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1. Introduction and Some Known Results

q-series, which are also called basic hypergeometric series, plays a very important
role in many fields, such as affine root systems, Lie algebras and groups, number
theory, orthogonal polynomials and physics, etc. In this paper, first we establish an
inequality by means of the Gould-Hsu inversions, and then we obtain aq-analogue
of the inequality.

We first state some notations and known results which will be used in the next
sections. It is supposed in this paper that0 < q < 1. The q-shifted factorial is
defined by

(1.1) (a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk).

Theq-binomial coefficient is defined by

(1.2)
[n
k

]
=

(q; q)n
(q; q)k(q; q)n−k

.

The following inverse series relations are due to Gould-Hsu [4]:

Theorem 1.1. Let {ai} and {bj} be two real or complex sequences such that the
polynomials defined by ψ(x, n) =

n−1∏
k=0

(ak + xbk), (n = 1, 2, . . . ),

ψ(x, 0) = 1,

differ from zero for any non-negative integerx. Then we have the following inverse
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series relations

(1.3)


f(n) =

n∑
k=0

(−1)k
(
n
k

)
ψ(k, n)g(k),

g(n) =
n∑
k=0

(−1)k
(
n
k

)
ak+kbk
ψ(n, k+1)

f(k),

where
(
n
k

)
= n!

k!(n−k)! .

Carlitz [2] gave the followingq-analogue of the Gould-Hsu inverse series rela-
tions:

Theorem 1.2. Let {ai} and {bj} be two real or complex sequences such that the
polynomials defined by φ(x, n) =

n−1∏
k=0

(ak + qxbk), (n = 1, 2, . . . ),

φ(x, 0) = 1,

differ from zero forx = qn with n being non-negative integers. Then we have the
following inverse series relations

(1.4)


f(n) =

n∑
k=0

(−1)k
[
n
k

]
q
(n−k

2 )
φ(k, n)g(k);

g(n) =
n∑
k=0

(−1)k
[
n
k

]
ak+qkbk
φ(n; k+1)

f(k).

We also need the following inequality, which is well known in the literature as
the Grüss inequality [5]:
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Theorem 1.3.We have

(1.5)

∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx−
(

1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

g(x)dx

)∣∣∣∣
≤ (M −m)(N − n)

4
,

provided thatf, g : [a, b] → R are integrable on[a, b] andm ≤ f(x) ≤ M,n ≤
g(x) ≤ N for all x ∈ [a, b], wherem,M, n,N are given constants.

The discrete version of the Grüss inequality can be stated as:

Theorem 1.4. If a ≤ ai ≤ A andb ≤ bi ≤ B for i = 1, 2, . . . , n, then we have

(1.6)

∣∣∣∣∣ 1n
n∑
i=1

aibi −
1

n

n∑
i=1

ai ·
1

n

n∑
i=1

bi

∣∣∣∣∣ ≤ (A− a)(B − b)

4
,

wherea, A, ai, b,B, bi are real numbers.

http://jipam.vu.edu.au
mailto:wmj@jpu.edu.cn
http://jipam.vu.edu.au


An Inequality and its
q-Analogue

Mingjin Wang

vol. 8, iss. 2, art. 50, 2007

Title Page

Contents

JJ II

J I

Page 6 of 14

Go Back

Full Screen

Close

2. A New Inequality

In this section we obtain an inequality about series by using both the Gould-Hsu
inversions and the Grüss inequality.

Theorem 2.1. Suppose0 ≤ a ≤ f(k) ≤ A, g(k) =
∑k

i=0

(
k
i

)
f(i), k = 1, 2, . . . , n,

then the following inequality holds

(2.1)

∣∣∣∣∣(n+ 1)
n∑
k=0

(−1)n+k

(
n

k

)2

f(k)g(k)− f(n)g(n)

∣∣∣∣∣
≤ 3(n+ 1)22n−3A

(
n

k0

)[
A

(
n

k0

)
− a

]
,

wherek0 = [n−1
2

], [x] denotes the greatest integer less than or equalx .

Proof. Lettingai = −1, bi = 0 in (1.3), we have

(2.2)


f(n) =

n∑
k=0

(−1)n+k
(
n
k

)
g(k),

g(n) =
n∑
k=0

(
n
k

)
f(k).

Since0 ≤ a ≤ f(k) ≤ A, we obtain

a ·
k∑
i=0

(
k

i

)
≤ g(k) =

k∑
i=0

(
k

i

)
f(i) ≤ A ·

k∑
i=0

(
k

i

)
.

Substituting
∑k

i=0

(
k
i

)
= 2k into the above inequality we get

(2.3) a · 2k ≤ g(k) ≤ A · 2k, k = 0, 1, . . . , n.
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On the other hand, we know that(
n
k+1

)(
n
k

) =
n!/(k + 1)!(n− k − 1)!

n!/(k)!(n− k)!
=
n− k

k + 1
,

consequently 
( n

k+1)
(n

k)
≥ 1 whenk ≤ k0,

( n
k+1)
(n

k)
≤ 1, whenk ≥ k0,

wherek0 = [n−1
2

]. So, we get

(2.4) 1 ≤
(
n

k

)
≤
(
n

k0

)
, k = 0, 1, . . . , n.

LetAk =
(
n
k

)
f(k) andBk = (−1)n+k

(
n
k

)
g(k), then

(2.5) a ≤ Ak ≤ A

(
n

k0

)
.

From (2.3) and (2.4), we know that 0 ≤ Bk ≤ 2nA
(
n
k0

)
if n− k is even,

−2n−1A
(
n
k0

)
≤ Bk ≤ 0, if n− k is odd.

So, fork = 1, 2, . . . , n, we have

(2.6) −2n−1A

(
n

k0

)
≤ Bk ≤ 2nA

(
n

k0

)
.
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Combining (1.6), (2.5) and (2.6) we obtain∣∣∣∣∣ 1

n+ 1

n∑
i=0

AiBi −

(
1

n+ 1

n∑
i=0

Ai

)
·

(
1

n+ 1

n∑
i=0

Bi

)∣∣∣∣∣
≤

(
A
(
n
k0

)
− a
)(

2nA
(
n
k0

)
+ 2n−1A

(
n
k0

))
4

,

which can be written as∣∣∣∣∣ 1

n+ 1

n∑
k=0

(−1)n+k

(
n

k

)2

f(k)g(k)

−

(
1

n+ 1

n∑
k=0

(
n

k

)
f(k)

)
·

(
1

n+ 1

n∑
k=0

(−1)n+k

(
n

k

)
g(k)

)∣∣∣∣∣
≤

(
A
(
n
k0

)
− a
)(

2nA
(
n
k0

)
+ 2n−1A

(
n
k0

))
4

.

Substituting (2.2) into the above inequality, we get (2.1).
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3. A q-Analogue of the Inequality

In this section we give aq-analogue of the inequality (2.1) by means of the Carlitz
inversions. First, we have the following lemma.

Lemma 3.1. Suppose0 ≤ f(k) ≤ A and g(k) =
∑k

i=0

[
k
i

]
f(i), then for any

k = 1, 2, . . . , n, we have

(3.1) 0 ≤ g(k) ≤ A
n∑
i=0

[n
i

]
.

Proof. It is obvious thatg(k) ≥ 0. If k ≤ n1 ≤ n2, then we have[n2

k

]
=

1− qn1+1

1− qn1+1−k ·
1− qn1+2

1− qn1+2−k · · ·
1− qn2

1− qn2−k

[n1

k

]
.

Since
1− qn1+1

1− qn1+1−k ·
1− qn1+2

1− qn1+2−k · · ·
1− qn2

1− qn2−k
≥ 1,

we get [n2

k

]
≥
[n1

k

]
.

Consequently,

g(k) =
k∑
i=0

[
k

i

]
f(i) ≤

k∑
i=0

[n
i

]
f(i) ≤

n∑
i=0

[n
i

]
f(i).

The main result of this section is the following theorem.
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Theorem 3.2.Suppose0 ≤ a ≤ f(k) ≤ A, g(k) =
∑k

i=0

[
k
i

]
f(i), k = 1, 2, . . . , n,

then the following inequality holds

(3.2)

∣∣∣∣∣(n+ 1)
n∑
k=0

(−1)n+k
[n
i

]2
q(

n−k
2 )f(k)g(k)− f(n)g(n)

∣∣∣∣∣
≤ A(n+ 1)2

4

[
n

k0

](
A

[
n

k0

]
− a

)( n∑
i=0

[n
i

]
+

n−1∑
i=0

[
n− 1

i

])
,

wherek0 = [n−1
2

], [x] denotes the greatest integer less than or equalx.

Proof. Lettingai = −1, bi = 0 in (1.4) we get

(3.3)


f(n) =

n∑
k=0

(−1)n+k
[
n
k

]
q
(n−k

2 )
g(k),

g(n) =
n∑
k=0

[
n
k

]
f(k).

Using the lemma, we have

(3.4) a ·
k∑
i=0

[
k

i

]
≤ g(k) =

k∑
i=0

[
k

i

]
f(i) ≤ A ·

n∑
i=0

[n
i

]
.

On the other hand, we notice that[
n
k+1

][
n
k

] =
(q; q)n/(q; q)k+1(q; q)n−k−1

(q; q)n/(q; q)k(q; q)n−k
=

1− qn−k

1− qk+1
,
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consequently 
[ n

k+1 ]
[n

k ]
≥ 1, whenk ≤ k0,

[ n
k+1 ]
[n

k ]
≤ 1, whenk ≥ k0,

wherek0 = [n−1
2

]. So, we have

(3.5) 1 ≤
[n
k

]
≤
[
n

k0

]
, k = 0, 1, . . . , n.

LetAk =
[
n
k

]
f(k) andBk = (−1)n+k

[
n
k

]
q
(n−k

2 )
g(k), then

(3.6) a ≤ Ak ≤ A

[
n

k0

]
.

From (3.4) and (3.5), we know that
0 ≤ Bk ≤ A

[
n
k0

] n∑
i=0

[
n
i

]
, if n− k is even,

−A
[
n
k0

] n−1∑
i=0

[
n−1
i

]
≤ Bk ≤ 0, if n− k is odd.

So, fork = 1, 2, . . . , n, we get

(3.7) −A
[
n

k0

] n−1∑
i=0

[
n− 1

i

]
≤ Bk ≤ A

[
n

k0

] n∑
i=0

[n
i

]
.
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Combining (1.6), (3.6) and (3.7) we obtain∣∣∣∣∣ 1

n+ 1

n∑
i=0

AiBi −

(
1

n+ 1

n∑
i=0

Ai

)
·

(
1

n+ 1

n∑
i=0

Bi

)∣∣∣∣∣
≤ 1

4

(
A

[
n

k0

]
− a

)(
A

[
n

k0

] n∑
i=0

[n
i

]
+ A

[
n

k0

] n−1∑
i=0

[
n− 1

i

])
,

which can be written as∣∣∣∣∣ 1

n+ 1

n∑
k=0

(−1)n+k
[n
k

]2
q(

n−k
2 )f(k)g(k)

−

(
1

n+ 1

n∑
k=0

[n
k

]
f(k)

)(
1

n+ 1

n∑
k=0

(−1)n+k
[n
k

]
q
(n−k

2 )
g(k)

)∣∣∣∣∣
≤ A

4

[
n

k0

](
A

[
n

k0

]
− a

)( n∑
i=0

[n
i

]
+

n−1∑
i=0

[
n− 1

i

])
.

Substituting (3.3) into the above inequality, we get (3.2).
From [3], we know

lim
q→1

[n
i

]
=

(
n

i

)
.

Let q → 1 in both sides of the inequality (3.2) to get∣∣∣∣∣(n+ 1)
n∑
k=0

(−1)n+k

(
n

k

)2

f(k)g(k)− f(n)g(n)

∣∣∣∣∣
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≤ A(n+ 1)2

4

(
n

k0

)[
A

(
n

k0

)
− a

][ n∑
i=0

(
n

2

)
+

n−1∑
i=0

(
n− 1

2

)]

=
A(n+ 1)2

4

(
n

k0

)[
A

(
n

k0

)
− a

]
[2n + 2n−1] = 3(n+ 1)22n−3A

(
n

k0

)[
A

(
n

k0

)
− a

]
,

which is the inequality (2.1). So the inequality (3.2) is theq-analogue of the inequal-
ity (2.1).
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