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ABSTRACT. The main aim of the present note is to establish two new Ostrowski type inequalities
by using the mean value theorems.
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1. I NTRODUCTION

The well known Ostrowski’s inequality [5] can be stated as follows (see also [4, p. 468]).
Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) , and whose derivative

f ′ : (a, b) → R is bounded on(a, b), i.e.,‖f ′‖∞ = sup
t∈(a,b)

|f ′ (t)| < ∞. Then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b] .
In the past few years inequality (1.1) has received considerable attention from many re-

searchers and a number of papers have appeared in the literature, which deal with alternative
proofs, various generalizations, numerous variants and applications. A survey of some of the
earlier and recent developments related to the inequality (1.1) can be found in [4] and [1] and
the references given therein (see also [2], [3], [6] – [8]). The main purpose of the present note
is to establish two new Ostrowski type inequalities using the well known Cauchy’s mean value
theorem and a variant of the Lagrange’s mean value theorem given by Pompeiu in [9] (see also
[10, p. 83] and [3]).
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2. STATEMENT OF RESULTS

In the proofs of our results we make use of the well known Cauchy’s mean value theorem
and the following variant of the Lagrange’s mean value theorem given by Pompeiu in [9] (see
also [3, 10]).

Theorem A. For every real valued functionf differentiable on an interval[a, b] not containing
0 and for all pairsx1 6= x2 in [a, b], there exists a pointc in (x1, x2) such that

x1f (x2)− x2f (x1)

x1 − x2

= f (c)− cf ′ (c) .

Our main results are given in the following theorems.

Theorem 2.1.Letf, g, h : [a, b] → R be continuous on[a, b], a < b; a, b ∈ R and differentiable
on(a, b) andw : [a, b] → [0,∞) be an integrable function such that

∫ b

a
w (y) dy > 0. If h′ (t) 6=

0 for eacht ∈ (a, b), then

(2.1)

∣∣∣∣∣f (x) g (x)− 1

2
∫ b

a
w (y) dy

[
f (x)

∫ b

a

w (y) g (y) dy + g (x)

∫ b

a

w (y) f (y) dy

]∣∣∣∣∣
≤ 1

2

{∥∥∥∥f ′

h′

∥∥∥∥
∞
|g (x)|+

∥∥∥∥g′

h′

∥∥∥∥
∞
|f (x)|

} {
h (x)−

∫ b

a
w (y) h (y) dy∫ b

a
w (y) dy

}
.

for all x ∈ [a, b] , where∥∥∥∥f ′

h′

∥∥∥∥
∞

= sup
t∈(a,b)

∣∣∣∣f ′ (t)h′ (t)

∣∣∣∣ < ∞,

∥∥∥∥g′

h′

∥∥∥∥
∞

= sup
t∈(a,b)

∣∣∣∣g′ (t)h′ (t)

∣∣∣∣ < ∞.

Theorem 2.2. Let f, g : [a, b] → R be continuous on[a, b], a < b; a, b ∈ R and differentiable
on (a, b) with [a, b] not containing0 andw : [a, b] → [0,∞) an integrable function such that∫ b

a
yw(y)dy > 0. Then

(2.2)

∣∣∣∣∣f (x) g (x)− 1

2
∫ b

a
yw (y) dy

[
xf (x)

∫ b

a

w (y) g (y) dy + xg (x)

∫ b

a

w (y) f (y) dy

]∣∣∣∣∣
≤ 1

2
{‖f − lf ′‖∞ |g (x)|+ ‖g − lg′‖∞ |f (x)|}

∣∣∣∣∣1− x
∫ b

a
w (y) dy∫ b

a
yw (y) dy

∣∣∣∣∣ ,

for all x ∈ [a, b] , wherel(t) = t, t ∈ [a, b] and

‖f − lf ′‖∞ = sup
t∈[a,b]

|f (t)− tf ′ (t)| < ∞, ‖g − lg′‖∞ = sup
t∈[a,b]

|g (t)− tg′ (t)| < ∞.

3. PROOFS OF THEOREMS 2.1 AND 2.2

Let x, y ∈ [a, b] with y 6= x. From the hypotheses of Theorem 2.1 and applying Cauchy’s
mean value theorem to the pairs of functionsf, h andg, h there exist pointsc andd betweenx
andy such that

(3.1) f (x)− f (y) =
f ′ (c)

h′ (c)
{h (x)− h (y)} ,

(3.2) g (x)− g (y) =
g′ (d)

h′ (d)
{h (x)− h (y)} .
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Multiplying (3.1) and (3.2) byg(x) andf(x) respectively and adding we get

(3.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

=
f ′ (c)

h′ (c)
g (x) {h (x)− h (y)}+

g′ (d)

h′ (d)
f (x) {h (x)− h (y)} .

Multiplying both sides of (3.3) byw(y) and integrating the resulting identity with respect toy
over [a, b] we have

(3.4) 2

(∫ b

a

w (y) dy

)
f (x) g (x)− g (x)

∫ b

a

w (y) f (y) dy − f (x)

∫ b

a

w (y) g (y) dy

=
f ′ (c)

h′ (c)
g (x)

{(∫ b

a

w (y) dy

)
h (x)−

∫ b

a

w (y) h (y) dy

}
+

g′ (d)

h′ (d)
f (x)

{(∫ b

a

w (y) dy

)
h (x)−

∫ b

a

w (y) h (y) dy

}
.

Rewriting (3.4) we have

(3.5) f (x) g (x)− 1

2
∫ b

a
w (y) dy

[
f (x)

∫ b

a

w (y) g (y) dy + g (x)

∫ b

a

w (y) f (y) dy

]

=
1

2

f ′ (c)

h′ (c)
g (x)

{
h (x)−

∫ b

a
w (y) h (y) dy∫ b

a
w (y) dy

}

+
1

2

g′ (d)

h′ (d)
f (x)

{
h (x)−

∫ b

a
w (y) h (y) dy∫ b

a
w (y) dy

}
.

From (3.5) and using the properties of modulus we have

(3.6)

∣∣∣∣∣f (x) g (x)− 1

2
∫ b

a
w (y) dy

[
f (x)

∫ b

a

w (y) g (y) dy + g (x)

∫ b

a

w (y) f (y) dy

]∣∣∣∣∣
≤ 1

2

∥∥∥∥f ′

h′

∥∥∥∥
∞
|g (x)|

∣∣∣∣∣h (x)−
∫ b

a
w (y) h (y) dy∫ b

a
w (y) dy

∣∣∣∣∣
+

1

2

∥∥∥∥g′

h′

∥∥∥∥
∞
|f (x)|

∣∣∣∣∣h (x)−
∫ b

a
w (y) h (y) dy∫ b

a
w (y) dy

∣∣∣∣∣ .

Rewriting (3.6) we get the desired inequality in (2.1) and the proof of Theorem 2.1 is complete.
From the hypotheses of Theorem 2.2 and applying Theorem A for anyy 6= x, x, y ∈ [a, b] ,

there exist pointsc andd betweenx andy such that

(3.7) yf (x)− xf (y) = [f (c)− cf ′ (c)] (y − x) ,

(3.8) yg (x)− xg (y) = [g (d)− dg′ (d)] (y − x) .

Multiplying both sides of (3.7) and (3.8) byg(x) andf(x) respectively and adding the resulting
identities we have

(3.9) 2yf (x) g (x)− xg (x) f (y)− xf (x) g (y)

= [f (c)− cf ′ (c)] (y − x) g (x) + [g (d)− dg′ (d)] (y − x) f (x) .
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Multiplying both sides of (3.9) byw(y) and integrating the resulting identity with respect toy
over [a, b] we have

(3.10) 2

(∫ b

a

yw (y) dy

)
f (x) g (x)− xg (x)

∫ b

a

w (y) f (y) dy − xf (x)

∫ b

a

w (y) g (y) dy

= [f (c)− cf ′ (c)] g (x)

{∫ b

a

yw (y) dy − x

∫ b

a

w (y) dy

}
+ [g (d)− dg′ (d)] f (x)

{∫ b

a

yw (y) dy − x

∫ b

a

w (y) dy

}
.

Rewriting (3.10) we get

(3.11) f (x) g (x)− 1

2
∫ b

a
yw (y) dy

[
xf (x)

∫ b

a

w (y) g (y) dy + xg (x)

∫ b

a

w (y) f (y) dy

]

=
1

2
[f (c)− cf ′ (c)] g (x)

{
1−

x
∫ b

a
w (y) dy∫ b

a
yw (y) dy

}

+
1

2
[g (d)− dg′ (d)] f (x)

{
1−

x
∫ b

a
w (y) dy∫ b

a
yw (y) dy

}
.

From (3.11) and using the properties of modulus we have

(3.12)

∣∣∣∣∣f (x) g (x)− 1

2
∫ b

a
yw (y) dy

[
xf (x)

∫ b

a

w (y) g (y) dy + xg (x)

∫ b

a

w (y) f (y) dy

]∣∣∣∣∣
≤ 1

2
‖f − lf ′‖∞ |g (x)|

∣∣∣∣∣1− x
∫ b

a
w (y) dy∫ b

a
yw (y) dy

∣∣∣∣∣
+

1

2
‖g − lg′‖∞ |f (x)|

∣∣∣∣∣1− x
∫ b

a
w (y) dy∫ b

a
yw (y) dy

∣∣∣∣∣ .

Rewriting (3.12) we get the required inequality in (2.2). The proof of Theorem 2.2 is complete.
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