SHARP INTEGRAL INEQUALITIES FOR PRODUCTS
OF CONVEX FUNCTIONS

Sharp Integral Inequalities

VILL O CSISZAR AND TAMAS F. MORI Villg Csiszar and Tamas F. Mori
Department of Probability Theory and Statistics vol. 8, iss. 4, art. 94, 2007

Lorand E&tvos University
Pazmany P. s. 1/C, H-1117 Budapest, Hungary

EMail: {villo,moritama3@Iudens.elte.hu Title Page
Contents
Received: 07 June, 2007 44 44
Accepted: 28 October, 2007 < >
Communicated by: I. Gavrea
Page 1 of 17
2000 AMS Sub. Class.: 26D15.
Key words: Convexity, Chebyshev's integral inequality, Gruss inequality, Andersson Go Back
inequality.
Full Screen
Abstract: In this note we present exact lower and upper bounds for the integral of a
product of nonnegative convex resp. concave functions in terms of the prod- Close

uct of individual integrals. They are found by adapting the convexity method

to the case of product sets. journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au
mailto:villo@ludens.elte.hu
mailto:moritamas@ludens.elte.hu
mailto:Ioan.Gavrea@math.utcluj.ro

Contents

1

2

Introduction

The Convexity Method on Products of Convex Sets
Exact Bounds in the Case of Convex Functions
Exact Bounds in the Case of Concave Functions

Multiple Products

12

14

Title Page

Contents

N
PG

:
:

Page 2 of 17
Go Back
Full Screen

Close



http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

1. Introduction

Let f and g be integrable functions defined on the interfalb], such thatfg is
integrable. Let us introduce the quantities

1 b 1 b
(1.1) b—a/a b—a/a
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b—a

B=DB(fg)=

It is well known thatA < B if both f andg are either increasing or decreasing.
On the other hand, whefiandg possess opposite monotonicity propertiésy B
holds. These are sometimes referred to as Chebyshev inequalities.

When f and g are supposed to be bounded, the classical Gruss inequality [ Contents
provides an upper bound for the differenge- A. « b

For convex and increasing functions wijtfu) = g(a) = 0 Andersson]] showed
that Chebyshev’s inequality can be improved by a constant factor, naB]gly‘g A. < 4
The requirement of convexity can be somewhat relaxed, see &ink [

In the case where botfiandg are nonnegative convex functions, Pachpaiie [
presented (and Cristescg] [corrected) linear upper bounds for certain triple inte- Go Back
gralsin terms ofb — a)~' [? f(z)g(x) dz and[f(a) + £(b)]lg(a) + g(b)].

The aim of the present note is to analyse the exact connection between the quan-
tities A and B in the case where bothandg are nonnegative and either convex or Close
concave functions. We will compute exact upper and lower bounds by adapting the
convexity method to our problem. That method is often applied to characterize the = journal of inequalities
range of several integral-type functionals when the domain is a convex set of func- ~ in pure and applied
tions. A detailed description of the method and some examples of applications can =~ mMathematics
be found in B] or [7]. issn: 1443-575k
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Notice thata = 0, b = 1 can be assumed without loss of generality. Indeed, let

us introducef (t) = f(a(1 —t) + bt) andg(t) = g(a(l —t) +bt),0 <t < 1. Then
f andg are convex (concave) functions, provided tliandg are, and

[ rwa s [awae= [ foa- [

b 1
bia / f(z)g(x) dv = /0 F)G(t) dt.

The paper is organized as follows.

Section2 contains a description of a variant of the convexity method adapted to
the case of product sets.

In Section3 unimprovable upper and lower bounds are derivedBaon terms
of A and[f(a) + f(b)][g(a) + g(b)], in the case of nonnegative convex continuous
functionsf andg, see Corollans.3.

In Section4 the range ofB is determined as a function of, for nonnegative
concave functiong andg.

In the last section we briefly deal with the more general case of multiple products.
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2. The Convexity Method on Products of Convex Sets
Let (X, B, \) be a measure space afd closed convex set ofintegrable functions
f X — R. SupposeH = {hy : 6§ € O} C F is a generating subset, given

in parametrized form, in the sense that for evérg F one can find a probability
measure: defined on the Borel sets of the parameter sgasech that

@1) @) = [ hota) u(ap)

that is, everyf € F has a representation as a mixture of elements.itOf course,
the functiond — hy(z) is supposed to be measurable, fea.e.z € X'.) Then all
integrals of the formZ.1) belong toF, and the sef [, fd\: f € F} is equal to

the closed convex hull of the séf,, hydX : § € O}.
Suppose we are given a pair of functions in the form

f(z) = / ho(z) ju(d9),  g(x) = / ho(z) v(d6).

Then by interchanging the order of integration one can see that

B = [ foin= [ ( [ oty atao) [ netoyvtan) ) agae)
= [ (] ottt 760) )ty vtar
— [ [ Bty niay i),
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and similarly,

A(f,g>=/fdA/gdA=//@he<x>u (@) [ [ ooy vtar) Ao
/ / < / Ada) /X hT(a:))\(dx)> 1(d6) v(dr)
_ /@ /@ Alho, hy) (d0) v(dr).

(The order of integration can be interchanged by Fubini’s theorem, under suitable
conditions; for instance, when all functions’ihare nonnegative.)
Thus, in this case we can say that the planar set

S(F)={(A(f,9), B(f.9)) : f.g € F}
is still a subset of the closed convex hull of
S(H) = {(A(hg,hT), B(he,hT)) 10,7 € @},

but in general equality does not necessarily hold. Howevsi(i) entirely contains
the boundary of its convex hull, we can conclude that

(2.2) min/max{B(f,g): f,g € F, A(f,g9) = A}
= min /max{B(hg, h,) : 0,7 € O, A(hg,h,;) = A}.
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3. Exact Bounds in the Case of Convex Functions

When f and g are nonnegative and convex, we can suppose that+ f(b) =

g(a) + g(b) = 1, because they appear as multiplicative factors in the integrals. If

there is an upper or lower bound of the form

B(f,9) < (=) F(A(f.9))

in this particular case, it can be extended to the general case as

A(f,9) >
[f(a) + f(D)] [g(a) + g(b)] )

(3.1) B(f,g) < (2) [f(a) + F®)] [g(a) + g()] F (

So let
(3.2) F={f:]0,1 — R: fisconvex, continuous;, > 0, f(0)+ f(1)=1}.
The following lemma describes the extremal pointsFof
Lemma 3.1 ([7, Theorem 2.1]). The set of extremal points &f is equal to
H:{hg, k920<6§1},
+ +
wherehy(z) = (1 - g) , andky(z) = he(1 — 2) = (1 - 1%’”) .

We are going to find the sét(F) by using the method described in Section
Theorem 3.2.

S(F) = {(A,B): 0< A< i maX(O, M—_l)g) <B<

24A vA }

Wl N
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Proof. By (2.2), the first thing we do is characteriZ§ ). It is the union of the
following four sets.

S = {(A(hg,hT), B(hg,h7>) : 9,7’ € @},
Sio = {(A(hg, k), B(ho,k;)) : 0,7 € O},
Sor = {(A(kg, hr), B(ke,h,)) : 0,7 € O},

SQQ = {(A(k@,/{?.r), B(kg,kT)) : 9,7’ € @} .

Since A and B are symmetric functions$;, and S,; are obviously identical. In
addition, S;; = Ss9, because transformatiagn— 1 — ¢ does not alter the integrals
but it mapsh, into ky. Thus, it suffices to deal with;; and.S;s.

Let us start withS;;. By symmetry we can assume thtat< 7. Then clearly,
A(hg,hy) = %, and B(hg, h,) = @9 Let us fix A(hg, h,) = A, thend <

67
2V/A < 7,andB(hg, h,) = 224-7) is maximal ifd = 7 = 2\/A, with a maximum
equal toZv/A.

. i 0 ) 3 .
Turning to S}, we find thatA(hg, k,) = IT again, andB(hg, k) = “20 it

0 +7 > 1, and0 otherwise. Hence is minimal if, and only ifd + 7 is minimal; that

is,§ = 7 = 2¢/A. The minimum is equal té‘“ng if A > 1/16, and0 otherwise.

Finally, by Chebyshev’s inequality cited in the Introduction we have that

B(hava) < A(h97k7') = A<h97h7) < B<h97h7)7

thus the upper boundary 6f; U Si is that ofS;;, and the lower boundary is that of
S12 (see Figurel after Remarkl).

If we show that the lower boundary ¢f(H) is convex and the upper one is
concave, £.2) will imply that S(F) has the same lower and upper boundaries. It
is obvious for the upper boundary, and it follows for the lower boundary by the
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positivity of the second derivative

B 2 sy 3 g L gea (4VA-1)(2—VA—-44)

dA? 3 8 12 24 A3

for1/16 < A <1/4.
Finally, we show that every point of the convex hull 8(*) is an element of

S(F). Let0 < A < 1/4, andB(hy, kg) < B < B(hg, hg), whered = 21/A. Then
B = aB(hg, kg) + (1 — a)B(hg, hy) for somea, 0 < o < 1. Suppose first that
a > 1/2 and look forf andg in the form f = phy + (1 — p)ke, g = (1 — p)hg + pke,
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with a suitablep € (0, 1). By the bilinearity of B we have that

B(f,9) = p(1 — p)B(hs, hg) + p*B(he, k) + (1 — p)* B(kg, he) + (1 — p)pB(ks, ko) Title Page
= 2p(1 — p)B(hg, ha) + [p* + (1 — p)*| B(he, ke), Contents
thus we obtain the equatiap(1—p) = 1—a. Itis satisfied by = 1 (1+£v2a —1). <« 44
Next, suppose that < 1/2. Thistime letf = g = phy + (1 — p)kqs. Then < >
B(f7 g) = pQB(h97 h@) + p(l - p>B<h97 k@) + (]' - p)pB(k97 h@) + (1 - p)QB(kQa k@) Page 9 of 17
= 2p(1 — p)B(hg, ko) + [p* + (1 — p)*| B(ho, hy), o Back
therefore2p(1 — p) = «, and the solution ip = 3 (1 £ /1 — 2«). O Full Screen
Remarkl. Linear upper and lower bounds can be obtained by drawing the tangent Close

lines to the upper resp. lower boundaries at the pdihts, 1/3), resp.(1/4, 1/6).

They are as follows. journal of inequalities
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i,
116 18 18]

Figure 1:5(F) with the linear bounds of3(3).

Remark2. Based solely o, that is, without involving another quantity liKé¢(a)+
()] lg(a)+ g(b)], we cannot expect any useful bound for Indeed, letA be fixed,
and f = 4Ahy/6 with a smalld. Then choosing; = hy givesA(f,g) = A and
B(f,g) = 3A/0, thusB can be arbitrarily large. On the other hand, wjtk- ko we
haveB = 0.

At the end of this section we repeat our main result in the original setting. Theo-
rem 3.2 combined with 8.1) yields the following exact bounds. With the notations
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of (1.1) andC = [f(a) + f(b)] [g(a) + g(b)] we have
Corollary 3.3.

1. Upper bound.
B < S VAC

2. Lower bound.

If A < /16, there is no lower estimate better than the trivial aie> 0.
On the other hand, ifA > C'/16, then

VO (VA VD)
- 24A '

If one prefers linear lower and upper bounds of Cristescu s®latthe expense
of accuracy, §.3) transforms into

4 1 2 1
3.4 —A-—-C<B<-A+-C.
(3:4) 3 60_ -3 +60
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4. Exact Bounds in the Case of Concave Functions

Let f andg be nonnegative concave functions. We shall suppose that

b—a/f b_a/bg(l’)dle,

We fix A = 1, and by computing the range &f we obtain exact lower and upper
bounds for the ratid3( f, g) /A(f, g) in the general case.
Thus, the set of functions in consideration is
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]—“-{f:[O,l]—>R: fisconcave,fzo,/Olf(x)dx_l}.

Title Page

The extremal points af are the triangle functions. Contents
Lemma 4.1 (3, Example 5 in Section 1]). The set of extremal points &7 is equal <« b

to

H={hg:0<0<1}, < >
wherehy(z) = 2(1 — z), hi(x) = 2z, and Page 12 of 17

23, if 0<x<@, Go Back

holx) =9 ... .

215, if 0<x<1, Full Screen
for0 <6< 1. Close
Theorem 4.2.{B(f,g) : f,g € F} = [2/3, 4/3]. journal of inequalities
Proof. By the reasoning of Sectichwe can see that in pure and applied

mathematics
(4.1) {B(f,9): f.9 € F} C [min B(hg, hy), max B(hy, )] issn: Lau3-5756
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While computing the right-hand side we can assumedhatr. Thus,

T4(1 — 2)x L4l —2)?
/’” df”‘/ i+ [ gt [ algn ey
407 6(T —0%) —A(TP —6°) 41 —7)?
3 T 3(1—0)r 3(1—0)
- 4T — 2&2 — 27’2 Sharp Integral Inequalities
31 -0)r Vill§ Csiszér and Tamas F. Mri

.. . . . ) i . vol. 8, iss. 4, art. 94, 2007
This is a decreasing function offor every fixedd, hence the maximum is attained

whenr = 6, and the minimum, when = 1. In the former casé = 4/3, indepen-

dently of6. In the latter casé@ = 2(1 + 6), which is minimal for§ = 0. Title Page
On the other hand, since the rangeiif, ), ast runs from 0 to 1, is equal to e
the closed intervak/3, 4/3|, we get that4.1) holds with equality. O
. . , << >
Corollary 4.3. Let f andg be nonnegative concave functions defineob|. Then
< >
2. 1 bf()d ! ’ (x)d Page 13 of 17
3b—aaxxb—aagxx ’
1 b 4 1 b 1 b Go Back
de < — - dzx - dzx.
“b—al, f(@)g(w) dw < 3 b—al, J(w) d b—a/a 9la) dx Full Screen
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5. Multiple Products

A natural generalization of the problem is the case of multiple products, that is,

wherefi, ..., f, all belong to some clasg, and

A:ilj/olfi(x)da:, B:/Oliljfi(x)dx.

The aim is to find lower and upper estimates fom terms ofA.

The reasoning of Sectiohcan easily be extended to this case. Convex lower and
concave upper estimates derived in the particular case where all functions are taken

from a generating sé{ C F remain valid even if the functions can come frofn
The easiest to repeat among the results of Secti@gl4 is the upper estimate

for convex functions. LefF be the set defined irB(2), andH the set of extremals

characterized by Lemma 1. Then we have the following sharp upper bound.

Theorem 5.1.

2
(5.1) B < Al

“n+1

n

(Compare this with Andersson’s restitt >
ing convex functions withf (0) = 0.)

A, which is valid for increas-

n +

Proof. Let us divideS(H) inton+1 parts,S(H) = U},S;, according to the number
of functionsh, among then arguments (the other functions are of the fokg.
Clearly, S; = S,,_;. When dealing withmax B for fixed A, we may focus orby,
becausel does not change if every, is substituted with the correspondihg while
B increases by Chebyshev’s inequality. Thus, let our convex functiorfs beh,,,
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1<i<n,with0 <6, <..-<6, <1, and suppose that

i=1

is fixed. Maximize

6 n T
B - / H (1 o 9_> dl‘ Sharp Integral Inequalities
0 . )

Vill6 Csiszar and Tamas F. M6ri

We are going to show that the the integrand is pointwise maxintal# - -- = 6,,. vol. 8, iss. 4, art. 94, 2007
Then by increasing, we also increase the domain of integration, hence
9 q
n 2] Title Page
masz/(l—z) dr = , ’
0 0 n+1 Contents
Letz; = —log#b;, then(z; + - -+ + 2,,) /n = — log . We have to show that
< 4
- T T\"™
H(l——)g(l——) ) Page 15 of 17
i=1 0 0
Go Back
or equivalently,
Full Screen
1 & z21+ -+ 2,
5.2 — i) < (—)7 Close
(5.2) - Z plz) <o ——
_ _ o journal of inequalities
wherep(t) = 1 — x e'. Herey is concave, for its second derivative in pure and applied
' mathematics
o' (t) = — re < 0. issn: 1443-5756
p(t)?
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Thus, €.2) is implied by the Jensen inequality.
Now the proof can be completed by noting that the upper bouné.ii) (s a
concave function ofl. O

Theorems.1limmediately implies the following sharp inequality.

Corollary 5.2. Let f1,..., f, be nonnegative convex continuous functions defined
on the intervala, b]. Then

/abiljfi(a:) dx < n%l (]j /abfi(x) dx>

Remark3. The continuity of the functiong; can be left out from the set of condi-
tions. Being convex, they are continuous on the open intérval), but can have
jumps atz or b. If we redefine them at the endpoints so that they become continuous,
the integrals do not change, but the sufyig) + f;(b) decrease. Therefore the upper
bound obtained for continuous functions remains valid in the general case.

1
n

3=

(H [fia) +fi(b)]>

i=1
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