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Abstract

A generalization of some recent sharp inequalities by N. Ujevi¢ is established.
Applications in numerical integration are also considered.
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In [1] we can find a generalization of the pre-Griss inequality as:

Lemma1l.1. Letf, g,V € Ly(a,b). Then we have

where
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Using the above inequality, Ujevin [1] obtained the following interesting

results: 3. Ineq. Pure and Appl. Math. 7(5) Art. 172, 2006
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Theorem 1.2.Let f : [a,b] — R be an absolutely continuous function whose
derivativef’ € Ly(a,b). Then

(1.4) ‘f <a+b> / £t dt' )50
where
b) — f(a)]? :
as) o= {irn- Y021 g p)
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Theorem 1.4. Let the assumptions of Theorédn2 hold. Then

fla) +2f (%52) + () /b (b—a)}
1.10 b—a)— t)dt| < Cs,
()‘ y (b-0)= | O] <= 7Cy
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In [2], Ujevic further proved that the above all inequalities are sharp. Go Back

In this paper, we will derive a new sharp inequality with a parameter for

. . . o , . Close
absolutely continuous functions with derivatives belongind.1¢u, b), which _

not only provides a unified treatment of all the above sharp inequalities, but also Quit
gives some other interesting results as special cases. Applications in numerical Page 5 of 16

integration are also considered.
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Theorem 2.1. Let the assumptions of Theorén2 hold. Then for any < [0, 1]
we have

2.1) ‘(b—a) [(1—9)]” (“;b> +ef(“);f(b)] —/abf(t)dt'
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and

wheref € [0, 1].
It is not difficult to verify that

(2.4) /abp(t) dt — /ab\p(w dt = 0.

i.e., ¥ satisfies the conditiori(3).
We also have

b _ o)

25) ol = [ #2e)de = S22

and

(2.6) 0|2 = /ab w2ty at = & 12‘1)3(1 — 30 + 362).

We now calculate
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Integrating by parts, we have

(2.8) / £t (“b) (b—a) —/abf(t) dt
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From 2.4) — (2.7) and (L.2) we also have

2
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Thus from ¢.10 — (2.12 and (L.1) we can easily get
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It is equivalent to
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Consequently, inequality2(1) with (2.2) and .3) follow from (2.14).
In order to prove that the inequalitg.(l) with (2.2) and @.93) is sharp for any Go Back
6 € [0, 1], we define the function
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We now suppose tha® (1) holds with a constant’ > 0 as

(2.16) ’(b—a) [(1—9)]” (“;b) +9M] —/bm) dt‘
< C(b—aﬁmcw),

whereC'(0) is as defined in4.2) and @.3).

Choosinge = 0, b = 1, andf defined in .15, we get

! 10
| =55

1 1 0
== 1(3)=5-]
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/ 2 o
[ i = =
and
N(f;a,b;0) =0
such that the left-hand side becomes
. 2
2.17) L.H.S.(2.16) = %

We also find that the right-hand side is

(2.18) R.H.5.(2.16) =

C(1— 30 + 362)

2V/3
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From (2.16) — (2.18), we find thatC' > ﬁg proving that the consta@% is the
best possible in4.1). ]

Remark 1. If we taked = 0, = 1 andd =  in (2.1) with (2.2) and @.93),
we recapture the sharp midpoint type inequality4§ with (1.5 and (L.6), the
sharp trapezoid type inequalityl (7) with (1.8) and (L.9) and the sharp aver-
aged midpoint-trapezoid type inequality. 10 with (1.11), respectively. Thus
Theoren?.1may be regarded as a generalization of Theofef) Theoren.3
and Theoreni .4

Remark 2. If we takef = % we get a sharp Simpson type inequality as

(2.19) \bga favar (50 + 1) —/abf(t>dt‘ USRS

2 6
where
ez co={ir- YOI panp |
and
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We restrict further considerations to the averaged midpoint-trapezoid quadra-
ture rule. We also emphasize that similar considerations may be made for all
the quadrature rules considered in the previous section.

Theorem 3.1.Letr = {zp = a < z; < --- < z, = b} be a given subdivision
of the intervalla, b] such thath; = z; 1 —x; = h = b‘T“ and let the assumptions
of Theorenl.4hold. Then we have
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Proof. From (1.10 and (..11) in Theoreml.4we obtain

(3.9) B{ﬂwﬂafcﬁ%ﬁﬂ)+ﬂmﬂﬂ—Lf“ﬂwﬁ

i

f )]

shg{ﬁfﬂﬂwfﬁ—%wwﬂn—

\/§ 1
-—%p@»—w(ﬂéﬁﬂ)+ﬂmﬂﬂ?g.

By summing 8.4) overi from 0 to n — 1 and using the generalized triangle
inequality, we get

=~

n—1

[rwa-t3 [+ w(ﬁiﬂﬂ)+ﬂmﬂﬂ

=0

(3.5)

n—1

h> xm 1
V2t — [f(xis1) —
4¢§p0{éi i)
1

- % {f(l’i) —2f (%) +f(95z'+1)r}2-

By using the Cauchy inequality twice, we can easily obtain

n—1 {/IZ+1

=0
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