ¢ for all subordinant® of (1.1) is said to be the best subordinant.
Let Bt be the class of analytic functions of the form

2) :1+Zanz", a, > 0.

Given two functionsf, g € BT,

z)zl—l—Zanz” and g(z —1+sz
n=1
their convolution or Hadamard produgtz) = g(z) is defined by
f(z)xg(z) =1+ Zanbnz”, a, >0,b,>0, =z eU.

Juneja et al.[]1] define the family(®, ¥), so that
f(z) * fI)(z)}
RS——=—=>>0, z€U
{f(Z) * U(z)

where
z)zz—i—ngnz” and V(z —z—i—zwn
n=2

are analytic inJ with the conditionsp,, > 0, v¥,, > 0, ,, > ¥, forn >2andf(z)«WU(z) # 0.
Definition 1.1. Let F'(z) € B}, we define the familf (®, ¥) so that

(1.2) %{%} >0, 2el,

where

(I)( _1+ngn nta—1  gnd ‘I/ _1+an nta—1

n=1

are analytic irV under the conditiong,, > 0, ¥, > 0, ¢, > ¥, forn > landF(z)x¥(z) # 0.
Definition 1.2. Letting F'(z) € B, , we define the family, (®, ¥) which satisfies[(1]2) where

®(2) —I—Zgon"+°‘1 and U(z —1—2%”*"‘1

n=1

are analytic iV under the conditiong,, > 0, ¥,, > 0, ¢,, > ¥, forn > 1landF(z)+*V(z) # 0.
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In the present paper, we establish some sufficient conditions for funckiors 5. and
F € B to satisfy

(1.3) F(z) % ¥(z)

<q(z), =z €U,
whereg(z) is a given univalent function ity such that;(0) = 1. Moreover, we give applications

for these results in fractional calculus. We shall need the following known results.

Lemma 1.1([2]). Letq(z) be convex in the unit disk with ¢(0) = 1 andR{q} > 3, z € U.
If 0 < p < 1, pisan analytic function irV with p(0) = 1 and if

(1= p)p*(2) + (20 = Dp(2) — p+ (1 — p)2p'(2)
< (1= p)g*(2) + (20 = D)a(2) — p+ (1 = p)2q'(2),
thenp(z) < ¢(z) andq(z) is the best dominant.

Lemma 1.2([3]). Letq(z) be univalent in the unit disk’ and letd(z) be analytic in a domain
D containingq(U). If zq'(2)6(q) is starlike inU, and

2p' (2)0(p(2)) < 2¢'(2)0(q(2))

thenp(z) < ¢(z) andq(z) is the best dominant.

2. MAIN RESULTS

In this section, we verify some sufficient conditions of subordination for analytic functions
in the classe! andB; .

Theorem 2.1. Let the functiong(z) be convex in the unit disk such thatg(0) = 1 and
R{q} > . If F € Bf and 55 an analytic function il satisfies the subordination

-1 [iéii*i?iii} - [FZ &

B F(z) @ ()] [=(F( z) ()"  2(F(2)*¥(2))
(1- u)qr2 Z) + (2 = )q(2) = p+ (L = p)zq(2),
then
F(z) % ®(2) s
Fo)ru(z) ~4G)

andg(z) is the best dominant.
Proof. Let the functiorp(z) be defined by

F(z) % ®(2)

Feywu(z) - €Y

p(2) ==

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 8, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 RABHA W. IBRAHIM AND MASLINA DARUS

It is clear thatp(0) = 1. Then straightforward computation gives us

(1= w)p*(z) + 2Cu—1)p(z) — p+ (1 — p)2p/(2)

F(z) % ®(2)]° z) * O(2)
== [F(z) i) T {F<z> " \v<z>] H
F(2)*®(2)]
Tz Lﬁ(z) " M

< (L=p)¢*(2) + 2 —1)q(z) — p+ (1 — )z (2).

By the assumption of the theorem we have that the assertion of the theorem follows by an
application of Lemma T]1. O

Corollary 2.2. If F € B} and 773 is an analytic function iri/ satisfying the subordination

14 A2\2 14+ Az
<(1_”)(1+Bz) +(2”_1)(1+BZ)
14+ Az (A-B)z
—p+ (1= p) <1+Bz) (1+ Az)(1+ Bz)’

then

F(z) % ®(z) 1+ Az
F(z)+0(z) <1+Bz)’ Slsbedsd

and ({4) is the best dominant.

Proof. Let the functiony(z) be defined by

1+ Az
q(z) :== (1+Bz>’ z eU.

It is clear thaty(0) = 1 and®R{q} > % for arbitrary A, B, z € U, then in view of Theorel
we obtain the result. U]
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Corollary 2.3. If F € B} and 773 is an analytic function iri/ satisfying the subordination

F(z)®(2)]° F(z)
=w [F(z) " M} =1 [F(z) "

H= [58 I i?iii] [45((;): ;I:((j))), ) <§<(>) ié;)}
< (1~ )Gi)Z@ - (12) o

then

and (1£2) is the best dominant.

Define the functionp,(a, c; z) by
— ” Snta—l .
vala, c; z) 1+Z , (2 €U;a eR, c eR\{0,-1,-2,...}),

where(a),, is the Pochhammer symbol defined by

ala+1)(a+2)---(a+n—-1), (neN).

Corresponding to the functiop, (a, ¢; z), define a linear operatdr,, (a, c) by
Lo(a,0)F(2) == @qla,c;2) x F(z), F(z) € BS

or equivalently by

n+a 1

La(a,

For details see [4]. Hence we have the followmg result:

Corollary 2.4. Let the functiong(z) be convex in the unit disk such thatq(0) = 1 and
R{q} > 1. If Laled®) g an analytic function ifl/ satisfying the subordination

(@, (2)
on e e [—E Frre IR
- (2 ala,0)®(2))"  2(La(a,)¥(2))
- } [ L(@08(:)  Lo(w0)0(2)
() + (2 — Dg(z) — p+ (1 — p)zq'(2)

then
Lo(a,c)®(z < a(2)
Lo(a,c)U(z

andq(z) is the best dominant.
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Theorem 2.5. Let the functiony(z) be univalent in the unit disk’ such thatg'(z) # 0 and
202 s starlike inU. If F € B satisfies the subordination

q(z)
dF(R)*2(2))  2(F)* V()] | 2d(2)
then

m —<q(z), z €U,

andg(z) is the best dominant.

Proof. Let the functiorp(z) be defined by

o-[5:38)

z el.

By setting
O(w) = g, a # 0,
it can easily observed thé{w) is analytic inC — {0}. Then we obtain

S R) [Z(F(Z) *0(2))"  2(F(2) x (2))

2q'(2)
<a :
q(2)
By the assumption of the theorem we have that the assertion of the theorem follows by an
application of Lemma T}2. O

Corollary 2.6. If I € B, satisfies the subordination
2(F(z) x 2(2))  2(F(z) * \Il(z))’} (A—B)z
(

F(z) % ®(z2) F(2) = ¥(2) 1+ Az)(1+ Bz)
then F2) = B(2) .
z)* Dz + Az
—_— —-1<B<A<1
F2) « ¥ (2) <1+Bz>’ =PsAs
and (1£%2) is the best dominant.

Corollary 2.7. If I € B, satisfies the subordination

[roan oo | (s)

then

F(z) x ®(2) 1+z2
= )
F(z) % ¥(z) 11—z
and (1£2) is the best dominant.
Define the function,,(a, ¢; z) by

o0

dala,c;z) :=1— Z%z”*”l, (z €eU;a €R, ¢c e R\{0,—-1,-2,...}),

where (a),, is the Pochhammer symbol. Corresponding to the functigfu, c; z), define a
linear operatoi’,(a, c) by

Lo(a,c)F(z) = ¢ala,cz)x F(2), F(z2) € B,

n=1
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or equivalently by

= (a),
Lo(a,c)F(z) = E n2" L

C
n=1

Hence we obtain the next result.

Corollary 2.8. Let the function(z) be univalent in the unit disk’ such thaty’(z) # 0 and
202 s starlike inU. If F € B, satisfies the subordination

q(z)
2(La(a,c)2(z)) Z(ﬁa(a,C)‘I’(Z))’}<azq’(2)

Lo(a,c)®(z) B Lo(a,c)¥(z) q(z)’

then

andq(z) is the best dominant.

3. APPLICATIONS

In this section, we introduce some applications of Sedtion 2 containing fractional integral
operators. Assume thgfz) = > | ©,2" and let us begin with the following definitions

Definition 3.1 ([5]). The fractional integral of order for the functionf(z) is defined by

1F(2) : /f — Ol 0<a<,

where the functiory(z) is analytlc in a simply-connected region of the comptexplane(C)
containing the origin. The multiplicity ofz — ¢)>~! is removed by requiringpg(z — ¢) to be

1

real wherfz — ¢) > 0. Note that,/¢ f(z) = [ (a)] f(z), for z > 0 and0 for z < 0 (see[6]).
From Definition 3.1, we have

a—1

12160 = (] 1) = iy ot = et

n=1
wherea,, := 725 foralln = 1,2,3, ..., thusl+I§f(z) € Bfandl—I2f(z) € B, (¢, > 0).
Then we have the following results.

Theorem 3.1. Let the assumptions of Theorgm|2.1 hold. Then

(1+ 12/ (2) * (=)
{(1+I§‘f(z))*\1;(z)} <q(2), 2 #0, zeU

andq(z) is the best dominant.
Proof. Let the functionF'(z) be defined by
F(z):=1+13f(2), zeU.

Theorem 3.2. Let the assumptions of Theorgm|2.5 hold. Then
(1= 12(2)) * ®(2)
(1= 12f(2)) * ¥(2)

andq(z) is the best dominant.

<q(z), z€U
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Proof. Let the functionF'(z) be defined by
F(z)=1-1If(2), =z €eU.

Let F'(a, b; ¢; 2) be the Gauss hypergeometric function ($ée [7]) defined; ferU, by

2. (@), (D), n
F(a,b;c;z):zggc;n%z )

We need the following definitions of fractional operators in Saigo type fractional calculus
(seel8!9)).

Definition 3.2. Fora > 0 andg,n € R, the fractional integral operatdﬁf’” is defined by
7a7ﬁ 2z
a IB n Z _ a—1 M. rye _ g
10 =y [ =0 (atpomain =) o

where the functiory(z) is analytic in a simply-connected region of the plane containing the
origin, with order

f(z) =0(z[)(z = 0), e>max{0,5-n} -1
and the multiplicity of(z — ()~ is removed by requiringpg(z — ¢) to be real wher — ¢ > 0.

From Definitior{ 3.2, with3 < 0, we have

P
B2 = [ =0 P+ Bmman = S cyac
_ — (@ + B)u(=n)n 2> [* 5 )l S "
X @, T@ IR (1 ) fod
S g e nta—1
=SBy [ oo
[ee] —B-1
=n§‘aB o >f(C)
E x
= ) 29"
where
(@t B =\
B, = @0 and B._ZBH.
Denotea,, := fﬂ forall n=1,2,3,...,and leta = —f3. Thus,

+ 157" f(z) € BY and 1[5 f(2) € B (g 2 0),
andn we have the following results
Theorem 3.3. Let the assumptions of Theorem|2.1 hold. Then
(L+ 152" (2) * @(2)
(1+ Ic“ﬁ 1f(2)) % ¥ (2)

andq(z) is the best dominant.

q(z), z¢€U
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Proof. Let the functionF'(z) be defined by

F(z) =1+ I37"f(2), z €U

UJ
Theorem 3.4. Let the assumptions of Theorgm|2.5 hold. Then
(=B @] o
(1= 1§77 f(2)) = ()
andq(z) is the best dominant.
Proof. Let the functionF'(z) be defined by
F(z)=1-I30"f(2), = €U.
U
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