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1. I NTRODUCTION AND MAIN RESULTS

The geometrically convex functions are as defined below.

Definition 1.1 ([10, 11, 12]). Let f : I ⊆ (0,∞) → (0,∞) be a continuous function. Thenf
is called a geometrically convex function onI if there exists an integern ≥ 2 such that one of
the following two inequalities holds:

f(
√
x1x2) ≤

√
f(x1)f(x2) ,(1.1)

f

(
n∏
i=1

xλi
i

)
≤

n∏
i=1

[f(xi)]
λi ,(1.2)

wherex1, x2, . . . , xn ∈ I andλ1, λ2, . . . , λn > 0 with
∑n

i=1 λi = 1. If inequalities (1.1) and
(1.2) are reversed, thenf is called a geometrically concave function onI.
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For more literature on geometrically convex functions and their properties, see [12, 29, 30,
31, 32] and the references therein.

It is well known that Euler’s gamma functionΓ(x) and the psi functionψ(x) are defined for
x > 0 respectively byΓ(x) =

∫∞
0
e−ttx−1 d t andψ(x) = Γ′(x)

Γ(x)
. Forx > 0, let

(1.3) f(x) =
exΓ(x)

xx
.

This function has been studied extensively by many mathematicians, for example, see [6] and
the references therein.

In this article, we would like to discuss the geometric convexity of the functionf defined by
(1.3) and apply this property to obtain, from a new viewpoint, some new inequalities related to
the gamma function.

Our main results are as follows.

Theorem 1.1.The functionf defined by(1.3) is geometrically convex.

Theorem 1.2.For x > 0 andy > 0, the double inequality

(1.4)
xx

yy

(
x

y

)y[ψ(y)−ln y]

ey−x ≤ Γ(x)

Γ(y)
≤ xx

yy

(
x

y

)x[ψ(x)−lnx]

ey−x

holds.

As consequences of above theorems, the following corollaries can be deduced.

Corollary 1.3. The functionf is logarithmically convex.

Remark 1.4. More generally, the functionf is logarithmically completely monotonic in(0,∞).
See [6].

Corollary 1.5 ([7, 13]). For 0 < y < x and0 < s < 1, inequalities

(1.5) e(x−y)ψ(y) <
Γ(x)

Γ(y)
< e(x−y)ψ(x)

and

(1.6)
xx−1

yy−1
ey−x <

Γ(x)

Γ(y)
<
xx−

1
2

yy−
1
2

ey−x

are valid.

Remark 1.6. Note that inequality (1.4) is better than (1.5) and (1.6). The lower and upper
bounds forΓ(x)

Γ(y)
have been established in many papers such as [14, 15, 16, 17, 18, 19, 20, 21,

23, 24, 25, 26].

Corollary 1.7. For x > 0 andn ∈ N, the following double inequalities hold:

(1.7)
√
ex

(
1 +

1

2x

)−x
<

Γ(x+ 1)

Γ(x+ 1/2)
<
√
ex

(
1 +

1

2x

) 1
12x

−x

and

(1.8)
√
e(x+ n)

(
1 +

1

2x+ 2n

)−x−n n∏
k=1

(
1− 1

2x+ 2k

)

<
Γ(x+ 1)

Γ(x+ 1/2)
<
√
e(x+ n)

(
1 +

1

2x+ 2n

) 1
12x+12n

−x−n n∏
k=1

(
1− 1

2x+ 2k

)
.
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Corollary 1.8. For n ∈ N, the double inequality

(1.9)
1√
eπn

(
1 +

1

2n

)n− 1
12n

<
(2n− 1)!!

(2n)!!
<

1√
eπn

(
1 +

1

2n

)n− 1
12n+16

is valid.

Remark 1.9. Inequality (1.9) is related to the well known Wallis inequality. Ifn ≥ 2, inequality
(1.9) is better than

(1.10)
1√

π(n+ 4/π − 1)
≤ (2n− 1)!!

(2n)!!
≤ 1√

π(n+ 1/4)

in [3]. For more details, please refer to [2, 8, 33, 34, 35] and the references therein.

Corollary 1.10 ([28]). LetSn =
∑n

k=1
1
k

for n ∈ N. Then

(1.11)
2n+1n!

(2n+ 1)!!

(
2n+ 3

2n+ 2

)3/2+n

e(Sn−1−γ)/2 <
√
π .

2. L EMMAS

In order to prove our main results, the following lemmas are necessary.

Lemma 2.1([1, 5, 22]). For x > 0,

lnx− 1

x
< ψ(x) < lnx− 1

2x
,(2.1)

ψ(x) > lnx− 1

2x
− 1

12x2
, ψ′(x) >

1

x
+

1

2x2
.

Lemma 2.2. For x > 0,

(2.2) 2ψ′(x) + xψ′′(x) <
1

x
.

Remark 2.3. The complete monotonicity of the function2ψ′(x)+xψ′′(x) was obtained in [27].

Proof. It is a well known fact that

(2.3) ψ′(x) =
∞∑
k=1

1

(k − 1 + x)2
and ψ′′(x) = −

∞∑
k=1

2

(k − 1 + x)3
.

From this, it follows that

2ψ′(x) + xψ′′(x)− 1

x
= 2

∞∑
k=1

k

(k + x)3
− 1

x

< 2
∞∑
k=1

k

(k − 1 + x)(k + x)(k + 1 + x)
− 1

x

=
∞∑
k=1

[
k

(k − 1 + x)(k + x)
− k

(k + x)(k + 1 + x)

]
− 1

x

=
∞∑
k=1

1

(k − 1 + x)(k + x)
− 1

x

=
∞∑
k=1

(
1

k − 1 + x
− 1

k + x

)
− 1

x
= 0.

Thus the proof of Lemma 2.2 is completed. �
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Lemma 2.4 ([12]). Let (a, b) ⊂ (0,∞) andf : (a, b) → (0,∞) be a differentiable function.
Thenf is a geometrically convex function if and only if the functionxf ′(x)

f(x)
is nondecreasing.

Lemma 2.5 ([12]). Let (a, b) ⊂ (0,∞) andf : (a, b) → (0,∞) be a differentiable function.

Thenf is a geometrically convex function if and only iff(x)
f(y)

≥
(
x
y

)yf ′(y)/f(y)

holds for any

x, y ∈ (a, b).

Lemma 2.6 ([4, 9]). Let Sn =
∑n

k=1
1
k

andCn = Sn − ln
(
n+ 1

2

)
− γ for n ∈ N, where

γ = 0.5772156 . . . is Euler-Mascheroni’s constant. Then

(2.4)
1

24(n+ 1)2
< Cn <

1

24n2
.

3. PROOFS OF THEOREMS AND COROLLARIES

Now we are in a position to prove our main results.

Proof of Theorem 1.1.Easy calculation yields

(3.1) ln f(x) = ln Γ(x)− x lnx+ x and
f ′(x)

f(x)
= ψ(x)− lnx.

Let F (x) =
[
xf ′(x)
f(x)

]′
. Then

F (x) = ψ(x) + xψ′(x)− lnx− 1, and F ′(x) = 2ψ′(x) + xψ′′(x)− 1

x
.

By virtue of Lemma 2.2, it follows thatF ′(x) < 0, thusF is decreasing inx > 0. By Lemma
2.1, we deduce that

F (x) = ψ(x) + xψ′(x)− lnx− 1 > lnx− 1

x
+ x

(
1

x
+

1

2x2

)
− lnx− 1 = − 1

2x
.

Hencelimx→∞ F (x) ≥ 0. This implies thatF (x) > 0 and, by Lemma 2.4, the functionf is
geometrically convex. The proof is completed. �

Proof of Theorem 1.2.Combining Theorem 1.1, Lemma 2.5 and (3.1) leads to

exΓ(x)

xx
≥
(
x

y

)y[ψ(y)−ln y]
eyΓ(y)

yy
and

eyΓ(y)

yy
≥
(y
x

)x[ψ(x)−lnx] exΓ(x)

xx
.

Inequality (1.4) is established. �

Proof of Corollary 1.3.A combination of (3.1) with Lemma 2.1 reveals the decreasing mono-
tonicity of f in (0,∞). Considering the geometric convexity and the decreasing monotonicity
of f and the arithmetic-geometric mean inequality, we have

f

(
x1 + x2

2

)
≤ f(

√
x1x2 ) ≤

√
f(x1)f(x2) ≤

f(x1) + f(x2)

2
.

Hence,f is convex and logarithmic convex in(0,∞). �

Proof of Corollary 1.5.A property of mean values [9] and direct argument gives

1

x
<

lnx− ln y

x− y
<

1

y
, lnx− ln y > 1− y

x
,(3.2)

−1 + lnx+
y

x
> ψ(y) + y[ln y − ψ(y)]

1

y
.
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Hence,

−1 + lnx+ y
lnx− ln y

x− y
> ψ(y) + y[ln y − ψ(y)]

lnx− ln y

x− y
,(3.3)

(y − x) + (x− y) ln x+ y(lnx− ln y) > (x− y)ψ(y) + y[ln y − ψ(y)](lnx− ln y),

(y − x) + x lnx− y ln y + y[ψ(y)− ln y](lnx− ln y) > (x− y)ψ(y),(
x

y

)y[ψ(y)−ln y]
eyxx

exyy
> e(x−y)ψ(y).

Similarly,

−1 + lnx+ y
1

y
= x[lnx− ψ(x)]

1

x
+ ψ(x),(3.4)

−1 + lnx+ y
lnx− ln y

x− y
< x[lnx− ψ(x)]

lnx− ln y

x− y
+ ψ(x),

(y − x) + (x− y) ln x+ y(lnx− ln y) < x[lnx− ψ(x)](lnx− ln y) + (x− y)ψ(x),

(y − x) + x lnx− y ln y + x[ψ(x)− lnx](lnx− ln y) < (x− y)ψ(x),(
x

y

)x[ψ(x)−lnx]
eyxx

exyy
< e(x−y)ψ(x).

Combination of (3.3) and (3.4) leads to (1.5).
By (2.1), it is easy to see that

1 <

(
x

y

)y[ln y−ψ(y)]
x

y
,

xx−1

yy−1
ey−x <

(
x

y

)y[ln y−ψ(y)]
eyxx

exyy
.

Similarly,

eyxx

exyy

(
x

y

)x[lnx−ψ(x)]

<
xx−

1
2

yy−
1
2

ey−x.

By virtue of (1.4), inequality (1.6) follows. �

Proof of Corollary 1.7.Let y = x+ 1
2

in inequality (1.4). Then

e
1
2xx(

x+ 1
2

)x+ 1
2

(
x

x+ 1
2

)(x+ 1
2)[ψ(x+

1
2)−ln(x+ 1

2)]
≤ Γ (x)

Γ
(
x+ 1

2

)(3.5)

≤ e
1
2xx(

x+ 1
2

)x+ 1
2

(
x

x+ 1
2

)x[ψ(x)−lnx]

,

e
1
2xx+1(

x+ 1
2

)x+ 1
2

(
x+ 1

2

x

)(x+ 1
2)[ln(x+

1
2)−ψ(x+

1
2)]
≤ xΓ (x)

Γ
(
x+ 1

2

)
≤ e

1
2xx+1(

x+ 1
2

)x+ 1
2

(
x+ 1

2

x

)x[lnx−ψ(x)]

.
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From inequality (2.2), we obtain

√
ex xx+

1
2(

x+ 1
2

)x+ 1
2

(
1 +

1

2x

) 1
2

<
Γ (x+ 1)

Γ
(
x+ 1

2

) < √
ex xx+

1
2(

x+ 1
2

)x+ 1
2

(
1 +

1

2x

) 1
2
+ 1

12x

,

√
ex

(
1 +

1

2x

)−x
<

Γ (x+ 1)

Γ
(
x+ 1

2

) < √ex (1 +
1

2x

) 1
12x

−x

.

The proof of inequality (1.7) is completed.
Substituting

Γ (x+ n+ 1)

Γ
(
x+ n+ 1

2

) =
(x+ n) Γ (x+ n)(

x+ n− 1
2

)
Γ
(
x+ n− 1

2

) = · · · = Γ (x+ 1)
∏n

k=1 (x+ k)

Γ
(
x+ 1

2

)∏n
k=1

(
x+ k − 1

2

)
into (1.7) shows that inequality (1.8) is valid. �

Proof of Corollary 1.8.Forn = 1, 2, inequality (1.9) can be verified readily.
Forn ≥ 3, in view of formulasΓ(n+ 1) = n!, Γ

(
n+ 1

2

)
= (2n−1)!!

2n

√
π and inequality (1.7),

we have

Γ(n+ 1)

Γ(n+ 1
2
)
<
√
en

(
1 +

1

2n

) 1
12n

−n

,
2nn!

(2n− 1)!!
<
√
eπn

(
1 +

1

2n

) 1
12n

−n

,

and

(3.6)
(2n− 1)!!

(2n)!!
>

1√
eπn

(
1 +

1

2n

)n− 1
12n

.

Further, takingx = n in inequality (3.5) reveals

e
1
2nn+1(

n+ 1
2

)n+ 1
2

(
n+ 1

2

n

)(n+ 1
2)(ln(n+ 1

2)−ψ(n+ 1
2))
≤ nΓ (n)

Γ
(
n+ 1

2

) ,
2nn!

(2n− 1)!!
≥
√
eπn

(
1 +

1

2n

)(n+ 1
2)[ln(n+ 1

2)−ψ(n+ 1
2)−1]

,

2nn!

(2n− 1)!!
≥
√
eπn

(
1 +

1

2n

)(n+ 1
2)[ln(n+ 1

2)−ψ(n+ 1
2)−1]

.

Employing formulas

(3.7) ψ(x+ 1) = ψ(x) +
1

x
, ψ

(
1

2

)
= −γ − 2 ln 2, Cn = Sn − ln

(
n+

1

2

)
− γ
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yields

2nn!

(2n− 1)!!
≥
√
eπn

(
1 +

1

2n

)(n+ 1
2)

[
ln(n+ 1

2)−ψ(n−
1
2)−

1

n− 1
2

−1

]

=
√
eπn

(
1 +

1

2n

)(n+ 1
2)

[
ln(n+ 1

2)−ψ(
1
2)−

1

n− 1
2

−···− 1
1
2

−1

]

=
√
eπn

(
1 +

1

2n

)(n+ 1
2)[ln(n+ 1

2)+2 ln 2+γ−2
∑n

k=1
1

2k−1
−1]

=
√
eπn

(
1 +

1

2n

)(n+ 1
2)[ln(n+ 1

2)+2 ln 2+γ−2
∑2n

k=1
1
k
+

∑n
k=1

1
k
−1]

=
√
eπn

(
1 +

1

2n

)(n+ 1
2)[2 ln(2n+1)−2C2n−2 ln(2n+ 1

2)+Cn−1]
.

(3.8)

Lettingx = 1
1+4n

in ln(1 + x) > x
1+x

2
for x > 0, we obtain

(3.9) ln

(
1 +

1

1 + 4n

)
>

2

8n+ 3
.

In view of Lemma 2.6 and inequalities (3.8) and (3.9), we have

(3.10)
2nn!

(2n− 1)!!
>
√
eπn

(
1 +

1

2n

)(n+ 1
2
)
[

4
8n+3

− 1
48n2 + 1

24(n+1)2
−1

]
.

It is easy to verify that

(3.11)

(
n+

1

2

)[
4

8n+ 3
− 1

48n2
+

1

24(n+ 1)2
− 1

]
> −n+

1

12n+ 16

with n ≥ 3. By virtue of (3.6), (3.10) and (3.11), Corollary 1.8 is proved. �

Proof of Corollary 1.10.Lettingx = n+ 3
2

andy = n+ 1 in inequality (1.4) yields

(3.12)
1√

eπ(n+ 1)

(
1 +

1

2n+ 2

)(n+1)[ψ(n+1)−ln(n+1)+1]+ 1
2

≤ (2n+ 1)!!

(2n+ 2)!!
.

By using inequality (2.1),ψ(n+ 1) =
∑n

k=1
1
k
− γ and 1√

e

(
2n+3
2n+2

)n+1
< 1 for n ∈ N, we have

(2n+ 1)!!

(2n)!!

(
2n+ 2

2n+ 3

) 3
2
+n

e−
1
2
(Sn−1−γ)

= (2n+ 2)
(2n+ 1)!!

(2n+ 2)!!

(
2n+ 2

2n+ 3

) 3
2
+n

e−
1
2
[ψ(n+1)−1]

>
2
√
n+ 1√
π

(
2n+ 3

2n+ 2

)−(n+1) ln(n+1)
[

1√
e

(
2n+ 3

2n+ 2

)n+1
]ln(n+1)− 1

2(n+1)

=
2
√
n+ 1√
π

√
2n+ 2

2n+ 3
e−

1
2

ln(n+1)+ 1
4(n+1) =

2√
π

√
2n+ 2

2n+ 3
e

1
4(n+1) >

2√
π
.

The proof of Corollary 1.10 is completed. �
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