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In this paper, we establish a new inequality and;#snalogue by means of the
Gould-Hsu inversions, the Carlitz inversions and the Griss inequality.
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1. Introduction and Some Known Results

g-series, which are also called basic hypergeometric series, plays a very important
role in many fields, such as affine root systems, Lie algebras and groups, number
theory, orthogonal polynomials and physics, etc. In this paper, first we establish an
inequality by means of the Gould-Hsu inversions, and then we obt@iarealogue

of the inequality. An Inequality and its
We first state some notations and known results which will be used in the next q-Analogue
sections. It is supposed in this paper thak ¢ < 1. The ¢-shifted factorial is Mingjin Wang
defined by vol. 8, iss. 2, art. 50, 2007
n—1 o]
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Go Back
Theorem 1.1. Let {q;} and {b;} be two real or complex sequences such that the
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n—1 Close
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series relations

(1.3) h=0 .
o) = 35 (<14 2) 5B ),
where(}}) = #lk),

Carlitz [2] gave the followingg-analogue of the Gould-Hsu inverse series rela-
tions:

Theorem 1.2. Let {a;} and {b;} be two real or complex sequences such that the
polynomials defined by

n—1

o(x,n) = k];[g(ak +¢"bg), (n=1,2,...),
¢($,0) =1,

differ from zero forx = ¢" with n being non-negative integers. Then we have the
following inverse series relations

Fn) = S5 (-1 n]el
(1.4) k=0

P(k,n)g(k);
(—1)* 7] bt f (k).

We also need the following inequality, which is well known in the literature as
the Griss inequalityq]:
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Theorem 1.3. We have

(L.5) \b% / " f)gw)de = bf(:v)d:v> =7 bg(x)dx)\

< (M—m)(N—n)’
- 4
provided thatf, g : [a,b] — R are integrable ona,b] andm < f(z) < M,n <
g(x) < Nforall z € [a,b], wherem, M, n, N are given constants.

The discrete version of the Gruss inequality can be stated as:

Theorem14.lfa<a; < Aandb<b; < Bfori=1,2,...,n,then we have

1 & 1< 1< (A—a)(B—0)
1. - b — = - | <
( 6) n;albl n;al n;bl — 4 )

wherea, A, a;, b, B, b; are real numbers.
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2. A New Inequality
In this section we obtain an inequality about series by using both the Gould-Hsu
inversions and the Gruss inequality.

Theorem 2.1. Suppos® < a < f(k) < A4, g(k) = >0y () f(i), k=1,2,...,n,
then the following inequality holds

An Inequality and its

n 2 g-Analogue
(21) (Tl + 1) Z(—l)n+k <k.) f(/{;)g(k) — f(n)g(n) Mingjin Wang
k=0 vol. 8, iss. 2, art. 50, 2007
< 3(n+ 1)22"—3A(”) {A(”) - a} ,
ko ko Title Page
wherek, = [*1], [z] denotes the greatest integer less than or equall CamiaEs
Proof. Lettinga; = —1,b; = 0 in (1.3), we have < »
fln) = 32 (=1)"**(3)g(k), ¢ >
(2.2) k:O Page 6 of 14
g(n) = k:go (k)f(k) Go Back
Since0 < a < f(k) < A, we obtain Full Screen

ko ke ko kol Close
a- (.)Sg(k):Z(.>f(i)§A-Z<.).
i—o \! i—0 \! i—o \! journal of inequalities
. ko k . . . in pure and applied
Substitutingd";_, (%) = 2" into the above inequality we get mathematics
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On the other hand, we know that

(i) nk+D)n—k-1)! n—k

O~ a/R)n—-k E+ 1
consequently
(I(Cjz—s) Z 1 Whenk S kOa An Inequality and its
k g-Analogue
(kil) S 1 Whenk} 2 kO MingjinWang
(Z) ’ ’ vol. 8, iss. 2, art. 50, 2007
wherek, = [251]. So, we get
n n Title Page
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Let A, = (V) f(k) and By, = (—1)"* (") g(k), then « »
n < >
(2:5) @< Ap < A(k())' Page 7 of 14
From @.3) and .4), we know that Go Back
0< By <2"A(}) if n — kis even Full Screen
Close
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Combining (L.6), (2.5 and ¢.6) we obtain

1 < JR— 1 <
n+1ZAiBi_<n+1ZAi>'( 1ZBi>‘

=0 1=0

which can be written as

S (1) swan

k=0

B (”‘1” k; (Z)f(k)) ' (njlq ”0(_1)n+k (Z)g(k)>

<

4
Substituting £.2) into the above inequality, we get.(l).

(AG) —a) (24G) + 2 4(2))
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3. A g-Analogue of the Inequality

In this section we give a-analogue of the inequality?(1) by means of the Carlitz

inversions. First, we have the following lemma.

Lemma 3.1. Suppose) < f(k) < Aandg(k) = &, [¥]f(i), then for any

=0 L3¢
k=1,2,...,n,we have
- n
(3.1) 0<gy <A |7
i=0
Proof. Itis obvious thay (k) > 0. If £ < n; < ny, then we have
[n2] I el SR Sk el 1—q™ [nl
k» - 1 _ qn1+1fk 1 _ qn1+27k 1 _ qngfk k»
Since _— S .
1—q . 1-4q 1-¢ >1
1 _ qn1+1—k 1 _ qn1+2—k‘ 1 _ qng—k ’
we get
HEIE
El— Lk
Consequently,
k k k n " rn
CEHITES SIHICES ST
1=0 =0 1=0

The main result of this section is the following theorem.

|
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Theorem 3.2. Suppos® < a < f(k) < A, g(k) = S, [*] f(i), k= 1,2,...,n,
then the following inequality holds

n

(3.2 W+Ug;4WMHFJ*Uw¢M—ﬂmww
S 09 1A ROT bof S 1 R =

wherek, = [251], [z] denotes the greatest integer less than or equal vol. 8 ss. 2, art. 50, 2007
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consequently

L > 1 whenk < ko,

%
Lt ] <1, whenk > k,

wherek, = [2;1]. So, we have

n n
3.5 1< < . k=0,1,...,n.
( ) - |:k’} - |:k’0:| "
n—k
Let A, = [}]f(k) andBy, = (—1)”+k[z}q< ’ )g(k), then
n
ko
From (3.4) and (.5), we know that
OSBkSA[,ﬂim, if n— k is even
=0
n—1
—A[;‘J S [ <By<0, ifn—kisodd

) >l e e ol
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Combining (L.6), (3.6) and (3.7) we obtain

1 < 1 < JR——
n+1,ZAiBi_<n+1ZAi)'<n+1ZBi>‘

=0 =0

(- (RIS -RIETY)

which can be written as

( ) (7 g [ om)
S{HICHEIH )]

Substituting £.3) into the above inequality, we get.Q).
From [3], we know

i [7]= (7))

Letg — 1 in both sides of the inequality3(?) to get

et ) Y0 () ) = gt

k=0

An Inequality and its
g-Analogue

Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents
44 44
< >
Page 12 of 14
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:wmj@jpu.edu.cn
http://jipam.vu.edu.au

A () [0 205

- M”T“)Q(Z)) {A(&) = a} 2" +2"Y = 3(n + 1)22"3,4(]:;) {AQZ)) - a] :

which is the inequality4.1). So the inequalityd.?) is theg-analogue of the inequal-
ity (2.7). O
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