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ABSTRACT. A generalization of some recent sharp inequalities by N. Ujević is established.
Applications in numerical integration are also considered.
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1. I NTRODUCTION

In [1] we can find a generalization of the pre-Grüss inequality as:

Lemma 1.1. Letf, g, Ψ ∈ L2(a, b). Then we have

(1.1) SΨ(f, g)2 ≤ SΨ(f, f)SΨ(g, g),

where

(1.2) SΨ(f, g) =

∫ b

a

f(t)g(t) dt− 1

b− a

∫ b

a

f(t) dt

∫ b

a

g(t) dt

− 1

‖Ψ‖2
2

∫ b

a

f(t)Ψ(t) dt

∫ b

a

g(t)Ψ(t) dt

andΨ satisfies

(1.3)
∫ b

a

Ψ(t) dt = 0,

while as usual,‖ · ‖2 is the norm inL2(a, b). i.e.,

‖Ψ‖2
2 =

∫ b

a

Ψ2(t) dt.

Using the above inequality, Ujević in [1] obtained the following interesting results:
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Theorem 1.2. Let f : [a, b] → R be an absolutely continuous function whose derivativef ′ ∈
L2(a, b). Then

(1.4)

∣∣∣∣f (
a + b

2

)
(b− a)−

∫ b

a

f(t) dt

∣∣∣∣ ≤ (b− a)
3
2

2
√

3
C1

where

(1.5) C1 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [Q(f ; a, b)]2

} 1
2

and

(1.6) Q(f ; a, b) =
2√

b− a

[
f(a) + f

(
a + b

2

)
+ f(b)− 3

b− a

∫ b

a

f(t) dt

]
.

Theorem 1.3.Let the assumptions of Theorem 1.2 hold. Then

(1.7)

∣∣∣∣(f(a) + f(b)

2

)
(b− a)−

∫ b

a

f(t) dt

∣∣∣∣ ≤ (b− a)
3
2

2
√

3
C2,

where

(1.8) C2 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [P (f ; a, b)]2

} 1
2

and

(1.9) P (f ; a, b) =
1√

b− a

[
f(a) + 4f

(
a + b

2

)
+ f(b)− 6

b− a

∫ b

a

f(t) dt

]
.

Theorem 1.4.Let the assumptions of Theorem 1.2 hold. Then

(1.10)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ (b− a)
3
2

4
√

3
C3,

where

C3 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− 1

b− a

(
f(a)− 2f

(
a + b

2

)
+ f(b)

)2
} 1

2

(1.11)

=

{
‖f ′‖2

2 −
2

b− a

[
f

(
a + b

2

)
− f(a)

]2

− 2

b− a

[
f(b)− f

(
a + b

2

)]2
} 1

2

.

In [2], Ujević further proved that the above all inequalities are sharp.
In this paper, we will derive a new sharp inequality with a parameter for absolutely continuous

functions with derivatives belonging toL2(a, b), which not only provides a unified treatment of
all the above sharp inequalities, but also gives some other interesting results as special cases.
Applications in numerical integration are also considered.

2. M AIN RESULTS

Theorem 2.1.Let the assumptions of Theorem 1.2 hold. Then for anyθ ∈ [0, 1] we have

(2.1)

∣∣∣∣(b− a)

[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2

]
−

∫ b

a

f(t) dt

∣∣∣∣
≤ (b− a)

3
2

2
√

3

√
1− 3θ + 3θ2C(θ),
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where

(2.2) C(θ) =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [N(f ; a, b; θ)]2

} 1
2

and

(2.3) N(f ; a, b; θ) =
2√

(1− 3θ + 3θ2)(b− a)

×
∣∣∣∣(1− 3θ)f

(
a + b

2

)
+ (2− 3θ)

f(a) + f(b)

2
− 3− 6θ

b− a

∫ b

a

f(t) dt

∣∣∣∣ .

The inequality (2.1) with (2.2) and (2.3) is sharp in the sense that the constant1
2
√

3
cannot be

replaced by a smaller one.

Proof. Let us define the functions

p(t) =

{
t− a, t ∈

[
a, a+b

2

]
,

t− b, t ∈
(

a+b
2

, b
]
,

and

Ψ(t) =

{
t−

(
a + θ b−a

2

)
, t ∈

[
a, a+b

2

]
,

t−
(
b− θ b−a

2

)
, t ∈

(
a+b
2

, b
]
,

whereθ ∈ [0, 1].
It is not difficult to verify that

(2.4)
∫ b

a

p(t) dt =

∫ b

a

Ψ(t) dt = 0.

i.e.,Ψ satisfies the condition (1.3).
We also have

(2.5) ‖p‖2
2 =

∫ b

a

p2(t) dt =
(b− a)3

12

and

(2.6) ‖Ψ‖2
2 =

∫ b

a

Ψ2(t) dt =
(b− a)3

12
(1− 3θ + 3θ2).

We now calculate∫ b

a

p(t)Ψ(t) dt(2.7)

=

∫ a+b
2

a

(t− a)

(
t− a− θ

b− a

2

)
dt +

∫ b

a+b
2

(t− b)

(
t− b + θ

b− a

2

)
dt

=

(
1

12
− θ

8

)
(b− a)3.

Integrating by parts, we have

(2.8)
∫ b

a

f ′(t)p(t) dt = f

(
a + b

2

)
(b− a)−

∫ b

a

f(t) dt
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and

∫ b

a

f ′(t)Ψ(t) dt(2.9)

=

∫ a+b
2

a

(
t− a− θ

b− a

2

)
f ′(t) dt +

∫ b

a+b
2

(
t− b + θ

b− a

2

)
f ′(t) dt

= (b− a)

[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2

]
−

∫ b

a

f(t) dt.

From (2.4), (2.6) – (2.9) and (1.2) we get

SΨ(f ′, p)(2.10)

=

∫ b

a

f ′(t)p(t) dt− 1

b− a

∫ b

a

f ′(t) dt

∫ b

a

p(t) dt

− 1

‖Ψ‖2
2

∫ b

a

f ′(t)Ψ(t) dt

∫ b

a

p(t)Ψ(t) dt

= f

(
a + b

2

)
(b− a)−

∫ b

a

f(t) dt− 2− 3θ

2(1− 3θ + 3θ2)

×
{

(b− a)

[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2

]
−

∫ b

a

f(t) dt

}
=

θ

2(1− 3θ + 3θ2)

{
(b− a)

[
(1− 3θ)f

(
a + b

2

)
+ (2− 3θ)

f(a) + f(b)

2

]
− (3− 6θ)

∫ b

a

f(t) dt

}
.

From (2.4) – (2.7) and (1.2) we also have

SΨ(p, p) = ‖p‖2
2 −

1

b− a

(∫ b

a

p(t) dt

)2

− 1

‖Ψ‖2
2

(∫ b

a

p(t)Ψ(t) dt

)2

(2.11)

=
θ2(b− a)3

16(1− 3θ + 3θ2)

and

SΨ(f ′, f ′) = ‖f ′‖2
2 −

1

b− a

(∫ b

a

f ′(t) dt

)2

− 1

‖Ψ‖2
2

(∫ b

a

f ′(t)Ψ(t) dt

)2

(2.12)

= ‖f ′‖2
2 −

[f(b)− f(a)]2

b− a
− 12

(1− 3θ + 3θ2)(b− a)

×
[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

]2
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Thus from (2.10) – (2.12) and (1.1) we can easily get

(2.13)

∣∣∣∣(b− a)

[
(1− 3θ)f

(
a + b

2

)
+ (2− 3θ)

f(a) + f(b)

2

]
− (3− 6θ)

∫ b

a

f(t) dt

∣∣∣∣2
≤ (1− 3θ + 3θ2)(b− a)3

4

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− 12

(1− 3θ + 3θ2)(b− a)

×
[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

]2
}

.

It is equivalent to

(2.14) 3(b− a)2

[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

]2

≤ 1− 3θ + 3θ2

4
(b− a)3

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− 4

(1− 3θ + 3θ2)(b− a)

×
∣∣∣∣(1− 3θ)f

(
a + b

2

)
+ (2− 3θ)

f(a) + f(b)

2
− 3− 6θ

b− a

∫ b

a

f(t) dt

∣∣∣∣2
}

.

Consequently, inequality (2.1) with (2.2) and (2.3) follow from (2.14).
In order to prove that the inequality (2.1) with (2.2) and (2.3) is sharp for anyθ ∈ [0, 1], we

define the function

(2.15) f(t) =


1
2
t2 − θ

2
t, t ∈

[
0, 1

2

]
,

1
2
t2 −

(
1− θ

2

)
t + 1−θ

2
, t ∈

(
1
2
, 1

]
The function given in (2.15) is absolutely continuous since it is a continuous piecewise polyno-
mial function.

We now suppose that (2.1) holds with a constantC > 0 as

(2.16)

∣∣∣∣(b− a)

[
(1− θ)f

(
a + b

2

)
+ θ

f(a) + f(b)

2

]
−

∫ b

a

f(t) dt

∣∣∣∣
≤ C(b− a)

3
2

√
1− 3θ + 3θ2C(θ),

whereC(θ) is as defined in (2.2) and (2.3).
Choosinga = 0, b = 1, andf defined in (2.15), we get∫ 1

0

f(t) dt =
1

24
− θ

8
,

f(0) = f(1) = 0, f

(
1

2

)
=

1

8
− θ

4
,∫ 1

0

(f ′(t))2 dt =
1− 3θ + 3θ2

12

and
N(f ; a, b; θ) = 0

such that the left-hand side becomes

(2.17) L.H.S.(2.16) =
1− 3θ + 3θ2

12
.
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We also find that the right-hand side is

(2.18) R.H.S.(2.16) =
C(1− 3θ + 3θ2)

2
√

3
.

From (2.16) – (2.18), we find thatC ≥ 1
2
√

3
, proving that the constant1

2
√

3
is the best possible

in (2.1). �

Remark 2.2. If we takeθ = 0, θ = 1 andθ = 1
2

in (2.1) with (2.2) and (2.3), we recapture
the sharp midpoint type inequality (1.4) with (1.5) and (1.6), the sharp trapezoid type inequality
(1.7) with (1.8) and (1.9) and the sharp averaged midpoint-trapezoid type inequality (1.10) with
(1.11), respectively. Thus Theorem 2.1 may be regarded as a generalization of Theorem 1.2,
Theorem 1.3 and Theorem 1.4.

Remark 2.3. If we takeθ = 1
3
, we get a sharp Simpson type inequality as

(2.19)

∣∣∣∣b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
−

∫ b

a

f(t) dt

∣∣∣∣ ≤ (b− a)
3
2

6
C4,

where

(2.20) C4 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [R(f ; a, b)]2

} 1
2

and

(2.21) R(f ; a, b) = N

(
f ; a, b;

1

3

)
=

2
√

3√
b− a

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ .

3. APPLICATIONS IN NUMERICAL I NTEGRATION

We restrict further considerations to the averaged midpoint-trapezoid quadrature rule. We
also emphasize that similar considerations may be made for all the quadrature rules considered
in the previous section.

Theorem 3.1. Let π = {x0 = a < x1 < · · · < xn = b} be a given subdivision of the interval
[a, b] such thathi = xi+1 − xi = h = b−a

n
and let the assumptions of Theorem 1.4 hold. Then

we have

(3.1)

∣∣∣∣∣
∫ b

a

f(t) dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ (b− a)

3
2

4
√

3n
δn(f) ≤ (b− a)

3
2

4
√

3n
λn(f).

where

(3.2) δn(f) =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a

− 1

b− a

[
f(x0) + f(xn) + 2

n−1∑
i=1

f(xi)− 2
n−1∑
i=0

f

(
xi + xi+1

2

)]2


1
2

and

(3.3) λn(f) =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a

} 1
2

.
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Proof. From (1.10) and (1.11) in Theorem 1.4 we obtain

(3.4)

∣∣∣∣h4
[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]
−

∫ xi+1

xi

f(t) dt

∣∣∣∣
≤ h

3
2

4
√

3

{∫ xi+i

xi

(f ′(t))2 dt− 1

h
[f(xi+1)− f(xi)]

2

− 1

h

[
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

]2
} 1

2

.

By summing (3.4) overi from 0 to n− 1 and using the generalized triangle inequality, we get

(3.5)

∣∣∣∣∣
∫ b

a

f(t) dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ h

3
2

4
√

3

n−1∑
i=0

{∫ xi+i

xi

(f ′(t))2 dt− 1

h
[f(xi+1)− f(xi)]

2

− 1

h

[
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

]2
} 1

2

.

By using the Cauchy inequality twice, we can easily obtain
n−1∑
i=0

{∫ xi+1

xi

(f ′(t))2 dt− 1

h
[f(xi+1)− f(xi)]

2(3.6)

−1

h

[
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

]2
} 1

2

≤
√

n

{
‖f ′‖2

2 −
n

b− a

n−1∑
i=0

[f(xi+1)− f(xi)]
2

− n

b− a

n−1∑
i=0

[
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

]2
} 1

2

≤
√

n

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a

− 1

b− a

[
f(x0) + f(xn) + 2

n−1∑
i=1

f(xi)− 2
n−1∑
i=0

f

(
xi + xi+1

2

)]2


1
2

.

Consequently, the inequality (3.1) with (3.2) and (3.3) follow from (3.5) and (3.6). �

Remark 3.2. It should be noticed that Theorem 3.1 seems to be a revision and an improvement
of the corresponding result in [2, Theorem 6.1].
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