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Abstract: The order structure of the set of six operators connected with quadrature rules
is established in the class of 5–convex functions. An error bound of the Lobatto
quadrature rule with five knots is given for less regular functions as in the classi-
cal result.
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1. Introduction

For f : [−1, 1] → R we consider six operators approximating the integral mean
value 1
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∫ 1

−1
f(x)dx. They are
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L5(f) := 16
45
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20
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180

(
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(
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21
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)
+ f

(√
21
7
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S(f) := 1
6
(f(−1) + f(1)) + 2

3
f(0).

All of them are connected with the very well known rules of approximate integra-
tion: Chebyshev quadrature, Gauss–Legendre quadrature with two and three knots,
Lobatto quadrature with four and five knots and Simpson’s Rule, respectively (see
e.g. [4, 8, 9, 10, 11]).

In the paper [6] the order structure of the set of above operators was investigated
in the class of 3–convex functions. In this note we establish all possible inequalities
between these operators in the class of 5–convex functions. As an application we
give an error bound of the operatorL5 for six times differentiable functions instead
of eight times differentiable ones as in the classical result.

In this paper only 5–convex functions on[−1, 1] are considered. Recall that the
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functionf : [−1, 1] → R is called 5–convexif

(1.1) D(x1, . . . , x7; f) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
x1 . . . x7

x2
1 . . . x2

7

x3
1 . . . x3

7

x4
1 . . . x4

7

x5
1 . . . x5

7

f(x1) . . . f(x7)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0

for anyx1, . . . , x7 such that−1 ≤ x1 < · · · < x7 ≤ 1. More detailed introductory
notes concerning higher–order convexity were given in [6]. For a wide treatment of
this topic we refer the reader to Popoviciu’s thesis [3], the very well known books [2]
and [5] and to Hopf’s thesis [1], where it appeared (without the name) for the first
time.
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2. Results

Let us start with four technical results.

Lemma 2.1. If f : [−1, 1] → R is an even 5–convex function then

(w2 − u2)(v2 − u2)(w2 − v2)f(0) + u2w2(w2 − u2)f(v)

≤ w2v2(w2 − v2)f(u) + v2u2(v2 − u2)f(w)

for any0 < u < v < w ≤ 1.

Proof. Fix 0 < u < v < w ≤ 1. By 5–convexity,D(−w,−v,−u, 0, u, v, w; f) ≥ 0.
Expand this determinant by the last row and perform elementary computations on
Vandermonde determinants.

Lemma 2.2. If f : [−1, 1] → R is 5–convex then so is the function[−1, 1] 3 x 7→
f(−x).

Proof. This result is well known from the theory of convex functions of higher order
and it holds in fact for convex functions of any odd order (cf. e.g. [3]). However, the
proof is easy if we use the condition (1.1) and elementary properties of determinants.

By (1.1) it is obvious that a sum of two 5–convex functions is also 5–convex.
Then we have the following.

Lemma 2.3. If f : [−1, 1] → R is 5–convex then so is its even part, i.e. the function

fe(x) =
f(x) + f(−x)

2
, x ∈ [−1, 1].

Record also the trivial

http://jipam.vu.edu.au
mailto:swasowicz@ath.bielsko.pl
http://jipam.vu.edu.au


Quadrature Rules, Inequalities
and Error Bounds

Szymon Wąsowicz
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Lemma 2.4. If T ∈ {C,G2,G3,L4,L5,S} thenT (f) = T (fe) for anyf : [−1, 1] →
R.

Now we establish all possible inequalities between the considered operators in
the class of 5–convex functions.

Theorem 2.5. If f : [−1, 1] → R is 5–convex thenG3(f) ≤ L5(f) ≤ L4(f). In
the class of 5–convex functions the operatorsG2, C, S are not comparable both with
each other and withG3, L4, L5.

Proof. By Lemmas2.3 and2.4, it is enough to prove the desired inequalities for
even 5–convex functions. Using Lemma2.1for u =

√
21
7

, v =
√

15
5

, w = 1 we obtain

G3(f) ≤ L5(f). The inequalityL5(f) ≤ L4(f) we get foru =
√

5
5

, v =
√

21
7

, w = 1.
Now let f = exp, g = 1 − cos. Both functions are 5–convex on[−1, 1] since

their derivatives of the sixth order are nonnegative on this interval (cf. [2, 3, 5], for a
quick reference cf. also [7]). See the table below.

Operator G2 C S G3 L5 L4

f 1.17135 1.17373 1.18103 1.17517 1.17520 1.17524
g 0.16209 0.15984 0.15323 0.15850 0.15853 0.15857

Then

G2(f) < C(f) < G3(f) < L5(f) < L4(f) < S(f),

S(g) < G3(g) < L5(g) < L4(g) < C(g) < G2(g),

which proves the second part of the statement.

Remark1. By the example given in the above proof one could expect that the in-
equality

min{G2, C,S} ≤ G3 ≤ L5 ≤ L4 ≤ max{G2, C,S}
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holds in the class of 5–convex functions. However this is not the case since for a
5–convex functionh(x) = x6 − 3

2
x4 + 1

6
we have

G2(h) =
1

27
, C(h) = S(h) = 0, G3(h) = − 1

75
, L5(h) =

1

105
, L4(h) =

1

25
,

so
G3(h) < C(h) = S(h) < L5(h) < G2(h) < L4(h).

Let us comment on the results of Theorem2.5. The set{C,G2,G3,L4,L5,S} has
15 two–element subsets. That is why maximally 15 inequalities may be established
between the operators considered. For 3–convex functions we have proved in [6] that
12 inequalities hold true and only 3 fail. We can see that for 5–convex functions the
situation is quite different: only 3 inequalities are true, the rest are false. Moreover,
the operatorsG2, C, S comparable for 3–convex functions are not comparable for
5–convex ones, while the operatorsG3, L4, L5 comparable for 5–convex functions
are not comparable for 3–convex ones.

The classical error bound of the quadratureL5 depends on the derivative of eighth
order (cf. [4, 10]). Similarly to the results of the papers [6, 7] we give an error bound
of this quadrature for less regular functions: in this paper for six–times differentiable
functions. LetI(f) := 1

2

∫ 1

−1
f(x)dx. Forf ∈ C6 ([−1, 1]) denote

M(f) := sup
{∣∣f (6)(x)

∣∣ : x ∈ [−1, 1]
}

.

Corollary 2.6. If f ∈ C6 ([−1, 1]) then|L5(f)− I(f)| ≤ M(f)
15750

.

Proof. It is well known (cf. [4, 9]) that if f ∈ C6 ([−1, 1]) , thenI(f) = G3(f) +
f (6)(ξ)
31500

for someξ ∈ (−1, 1). Assume for a while thatf is 5–convex. Hence by
Theorem2.5

I(f) ≤ L5(f) +
f (6)(ξ)

31500
.
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Thus we arrive at

(2.1) I(f)− L5(f) ≤ M(f)

31500
.

Now let f ∈ C6 ([−1, 1]) be an arbitrary function and letg(x) = M(f)x6

720
. Then∣∣f (6)

∣∣ ≤ g(6) on [−1, 1], whence(g − f)(6) ≥ 0 and (g + f)(6) ≥ 0 on [−1, 1].
This implies thatg − f andg + f are 5–convex on[−1, 1]. It is easy to see that
M(g − f) ≤ 2M(f) andM(g + f) ≤ 2M(f). Then we infer by 5–convexity
and (2.1),

I(g − f)− L5(g − f) ≤ M(g − f)

31500
≤ M(f)

15750
and

I(g + f)− L5(g + f) ≤ M(g + f)

31500
≤ M(f)

15750
.

It is easy to see thatI(g) = L5(g). Since the operatorsI, L5 are linear, then

−I(f) + L5(f) ≤ M(f)

15750
and I(f)− L5(f) ≤ M(f)

15750
,

which concludes the proof.
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