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ABSTRACT. In this paper, the geometric convexity of a function involving gamma function is
studied, as applications to inequality theory, some important inequalities which improve some
known inequalities, including Wallis’ inequality, are obtained.
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1. INTRODUCTION AND MAIN RESULTS

The geometrically convex functions are as defined below.

Definition 1.1 ([10,(11,12]) Let f : I C (0,00) — (0, 00) be a continuous function. Theh
is called a geometrically convex function énf there exists an integetr > 2 such that one of
the following two inequalities holds:

(1.2) f(Vzize) <A/ far) f(z2),
(1.2) / (H x) S

=1

wherez, zy, ..., x, € T andX;, Ag,..., A, > 0 with 3" | A, = 1. If inequalities [[T.1) and
(1.2) are reversed, thefis called a geometrically concave function bn
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For more literature on geometrically convex functions and their properties, see [12/ 29, 30,
31,132] and the references therein.
It is well known that Euler’s gamma functidn(z) and the psi function)(z) are defined for

x> 0 respectively by'(z) = [~ e~t*~' dt andi(z) = F (x . Forz > 0, let
eIz
(1.3) )= )

This function has been studied extensively by many mathematicians, for example, see [6] and
the references therein.

In this article, we would like to discuss the geometric convexity of the functidefined by
(1.3) and apply this property to obtain, from a new viewpoint, some new inequalities related to
the gamma function.

Our main results are as follows.

Theorem 1.1. The functionf defined by{1.3)is geometrically convex.
Theorem 1.2. For x > 0 andy > 0, the double inequality

v Y[ (y)~Iny] 2[t(z)~In 2]
(1.4) 95_(%) e < L) _(£>
v \y Ly) — v \y

holds.

As consequences of above theorems, the following corollaries can be deduced.
Corollary 1.3. The functionf is logarithmically convex.

Remark 1.4. More generally, the functioffi is logarithmically completely monotonic ii), o).
See|[6].

Corollary 1.5 ([7,/13]). For0 < y < x and0 < s < 1, inequalities

(1.5) o) < L&) @)
L(y)
and
(16) I__leyfx < ﬁ < x_ley*ff
yY ['(y) yv2
are valid.

Remark 1.6. Note that inequality[(1]4) is better than ([1.5) ahd](1.6). The lower and upper
bounds for%) have been established in many papers such as [14, 15,116, 17] 18] 19, 20, 21,
23,124 25| 26].

Corollary 1.7. For z > 0 andn € N, the following double inequalities hold:

and

—xr—m n 1
(1.8) Velr+n) (1%_2x—%2n) 11:<1__2x—k2k)

1
F(l’ + 1) 1 TZo+iogn N1
_rto) | [
STl ~Veletn) ( +2x+2n) ( 2ac+2k)

k=1
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Corollary 1.8. For n € N, the double inequality

1 1
1 1\ ™= @n-1I 1 1\ T
1. 14+ — 1+ —
(1.9) vern ( + Qn) < (2n)N < vern ( * Qn)

is valid.

Remark 1.9. Inequality [1.9) is related to the well known Wallis inequalitynlf> 2, inequality
(1.9) is better than

1 _@n-pn 1
Vrn+4/m—1) " o)t T /r(n+1/4)
in [3]. For more details, please refer to [2] 8] 83,34, 35] and the references therein.
Corollary 1.10 ([28]). LetS, = >",_, 1 forn € N. Then

2ntinl 2n 43
(2n+ 1)1\ 2n + 2

(1.10)

(1.11)

3/2+n
) eSn=1-7/2 VT

2. LEMMAS

In order to prove our main results, the following lemmas are necessary.
Lemma 2.1([1},/5,22]) For x > 0,

1 1
(2.1) Inz— - <¢Y(z)<lnzr-——,
T 2x

1 1 1 1

Ing— — — —— / Sh

Yla)>me—or — s V@) > 4o

Lemma?2.2. Forz > 0,

1
(2.2) 20 (z) + zy"(x) < -
Remark 2.3. The complete monotonicity of the functi@y’(x)+xv" (x) was obtained irf [27].
Proof. Itis a well known fact that

/ oo 1 " - 2

From this, it follows that

1 =k 1
20/(x) +ay (@) = - =23 s = o

= k 1
SR DN s wra e e s

o k k
:Z{(k—lJr:c)(ker) S k+a)k+1+2)]

> 1 1
:Z(k—1+x)(k+x) o

k=1
B i": 1 R S W
_k=1 k—1+z k+4=z r
Thus the proof of Lemmia 2.2 is completed. O
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Lemma 2.4([12]). Let(a,b) C (0,00) and f : (a,b) — (0,00) be a differentiable function.
Thenf is a geometrically convex function if and only if the funct%f—) Is nondecreasing.
Lemma 2.5([12]). Let (a,b) C (0,00) and f : (a,b) — (0,00) be a differentiable function.

. . . yf' W)/ f(y)
Then f is a geometrically convex function if and only% > <£>

Yy
z,y € (a,b).
Lemma 2.6 (4, 9)). LetS, = >;_, 1+ andC, = S, —In(n+ 1) — y for n € N, where
~ = 0.5772156 . .. is Euler-Mascheroni’s constant. Then

1
— < (C,<
24(n 4 1)2

holds for any

(2.4) YR

3. PROOFS OF THEOREMS AND COROLLARIES
Now we are in a position to prove our main results.

Proof of Theorem 1]1Easy calculation yields

(3.1) Inf(z)=InT(z) —zlnz+z and =¢(z) —Inz.

, /
Let F(z) = [%ﬁﬂ . Then

F(z) =9¢(x)+ 2y (z) —Inz — 1, and  F'(z) =2¢'(z) + 2" (z) — %

By virtue of Lemmg 2.p, it follows that”(x) < 0, thusF is decreasing in: > 0. By Lemma
[2.7, we deduce that

1 1 1 1
Flz) = (#) —Ing —1>Inz — - S ) —1=——.
() =9¢(z) + 2 (z) —Inz >1Inz x+x<x+2x2> nx o

Hencelim, .., F(z) > 0. This implies that?'(z) > 0 and, by Lemma 2|4, the functiofis
geometrically convex. The proof is completed. O

Proof of Theorer 1]2Combining Theorerp 11, Lemma 2.5 apd [3.1) leads to
ap y[¥(y)—Iny] Y Y z[(xz)—Inz] o7
e'T'(z) > (z) Tly) g CTW o (g) e'l(x)
" Yy yY yY T ¥
Inequality [1.4) is established. O

Proof of Corollary{ 1.3.A combination of [(3.]l) with Lemmfp 2.1 reveals the decreasing mono-
tonicity of f in (0, c0). Considering the geometric convexity and the decreasing monotonicity
of f and the arithmetic-geometric mean inequality, we have

P57 < svam) < Vi < ()

Hence,f is convex and logarithmic convex {0, co). O
Proof of Corollary[ 1.5.A property of mean values[9] and direct argument gives

1 Inz-—1 1
(3.2) —<u<—, lnx—lny>1—y,

T r—y Y T

—1+Inz +% > YP(y) +ylny — w(y)]é
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Hence,

Inzx —Iny Inx —Iny

Ty W rylny =Yl ——,
(y—2)+(z—y)nz+y(nzr —Iny) > (z —y)¢¥(y) + y[lny — Y(y)|(Inz — Iny),

(y—z)+rhnr—yny+ylY(y) —Inyl(nz —Iny) > (z - y)¥(y),

ylY(y)—Iny z
(f) Tt ey

(3.3) 1tlnzty

) eryy
Similarly,
1 1
(3.4) —1—|—lnx+y§ :x[lnx—zb(x)]EjLw(x),
Inx —1 Inx —1
—1+Inz+ yw < z[lnz — w(:c)]u + 1 (x),

(y—z)+ (@ —y)lnr+y(nz —Iny) <z[lnz—P@)|(Inz —Iny) + (z - y)P(r),
(y—z)+rnr—yhy+zip(r) —nzl(nz —Iny) < (v —y)P(v),
(E)x[w(z)lnx] oYt . e(x_y)w(m)‘

y eryY

Combination of[(3.8) and (3.4) leads fo (1.5).
By (2.1), it is easy to see that

z y[lny—(y)] T Pt S x y[lny—(y)] eV
IR -, eVt < | — )
Y Y eryy

Similarly,

ey (m)z[lnzd)(x)] xzfé Y
— < —e¥™ ",
eryY \y

By virtue of (1.4), inequality[(1]6) follows.

yv 2

Proof of Corollary{I.7.Lety = = + 5 in inequality [T.4). Then

(3.5) e ” ( i )(x+é)[’/’<$+5)—1n(x+§)] < L@
. Py 1 - L
(x+%>+2 T+ 3 F<$+§)
) e%xx T z[(z)—Inz]
= 1oty \ 2+ 2 ’
(z+3)* 2
ol prtl (x + %) (e+2)[in(e+3)-v(a+3)] < 2T ()
IR e
ez poH! (I + %)x[lnxw(x)}
1
(x + %)Hi &
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From inequality[(2.R), we obtain

Jex xots <1 N 1 )5 _ I'(z+1) - Jex xmts (1 N 1 >5+151
I 1 I v
(x—l— %)Hg 2r r (x+ 5) ( + 1)1’+2 2z

1
1\ °° r 1 1\ ="
\/ex(1+—) <(x—+1)< ex(l—i——) .
F$+§ T

2x

The proof of inequality[(1]7) is completed.

Substituting
F(:r—l—n—i—l): (x+n)T (z+n) o L(z+1) [l (z+k)
F'(z+n+1) (z+n—-3)T(z+n-1) D+ DI, (z+k—-1)
into (I.7) shows that inequality (1.8) is valid. O

Proof of Corollary[ 1.8.Forn = 1, 2, inequality [1.9) can be verified readily.
Forn > 3, in view of formulasl'(n + 1) = n!,I'(n+ 1) = w\ﬁ and inequality[(1]7),
we have

1 1
C(n+1) 1= " 2"n)! 1\ "
ST en (14— M e (14—
I(n+ 1) “r ( * 2n> ’ (2n — )N e ( N Zn) ’
and
1
@n—11 1 1\
3.6 > 1+ — .
(3.6) (2n)! Vern i 2n

Further, takingc = n in inequality [3.5) reveals

- (n . %> (n+2) (in(n+3)—w(n+1)) ' (n)

(ne 22\ T(n+3)
2] 1 (B 4) =) 1]
(2n — 1y = Ve (”%) ,

2"n! S " 1
(2n — D = V! on

Employing formulas

@D et =@+ w(z)=-r-2ma G=S-m(n+g) -
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yields
2mpl 1 (n-&-%) {1n(n+%)—w(n—%)—ﬁ—l}
" >/ 14+ —
2n— 1 =V ( * 2n>
1 (8 () e (3) 211
=emn (1 + 2—)
n
(3 8) 1 (n+%)[ln(n+%)+2ln2+'y—2 Y1 Tl—l_l]
' =emn (1 + 2—)
n
( 1\ () [In(nt3) 42240 -2 5002, £ 4570 £ 1]
=+emn |1+ —>
2n
1 (n+3)[2In(2n+1)—2C,—21n(2n+1 ) +Cr—1]
=emn (1 + 2—>
n
Lettingz = = inIn(1 + z) > = for 2 > 0, we obtain
1 2
3.9 In (1 > :
(3.9) n( +1+4n) 8n+3
In view of Lemmd 2.p and inequalitigs (8.8) apd {3.9), we have
2"n/! 1 (n+%){ﬁ‘;3_481n2+24(n1+1)2_1
It is easy to verify that
1 4 1 1 1
3.11 - — -1 > - —_—
3.11) (”+2) [8n—|—3 1802 T A1) ] " Tnt 16
with n > 3. By virtue 0 ,[(3:1D) and (3.11), Corolldry 1.8 is proved.
ith 3. By virtue of [(3.1p) and (3.11), Coroll 8i d O
Proof of Corollary{I.ID.Lettingz = n + 2 andy = n + 1 in inequality [1.4) yields
(n+1)[(n+1)—In(n+1)+1]+2
1 1 2 2 nn
(3.12) - ( T ) < &
er(n+1) 2n + 2 (2n + 2)!!

By using inequality[ZJ11)y(n + 1) = >0, 1+ — 7 and%(z’”?’)”+1 < 1forn € N, we have

2n+2
@n+ DI (2n+2\ 2"
( ) e_i(sn_l_'Y)

(2n)! 2n +3
34n
— (2n+2) (20 4+ DY (20 +2\F
(2n+2)!! \2n + 3
—(n n(n n 1n(n+1) n

_2VAET (204 3\ TR L o 43\ 20D

s 2n +2 Ve \2n+2
— 2\/77/ —l— 1 277/ + 2 eiéln(n+1)+4(n1+1) — i 2n + 2 e4(nl+l) > i

NZS 2n+3 TV 2n+3 T

The proof of Corollary 1.7/0 is completed. O
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